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PREFACE

It is with great pleasure and immense gratitude that we present to you the mathematics
textbook for Class XII, developed under the guidance of the Sindh Textbook Board, Jamshoro.
As an institution committed to shaping the educational landscape of the province, we take
immense pride in offering a comprehensive and meticulously crafted resource that aligns with
the dynamic curriculum set forth by the Directorate of Curriculum, Assessment, and Research
(DCAR) in 2019.
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This textbook is a collaborative effort that owes its existence to the dedication and
expertise of countless individuals. We extend our sincere thanks to the authors, editors, and
reviewers who tirelessly contributed their knowledge, insights, and time to create a textbook
that not only imparts mathematical concepts but also fosters a love for learning and discovery.

The mathematics textbook for Class XII delves into the fascinating worlds of Calculus
and Analytic Geometry. These subjects form the cornerstone of modern mathematics and have
far-reaching applications in various fields. The content has been meticulously structured to
provide students with a solid foundation in these areas, preparing them to tackle real-world
challenges and pursue higher studies with confidence.

This textbook is designed with the utmost care to enhance students' understanding of
mathematical concepts through clear explanations, illustrative examples, and thought-
provoking exercises. It is our hope that this resource will serve as a valuable companion to both
students and teachers, facilitating a deeper grasp of the subject matter and encouraging
analytical thinking.

We believe that education is a continuous journey, and as such, we welcome your
feedback and suggestions. Our commitment to improvement and innovation remains
unwavering, and we encourage students and educators alike to share their thoughts and ideas.
Together, we can create an educational ecosystem that empowers learners to excel and
educators to inspire.

In closing, we extend our heartfelt wishes for your academic journey with this
textbook. May it instill in you a passion for learning, a thirst for knowledge, and a profound
appreciation for the beauty of mathematics.
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1.1 Introduction

In the discipline of mathematics, the powerful software package Maple is widely
utilized. Symbolic and numeric operations, data visualization, and the development of
interactive applications are all possible inside this framework. Due to its extensive feature set,
Maple, a program by Maplesoft, is excellent for learning and exploring many areas of
mathematics.

Maple's capacity for symbolic computation is one of its main advantages. It enables
the symbolic manipulation of mathematical expressions and equations, allowing the user to
perform algebraic operations on variables and functions rather than simply entering numbers.
Since it can simplify expressions, solve equations, and execute operations of calculus, Maple
is a useful tool for many mathematical tasks.

Maple also allows for numerical computations, so you can use it to get close to an
answer by plugging in numbers. Matrix calculations, numerical integration, and differential
equations are only a few of the advanced mathematical procedures that it can handle.
Mathematical problems can be investigated from several angles when symbolic and numerical
computations are combined.

Maple also has many visualization tools that can be used to generate charts, graphs,
and interactive representations of mathematical topics. This graphical depiction can help you
better grasp mathematical concepts and better communicate your findings to others.

Maple provides a nice interface and a versatile programming language that facilitates
the development of unique algorithms and functions. Maple is a useful material in some
situations. It can be used for mathematical research, problem-solving, and conceptualization.
Maple can be used to gain a deeper understanding of mathematics and develop problem-solving
skills.

1.1.1 Recognize MAPLE Environment

The main interface of Maple software is shown in Fig. 1.1. Maple session is started by
double clicking on the Maple icon which will start MAPLE package,
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L Context Panel J

New to Maple?

Fig. 1.1 Main interface of Maple software
you can see the starting page containing points of important resources for new users as follows:
User workspace:

User workspace forms the largest part of the Maple interface and serves as an area
where the user can insert objects, evaluate expressions or write input commands and code.
There are two basic modes for Maple workspace:

e Document mode and

e  Worksheet mode
These two basic modes have their advantages and disadvantages.
Document Mode:

The document mode in Maple offers quick problem-solving rich content composition
and allows the user to enter text and expressions on the same line. Expressions can be evaluated
without the need of typing a specific command which guarantees better readability. Details

about functions and key commands are available in Maple Help under Create New Document
— Create and Open Document — Work in Document Mode.

Worksheet Mode:

Visually, worksheet mode can be distinguished from document mode by a symbol “>"
located at the start of each line signifying a prompt. To evaluate expressions the user needs to
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enter specific commands, which, while hindering coherence, offers advanced functionality and
customized control. In worksheet mode, further assistance may be located in Create Maple
Worksheets — Create and Open Worksheets — Work in Worksheet Mode.

Document Menu Bar:

The document menu bar is located at the uppermost part of the interface and allows the
user to access almost all functions of the system. It contains both functions essential for work-
ing with the document itself as well as features and tools for creating and manipulating objects,
expressions etc., within the document. The full description of all the menu items can be found
in the Maple help system under Getting Started — Menus — Document Menu Bar. The docu-
ment menu bar is shown in Fig. 1.2.

3

File Edit View Insert Format Evaluate Tools Window Help

Fig. 1.2 The Document Menu Bar of Maple software

Worksheet Toolbar:

The worksheet toolbar is a part of the Maple interface that serves as a location for
commonly performed tasks. The settings allow it to be either hidden or shown. A search box is
located at the end allowing the user to browse Maple resources to a great extent. Features such
as tasks, tutors and help for specific topics can be accessed in this way. The worksheet Toolbar
is shown in Fig. 1.3.

Fig. 1.4 The Toolbar Menus of Maple software
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Palettes:

Fig. 1.5 Palettes in Maple

Palettes are a part of the (Graphical User Interface) that is located on its left side and
can be described as collections of related items. These items can be inserted into the document
by either clicking or dragging-and-dropping. The items include expressions, matrices, symbols
and others. The Palettes of Maple software are shown in Fig. 1.5.
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Context menus:

Maple context menus improve the user
experience and provide quick access to a wide
range of capabilities. Context menus change
depending on what the user interacts with.
Right-clicking on a graph, equation, or variable
opens a context menu with related commands
and operations. These menus provide shortcuts
to basic functions, making mathematical
calculations and data analysis easy. Maple's
context menus make it easy to adjust plot
parameters, calculate, and use specialist tools.

Fig. 1.6. shows the Maple’s context Menus.

Fig. 1.6 The Maple’s Context Menu

Notes: 1. Every command in Maple must end with a semicolon. The semicolon assures
that the computer will execute your instruction. To execute your instructions,
you must press the Enter key.

2. Maple is case sensitive. For example, x is not the same as X because Maple
distinguishes between upper case and lower-case letters, and it will take them
as being two different variables.

3. Always type Maple commands in lower case, unless your instructor tells you
otherwise. In such cases be very careful to type everything exactly as your
instructor tells you.

Finally, if you make a mistake, do not continue typing on the next line. Go back, fix it!
Maple behaves like a text editor and you can always go back to fix mistakes or to make changes
by moving the mouse and clicking over the place where you would like to make the change.
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You can also use the arrow keys to move the cursor around. Once you make the change,
press the Enter key to re-execute the command (if needed). It is not necessary to move the
cursor to the end of the line.
1.1.2 Recognize basic MAPLE command
Basic Maple Commands:

The prompt is the symbol >. Maple commands are entered to the right of the prompt.
Each command ends with either “:” or ;”. If the colon is used, the command is executed but
the output is not printed. When the semicolon is used, the output is printed. List of some of
the most useful commands in Maple are as follows.

Command Execution Result
3

"
o Using [ENTER] -
Type "1 + 2 [ENTER]".
e Using [Alt][+[ENTER] x + 3
Type "x + 5 — 2" then [Alt]+ [ENTER].

Command Prompt > Description
> restart Resets all variables and unload all Packages
> eval Evaluates an Expression
> evalf (Pi,5) Evaluates m to 5 digits

Substitutes x = 2 = x * y into x? to give

bs(x = 2* L x?
subs(x X *y,x%) (2% x *y)? = 4x2y?

dif f(5"x xy,x) Differentiates with respect x
dif f(5%x * y, x$2) Differentiates with respect to x twice
-[ sin(x) dx Integrates with respect to x
sin(x) . . m
> f o dx Integrates from 0 to infinity to give >
0

simplify(x *y +2*x*xy —3%x) Simplifies the expression (this is really useful)

expand((x + D(x+ 2)) Expands a factored expression
factor(x? + 2x + 1) Factors an expression
exp (Pix1I) The exponential function e™
solve(5 xx + x x y% = 3,x) Solves the equation for x

Solves a system of 3 equations for x, y,

>solve({eql, eq2,eq3}, [x,y,z]) and 7 variables

()
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1.1.3 Use MAPLE as a Calculator

........

Fig. 1.7 Using Maple software as a Calculator

Maple Calculator App can be started with double click on the icon &
get that calculator interface through which you can easily solve many mathematical problems
regarding arithmetic, geometry, graphics and calculus etc. The Maple’s calculator interface is
shown in Fig. 1.7.

Maple Calculator uses the world-renowned Maple mathematics engine, so it can
solve many kinds of problems, including:

< Basic Math: Arithmetic, fractions, decimals, integers, factors, square roots, powers and
many more.

X3

%

Algebra: Solving and graphing linear equations, solving and graphing systems of equa-
tions, working with polynomials, quadratic equations and functions, logarithmic and ex-
ponential functions, trigonometric functions, trigonometric identities and many more.

e

4

Precalculus: Graphing, piecewise functions, absolute value, inequalities, implicit func-
tions and many more.

X3

%

Calculus: Derivatives, limits, definite and indefinite integrals.

2o

4

Linear Algebra: Matrix multiplication, inverse, determinant, transpose, Gaussian elim-
ination and many more.
< Differential Equations: Ordinary differential equations and a lot more.

Command Calculator Result

1 3 5

> 2 (— —) ; -

273 2

T 1

. 0 . 1

> sm(3 *180)' 5
> [n(2.718); 0.9998963157

1
> f; dx ; In(x)
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1.1.4 Use online MAPLE help

Maple Help Resources

Resources

Description

Maple Tour

An interactive overview of Maple is given by Maple Tour. From the
Help menu, select Take a Tour of Maple.

Online Manual

The Maple Online Manual is an extensive and comprehensive docu-
mentation resource that provides detailed information about how to
use Maple effectively. You can execute examples, copy content into
other documents, and search the contents using the Maple Help Sys-
tem. The Maple Getting Started Guide provides extensive information
for new users on using Maple and the resources available on the
Maplesoft Website (http://www.maplesoft.com). Each procedure and
concept is accompanied by visual depictions to help you identify Ma-
ple resources and tools. From the Help menu, select Manuals, Diction-
ary, and more>Manuals.

Quick Help

A list of key commands and concepts are given in Quick Help. From
the Help menu, select Quick Help. Alternatively, press F1. For addi-
tional information, click an item in the Quick Help.

Quick Reference

This is a table of commands and information for new users that opens
in a new window. It contains hyperlinks to help pages for more infor-
mation. From the Help menu, select Quick Reference. Alternatively,
press Ctrl + F2.

Help Page

Help for Maple features, commands, packages, and more can be found
on Help Page. Help pages include examples and screenshots to help
you quickly learn. From the Help menu, select Maple Help. You can
search for a help topic, perform a text search, or browse the Table of
Contents. You can also open a help page by entering? at the input
prompt (in Worksheet mode) or in Math mode (in Document mode).

Task Templates

This is a set of commands with placeholders that you can use to quickly
perform a task. From the Tools menu, select Tasks, and then Browse.

Applications and
Example Worksheets

These are executable documents that demonstrate the power and flex-
ibility of the Maple interactive document or provide an overview of
computations in a particular field. From the Help menu, select Manu-
als, Dictionary, and more, and then Applications and Examples.

Mathematics and En-
gineering Dictionary

Over 5000 definitions, including 300 figures and plots can be found.
From the Help menu, select Manuals, Dictionary, and more, and then
Dictionary.
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1.2  Polynomials

A Maple polynomial is an expression in powers of an unknown. Univariate polynomi-
als are polynomials in one unknown. For example, x3 — 2x + 13 .

Multivariate polynomials are polynomials in multiple unknowns, such as,
3
x%y — Exy2 + 7x
The coefficients can be integers, rational numbers, irrational numbers, floating-point

numbers, complex numbers, variables, or a combination of these types. One such example is
given below:

>a’+7 b
a *X —=;
2
247 1b
a X — =
2

1.2.1 Factoring a polynomial
To factor a polynomial using Maple software, you can use the ‘factor’ command.
Given below are some examples for how to factor an algebraic expression in Maple:

Example 1:
[> factor(6x? + 18x — 24) ; (0
6(x+4)(x—-1)
Example 2:
[> factor(x® —8x% + 17x — 10) ; (i)
x=-5kx-1Dx-2)
Example 3:
>factor( 21 +— L );
x4—1  x4+3x+2 . (i)
2x+1
(x+2)(x+1)(x—1)
Example 4:
> factor(x3 —y?); V)
[(x =) (x? +xy +y?)
Example 5:
> factor (ii:;z) ;
x%+xy+y? (V)
(x+y)(x2+y?)

Notes: 1. Never put space in between command and expression.

2. ifactor command means integer factorization.
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1.2.2 Expanding an expression

The ‘expand’ command distributes products over sums. This is done for all polynomi-
als. For quotients of polynomials, only sums in the numerator are expanded; products and
powers are left alone. See the normal command for dealing with quotients of polynomials.

Example 1:
[> expand((x +1)*(x+ 2)) ;
x2+3x+2

Example 2:

’

-> expand (i::__—%)
X 1

Py )
1.2.3 Simplifying an expression

To simplify an expression: Use the ‘simplify’ command. The ‘simplify’ command
applies simplification rules to an expression. Maple has simplification rules for various types
of expressions and forms, including trigonometric functions, radicals, logarithmic functions,
exponential functions, powers, and various special functions. You can also specify custom sim-
plification rules using a set of side relations. Look at the following structures:

simplify (expr, nl, n2, ..., opt);

simplify (expr, sidel, side2, ..., opt);

simplify (expr, assume=prop, opt);

simplify (expr, size, evaluate known_functions = eval boolean);

simplify (expr, symbolic, opt);

Example 1:
[ . . 1
> simplify (42 + 3) ;
5
Example 2:
[> simplify(e“““(bec));
bea+c

Note: In Example 2, the symbol ‘e’ must be taken from palettes of Maple software.

1.2.4 Simplifying a rational expression

To simplify a rational expression using Maple software, you can use the simplify
command. Here's an example of how to simplify a rational expression in Maple:

Open Maple software and create a new document or worksheet.

Define your rational expression. For example, let's say we have the expression expr =
(2x"2 + 4x + 2) / (4x). You can define it in Maple using the following syntax:
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expr ;= (2*x"2 + 4*x + 2) / (4*x);

Use the simplify command to simplify the expression. Enter simplify(expr) and
execute the command. Maple will return the simplified form of the rational expression.

Here is the complete code snippet:

expr ;= (2*x"2 + 4*x + 2) / (4*x);

simplify(expr);

When you run this code in Maple, it will output the simplified form of the rational
expression as shown below:

(x+1)2
2x

Maple will apply various simplification techniques, such as factoring, canceling
common factors, expanding and combining like terms, to simplify the expression as much as
possible. If the expression cannot be simplified further, Maple will return the input expression
as the output.

Remember to substitute your own rational expression for expr in the code above to
simplify a different expression.

. . x4—y4) .
> stmplify (xz—y2 ’ ..(1)

x%+y?
1.2.5 Substituting into an expression

In Maple one would use the ‘subs’ command to substitute a variable by a value in an
expression. In Maple, ‘subs’ takes two arguments: an equality > (variable=substitution value,
the expression).

[> subs(x =2,x2+x+1); ()

_ 7

> subs(x =y, 4 *x+3*y); .

_ 7y ...(i1)

(> subs(z=x+y,2*xz+ x+y);
3x + 3y ...(1i1)

1.3  Graphics

We can use context panel to create and modify plots such as graph of curves, and surfaces.
e Create a Plot:

To create a plot of a curve or surface, Maple uses defaults for initial range, style and
orientation. From the displayed context panel, select Plots and then a plot type of your choice.
The context panel shows context-sensitive operations you can apply to the expression.
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e Modify a Plot:

To modify the attributes of a plot, an individual curve, or a surface; use context panel
and select the attribute and value you want. You can change the plot range, style and other
attributes. Alternatively, use the plot menu from the main menu at the top of the worksheet.

o Plot and Curve Settings:

Curves and other elements in a plot object can have attributes specified for them such
as color, symbol, and font. The plot itself also has attributes which are used when the attribute
has not been set for the individual curve. When you set an attribute from the plot menu or the
context panel it applies to the individual curve selected, if there is one. If none is selected, it
applies to the plot, setting the plot's default attribute.

1.3.1 Plot a two-dimensional graph
Two-Dimensional Plots

There are several types of two-dimensional plots in

Maple. They provide for the plotting of the graph of a (1):(9)
function of one variable, of a data set, of a parametrically 0.8
defined curve, and of an implicitly defined curve. For ex- 0.7
ample, g:g
e To plot the graph of a function of one variable in 0.4

the plane: 8';

Maple Command: > plot(f(x),x = a..b) 01
For example: ' T 3w T Su3m 7mom

> plot(sin(x),x = 0..Pi); [Press Enter] 8 4 8 2 8 4 8
Fig. 1.8 The graph of sin(x) on the

interval [0, Tt] in Maple software

ER

The graph of sin(x) on the interval [0, 7] in Maple soft-
ware is shown in Fig. 1.8.

70+

o To plot the graphs of several functions of one vari-
able on the same coordinate axes: 601
Maple Command: > plot({f(x), g(x), ..., h(x)}, 301
40-

x=a..b)
For example:
> plot({x?,x,x? + 7},x = —8..8); [Press Enter]
Figure 1.9. shows he graphs of
f(x) = x2,g(x) = x,h(x) = x? + 7 in Maple software
on the same coordinate axes.

30+

X
Fig. 1.9 The graphs of
fx) =x%g(x)=xh(x) =x2+7
in Maple software on the same
coordinate axes



Introduction to Symbolic Package: MAPLE

e Notice that the functions are separated by commas and the list is enclosed in braces.

For example:
> plot({sin(x), cos(x)},x = 0.. Pi); [Press Enter]
Look at Fig. 1.10 for the above example.

Fig. 1.10 The graphs of
f(x) = sin(x), g(x) = cos(x) in
Maple software on the same
coordinate axes

1.3.2 Demonstrate domain and range of a plot

If no range is specified, Maple tries to determine a
reasonable domain to plot the expression. For trigonometric
plots, Maple will often use the range

"-2*Pi .. 2*Pi"

For low degree polynomials, Maple ensures that the axis of
symmetry of the graph is in the center of the plot. 4 ) P 4
Plot Multiple Functions on the Same Graph. -2
>plot([In(x), sqrt(x), exp(x)], x = -2..2, color = ["Red", -4
"Green", "Blue"]) ; -6

Note: The functions can also be enclosed in square
brackets. Look at Fig. 1.11. for the above three graphs.

4
e Plots Using Specified Range
2
>plot(cos(2x), x =0 .. 4*Pi);
0 ET[3T[21'[51T31'[7T[4T[
Look at Fig. 1.12 for the graph of cos(2x) from 0 to 4t.. 2 21 2] |2
-2

Fig. 1.12 The graph of cos(2x)

Fig. 1.11
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>plot(cos(2x), x =0 .. 2*Pi);
Look at Fig. 1.13 for the graph of cos(2x) from 0 to 2m.

Fig. 1.13 The graph of
cos(2x) from 0 to 2Tt
1.3.3 Sketch parametric equations

e To plot a curve defined parametrically by

plot([f(t),g(t),t=a..b]) 0.5
For example:
> plot([sin(t), cos(t), t=0..2*P1])

Look at Fig. 1.14 for the parametric curve of the above example.

Fig. 1.14

e To plot several parametric curves on the same plot,
pack several ““square brackets" together inside of
“curly braces":

>plot({[t,t"2,t=-2..2],[ 1+t,1+2*t,t=-1..1]})
Look at Fig. 1.15 for the above example.

(S}
~

Fig. 1.15 Several parametric
curves on the same plot

1.3.4 Know plotting options

There are many options that can be applied to the plot command, and other plots accept
most of those options. They include grid display options (gridlines, axes, captions, and more),
plot generation options (adaptive point sampling and discontinuity detection), and plot display
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options (colors, line and fill styles, transparency, etc.)

Most of the options that can be applied to a plot command can also be applied interac-
tively to an existing plot, by using the plot context menus.

The plot tools package provides commands to generate basic graphical objects and
alter existing plot structures. Objects include geometric shapes, arrows, and points, and can be
displayed either in existing plots or on separate axes. Transformations involve rotation, trans-
lation, and scaling of any type of plot. Also available is text plot, for adding text or 2-D math
to an existing plot (or textplot3d for 3-D plots). You can also add text, 2-D math, various
shapes, or free form drawing to a 2-D plot using a set of drawing tools.

1.4 Matrices
There are four ways to construct a Matrix in Maple. Which method you use depends
on your data and needs. The following are some guidelines on when to use which method:

1. Use the Matrix construction shortcuts to quickly construct a Matrix with a small
number of elements.

2. Use the Matrix palette to specify the initial type and shape for the Matrix as well as
its data type.

3. Use the Matrix function to access more initialization options (for example, using a
procedure or lists as initializers) and options that maximize the efficiency of reading from the
Matrix, storing the Matrix, or both.

4. Use the Import Matrix function to import data stored in a file into a Matrix.

+ Use a pair of matching angle brackets (< >) to enclose the comma-separated values
of the Matrix elements.

* To have sequences of comma-separated values, define the rows of your Matrix, sep-
arate the rows with a semicolon (;).
Matrixl :=<a,b,c;d,e,f>;
1.4.1 Recognize matrix and vector entry arrangement
Creating Matrices and Vectors:
Creating Matrices:
You can create a Matrix using:
% The Matrix command
+¢+ The angle bracket shortcut notation
.

+¢ The Matrix palette (see Figure 1.16).

When creating a Matrix using the Matrix command, there are several input formats available.
For example

A 2 X 2 Matrix with all elements to be zero:
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[> Matrix (2) ;
[0 0 (D)
00

A 2 X 3 Matrix with all zero elements:
[> Matrix (2,3) ;
0 0 0] ...(i0)
0 0 O
A 3 x 3 Matrix with shape of identity:

[> Matrix (3, shape = identity) ;

1 00
[0 1 Ol ...(111)
0 0 1

A 3 X 3 Matrix with all entries of 5:
[> Matrix (1..3,1..3,5);

5 5 5 .
ls : 5] (iv)
5 5 5

Specify all element as a list of lists that define the element values row-wise. Lists are en-
closed in square brackets and commas are used to separate elements of the list. For example, to

create a 2 X 3 matrix with 1 2 3 in the firstrow and 4 56  [wmatrix
in the second row, we will need a list of two lists --- the Rows: 2 [ —
two lists are the firstrow [1,2,3] and the second row [4,5,6] | Cetmn=: 21
which are then put in a list, i.e., inside square brackets. s::: : i’:m salues :
Arrangement of Matrix with set of entries: Data type: [ Any =
> Matrix ([[1,2,3],[4,5,6]]) ; R
[1 é 2 (V) Fig 1.16. Matrix Palettes

Alternatively, use the angle bracket shortcut, < >. Separate items in a column with
commas, and separate columns with vertical bars, |.

><1,2,314,56|7,89 >;

F ‘; gl (Vi)
3 609

Use the Matrix palette (Fig. 1.16.) to interactively cre-
ate a matrix without commands:

Palette

In the Matrix palette, you can specify the matrix size
(see Figure 1.17.) and properties. To insert a matrix,
click the Insert Matrix button.

Fig 1.17
Matrix Palettes: Choosing the Size

-\
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Creating Vectors
You can create a Vector using angle brackets (< >).

To create a column vector, specify a comma-delimited sequence, < a, b, ¢ >. The number of
elements is inferred from the number of expressions.

><1,23>;

Fl Q)
3

To create a row vector, specify a vertical-bar-delimited (|) sequence, < a|b|c >. The
number of elements is inferred from the number of expressions.

[><1|2|3>; (i)

[1 2 3]

For information on the Vector command
options, refer to the Vector help page
You can also create vectors using the Matrix palette.
If either the number of rows or number of columns
specified is 1, then you have the option of inserting a
matrix, or inserting a vector of the appropriate type.
See Figure 1.18. to insert a vector using the Palettes.

Fig 1.18 Insert a Vector

To define a column vector using the Vector
constructor, specify:
% The number of elements. If you explicitly specify all element values, this argument
is not required.
+« A list of expressions that define the element values.
«+ Parameters such as shape, datatype, and fill that set properties of the vector.
The following two calling sequences are equivalent:

[> Vector([0,0,0])

0 .
H ()
0

[> Vector(3,shape = 'zero’);

0 .
[Ol ...(11)
0

To create a row vector using the Vector constructor, include row as an index.
> Vector[row](3, 'fill' =1); (i)
[1 1 1]
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1.4.2 Apply matrix operations

Command Description
Matrix Addition:
A == Matrix ([[1, 2,3],[4,5, 6]]) ; Take two matrices A and B of order 2 X 3
A= [1 2 3 and apply maple command for their addition
4 5 6 and subtraction and get the result as
B = Matrix ([[1,3,6],[2,1,5]]) ; A+B
1 3 6 -
B=[, 1 s A-B

Similarly multiply Matrices A and B, which

A+ B 2 5 9 are multipliable as per their orders, that is,
6 6 11] number of columns of A should be same as
Matrix Subtraction: that of number of rows in B.
> A = Matrix ([[1,2,3],[4,5,6]]) ;
M 2 3
| A=l 5 ¢
> B == Matrix ([[1,3,6],[2,1,5]]) ;
_1 3 6
| B=[, 1 %
[> A —B;
[0 -1 —3]
2 4 1

1.4.3 Compute inverse and transpose of a matrix

In Context Menu, by selecting “standard operation” option, we have both Inverse and
Transpose commands of Matrix A that can be used as follows:
A= Matrix(3,[1,2,3,3,4,0,3,2,1]);

1 2 3
A=1{3 4 0 .. (i)
3.2 1

Inverse

—
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Transpose

= 1 3 3
2 4 2
3 01
Exercise 1 )
1. Expand the following expressions using the “expand” command in Maple.
() (x + y)3 (ii) cos(x + y) + sin(x — y)
(iii) (2a — b)? + (a + 3b)? @iv)e*(x+y) —e*(x—y)
V) (x+2)(x—-3) (vi) sqrt(x + y)
2. Use the "factor" command in Maple to factorize the following expressions and write

the factored form of the expressions:

(i)x>-8 (i) x* — y* (iii) x2 — 4
(iv) 3x3 + 12x? — 15x (V) 2x2 + 6xy + 4y? (vi)x% +4x +4
3. Simplify the following expressions using the "simplify" command in Maple and write
the simplified form of the expressions:
_(x%+2x+1) L (x3=x%-x+1)
(x+1) Dz
(iiif) sin(x)? + cos(x)? (iv) (ex?422-1)
(x2+1)
4. Evaluate the numerical value of sin% using the evalf command in Maple.
5. Find the inverse of the matrix A: = Matrix (2,[1, 2,3, 4]); using the Matrix Inverse
command in Maple.
6. Find the transpose of the matrix B:= Matrix (2,3,[1,2,3,4,5,6]); using the
Transpose command in Maple.
7. Perform  matrix  multiplication ~ for  matrices A: = Matrix (2,[1, 2, 3,4]);
B: = Matrix (2,[5, 6, 7, 8]) using the command in Maple.
8. Plot the functions f(x) = x2 and g(x) = 2x — 1 on the same graph in the range
[-5,5].
9. Generate a graph that includes the functions h(x) = sin(x) and k(x) = cos(x) in the

interval [0, 27].
10. Plot the parametric curves x(t) = cos(2t) and y(t) = sin(3t) for t in the range
[—2m, 2m].

Note: Do not forget to type with(LinearAlgebra): in Maple software before
executing the commands in Q. No. 05, Q. No. 06, and Q. No. 07.
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Functions and Limits Unit
e Weightage = 11% e Periods = 32

2.1 Functions

We know that function is a rule or correspondence between two non-empty sets X and
Y in such a way that, each element of X corresponds to one and only one element of Y. Here
X is called the domain of the function and the set of corresponding elements of Y is called the
range of the function.

2.1.1 Identify through graph the domain and range of
a function

\4

Graph of a function is useful to identify the domain and
range of a function. The domain of the function consists of all \
the input values shown on the x-axis. The range is the set of
possible output values shown on the y-axis.

|
(_I—ND-FLC\I
\
V

For example, consider the graph of function as shown
in Fig. 2.1. We can observe that the graph extends horizontally
from —5 to the right without bound, so the domain is
{x|]x € RAx = —5}. The graph extends vertically from 5 to
downward without bound, so the range of the function is
{ylyeRAy <5}
Example 1. Identify the domain and range of the function

through given graph. )

~

S R S —
) L

o o 1 o

&
<4

o Sl

Solution: The given graph is shown in Fig. 2.2. \

We can observe that the graph extends horizontally from
—3to 1. So, the domain is {x|]x € RA -3 < x < 1}.

The graph extends vertically from 0 to —4. So, the range
is{ylye RA—-4 <y <0}

N b =)
—

<

<

Fig. 2.2

<

DU b
>

Example 2. Identify the domain and range of the function through
given graph. /i

Solution: The given graph is shown in Fig. 2.3.

The graph extends horizontally and vertically without and any bound.
Thus, the domain and range of the function is {R}. (Fig. 2.3)

NOR! Sy




Functions and Limits

2.1.2 Draw the graph of modulus function (i.e., y = |x|) and identify its domain
and range
X whenx >0
The modulus function y = |x|is defined as |x| = { 0 whenx =0.
—Xwhenx <0
First, we draw the graph with the help of following table.
x 0 1 ~1 2 —2 3 -3
y = |x] 0 1 1 2 2 3 3

By plotting these points on coordinate axes. We get, the
graph of modulus function (Fig. 2.4). Now, we identify its
domain and range with the help of graph.

The arrows indicate that the graph extends horizontally
without any bound, so the domain is R. While, the graph extends
vertically from 0 to upward without any bound. So, its range is
{vly eRAy=0}

2.2 Composition of Functions

Fig. 2.4

Composition of functions is an operation or process where two functions f and g
produce a new function h by replacing the variable of one function with other function.

2.2.1 Recognize the composition of functions

Let f:A— B and g:B - C be two functions. Then the composition of f and g,
denoted by gof, is defined as the function

gof:A - C, givenby gof (x) = g(f(x)), Vx EA.

The composition gof of functions f and g exists when
Range f € domain of g. The domain and range of composite
function gof will be domain of f and range of g respectively
as shown in the Fig. 2.5.

The order of function is an important while dealing with
the composition of functions since gof(x) is not equal to Fig. 2.5
fog(x) in general.

2.2.2 Find the composition of two given functions

Example 1. If f:R — R is a function which is defined as f(x) =3x+ 1and g:R — R is
another function which is defined as g(x) = x2. Find fog(x).

Solution: Since range g = R € Domain f, therefore fog exists.
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The composition of f and g will be
fog(x) = f(g(®) = f(x®)
=3(x%) +1.
fog(x) =3x%+ 1.
Example 2. If f(x) = 2x + 1 and g(x) = —x?, then find gof(x) for x = 2.
Solution:
The composition of g and f will be
gof(x) = g(f(x)) = g(2x + 1)
= —(2x + 1)?
Now,
gof(2) = —[2(2) +1]?
= —(5)
=-25
Example 3. If R — [—1,1] is sine function i.e., s(x) = sinx and p(x) is a polynomial
function i.e., p(x) = x2 + 5x + 7 then find pos.
Solution:
pos(x) = p(s(x))
= p(sinx)
= (sinx)? + 5(sinx) + 7
=sin?x + 5sinx + 7

2.3 Inverse of Composition of Functions

2.3.1 Describe the inverse of composition of two given functions

Let f and g are bijective functions then inverse of composition of f and gis the
composition of g~ and f~1. Mathematically, (fog)™* = g~tof 1.
Example: If f (x) = x-;_l and g(x) = 2x — 1 are two given bijective functions then find the
inverse of composition of f and g, also show that (gof)™* = f~log™!
Solution:
x+1
Here f(x) = - and g(x) = 2x—1

Now, we find  gof(x) = g(f(x))
_ (x+1
_g< 2 )
gof(x) = 2(%)—1 =x
= (gof)t=x
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Now, we verify (gof)™t = f~log™?!

1
Fo) ="

= flx)=2x—-1 ( f(x)=y=¥ =2y-1=x =f7(y) = 2y—1)
and g(x)=2x-1
x+1

2

Frog = (g7 @) = £ () =2 (o) -1 =x
Hence f~tog™ = (gof)™! shown.

Exercise 2.1 )

=  gl'w=

L. Identify the domain and range of the functions through following graph.
y y K
415 4“ 4
| :

N1 // 25 1 ——
VRN 4ERNS KL ) N
COD T DBE] T e L X ——

T EIE R T 14e3E2-100 1 12 (314
ot T o
34+ _2__ _3
L4t g 3t
v 44
v /| e 4
v
. y y
(1) y
. (iii)
(i)
Y y
A
1 4
k| 3\
JAA\ pi
' // 1+ \\ 14 \
SR PIEIEIN I iR arysi= T R
St JH
24
F31 3
¥ Z
Y y
(iv) )

2. If f(x)=5x+2and g(x) = 2x? — 3, then find
i)  fog (Gigof (i) fof  (iv)gog

3. If f(x) =2x and g(x) = x + 1, then find fog(x) forx = —5.

4, If f(x) =x+3 and g(x) = x2, then find gof (x) for x = 1.

If c(x) = cosx and p(x) = x3 + 1 then find poc(x).




24

(a)

(b)

@

an
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Given that f(x) =x+ 2 and g(x) = 3x — 2 are two given functions then find
(fog)™ and (gof)~?! also show that (gof)™* = f~log™!.

Given that h(x) = x —3 and k(x) = 2x + 5 are two functions then verify that:

(i) hok # koh (i) (hok)™*= k~'oh™!  (iii) (koh)™* = h~lok™!
Transcendental Functions

All the functions other than algebraic functions are transcendental functions. Like,

sinx,cos 1 x,Inx,e* and sinhx etc.

2.4.1 Recognize algebraic, trigonometric, inverse trigonometric, exponential,

logarithmic, hyperbolic (and their identities), explicit and implicit
functions, and parametric representation of functions.

Some important types of functions are as under:

(a) Algebraic functions

(b) Transcendental functions

(©) Explicit and Implicit functions

(d) Parametric functions

Algebraic functions:

Algebraic function is a function which is defined by algebraic expression that contain

only algebraic operations. For example, p(x)=x%+5x+7,q(x)= % +7 and

r(x) = vVx + 1 + 8x? + 9 are algebraic function.

Transcendental functions: Exponential functions, logarithmic functions,
trigonometric functions, hyperbolic functions, and inverse of all these functions are called
transcendental functions

Exponential functions: If f(x) = a® wherea € RT and a # 1 then f(x) is called

an exponential function of x to the base a. For example, f(x)=3*;
1

flx) = (?)x s h(x) = (\/g)x and k(x) = (7)7* are exponential functions.

The function e* is called the natural exponential function where e = 2.718281 ...

Logarithmic function: If y = a® where a € R and a # 1 then log, y = x is called

logarithmic function of y to the base a.

Note:

1 y =logqgx is a Logarithmic function of base 10 which is called common
logarithmic function.

(i1) y =log,x or y =Inx is a Logarithmic function of base e which is called
natural logarithmic function.

(iii))  The Logarithmic function is the inverse of the exponential function.
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(11D

av)

V)

(VD

(iv) The domain of Logarithmic function is R* and its range is R.

(v) a¥=eYlne (vi)  logga=1; log,1=0
Trigonometric functions: We have already studied the six trigonometric functions in
previous classes which are sinx,cosx,tanx,secx,cscx and cotx are the
trigonometric functions.

Inverse trigonometric functions: We have already studied the inverse trigonometric
function in previous class. Sin"*x,Cos™ x,Tan"t x,Sec™t x,Csc™! x and Cot ™1 x
are the inverse trigonometric functions.

Hyperbolic functions: Hyperbolic functions are defined in a way similar to
trigonometric functions. As the name suggests, the graph of a hyperbolic function
represents a hyperbola. They are expressed in terms of exponential function e*. There
are six hyperbolic functions which are defined as under:

e*—e™*

(i) y= sinhx = —
is called sine hyperbolic function of x its domain and range are R.

. e¥+e™*

(ii) y=coshx = —

is called cosine hyperbolic function of x its domain is R and range is

{ylyeRAy=>1}

sinhx e*¥—e™™*

iii =tanhx = =
(i) y coshx eX+4+e™*

is called tangent hyperbolic function, its domain is R and range is
{ylyeRA-1<y<1}
1 2
coshx eX+e*
is called secant hyperbolic function of x its domain is R and range
{ylyeRAO<y<1}
1 2
sinhx eX—e™X
is called cosecant hyperbolic function of x, its domain and range
{ylyeR Ay # 0}.
1 e'4e™
tanhx eX¥—e™*
is called cotangent hyperbolic function of x, its domain is {x|x € R A x # 0}
andrangeis{y[yER Ay < —-1Ay >1}.
Inverse Hyperbolic functions:

(iv) y =sechx =

(v) y =cschx =

(vi) y =cothx =

The inverse hyperbolic functions are defined as under:
() y =sinh™'x =In(x + Vx? + 1) is inverse sine hyperbolic function its domain
and range is R.

S
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(i) y = cosh™tx = 1n(x +Vx? — 1) , 1s inverse cosine hyperbolic function, its
domain is {x|x € R Ax > 1} and range is {y|y € R Ay > 0}.

(iii) y = tanh™1x = %ln (%) is inverse tangent hyperbolic function, its domain is
{x|]x € R A —1 < x < 1} and range is R.

122} : o
(iv) y=sech lx =1In —5 | is inverse secant hyperbolic function, its

domain is {x|x E R A0 < x < 1}andrangeis {y|[y € R Ay > 0}.

2

(v) y=csch™lx=1In 1y Ltx

p T is inverse cosecant hyperbolic function, its

domain and range are {y|y € R,y # 0}.
(vi) y =coth™'x = 1ln |x 1

2 Ix-1
is inverse cotangent hyperbolic functions. Its domain is {x|x € R A x # 1} and range is
{yly e RAy # 0}.

Identities of trigonometric and hyperbolic functions

Trigonometric Identities Hyperbolic Identities
cos?x +sinx =1 cosh?x — sinh?x = 1
1+ tan?x = sec?x 1 —tanh%x = sech®x
1+ cot?x = cosec?x coth?x — 1 = cosech?x
sin 2x = 2sinx cosx sinh 2x = 2 sinh x cosh x
cos 2x = cos?x — sin®x cosh 2x = cosh?x + sinh?x
cos 2x = 2cos?x — 1 cosh 2x = 2cosh?x — 1
cos 2x = 1 — 2sin®x cosh 2x = 2sinh?x + 1
viii. sin3x = 3sinx — 4sin3x sinh 3x = 3 sinh x + 4sinh3x
cos 3x = 4cos3x — 3 cos x cosh 3x = 4cosh3x — 3 coshx

sin(x £ y)=sinxcosy x cosxsiny | sinh(x £ y) = sinhx coshy + coshx sinhy

cos(x £ y) = cosxcosy +sinxsiny | cosh(x £ y)= coshxcoshy * sinhx sinhy

sin(—x) = —sinx sinh(—x) = —sinhx
Xiil. cos(—x) = cosx cosh(—x) = coshx
Xiv. tan(—x) = —tanx tanh(—x) = —tanhx




Functions and Limits

(©
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2.5
2.5.1

@

the function e* is increasing and its graph cuts the y-axis at (0, 1).

(i)

graph of e* and its shape depends on the changing value of ‘a’.
The graph of f(x) = a* for different value of ‘a’ is show in Fig.

2.7.

The graph indicates that:

Explicit and Implicit functions:
Explicit function: An explicit function is a function in which dependent variable y
can be written explicitly only in terms of the independent variable x. Mathematically,
it is written as y = f(x). For example, y = x — 1,y = e* + sinx etc.

Implicit function: A function in which dependent variable y can not be expressed
explicitly in terms of independent variable x . Both dependent variable y and
independent variable x are mixed with each other where y cannot be expressed
isolately as the function of x.

For example, x? + xy + y? = 0, where y is the implicit function of x.

Parametric Representation of Function: A function can be represented
parametrically by expressing the both dependent and independent variable as the
functions of parameter such as ¢.

For example, x = cos t and y = sint are the parametric representation of x2 + y2 = 1,
here t is a parameter.

Graphical Representations
Display graphically:

The explicitly defined functions like y = f(x), where
e f(x)=¢,

. f@)=a,
o f@)=logax
o f@)=log.x
f@) = e*

The graph of y = e* V x € R.

It is observed from the graph of e*, as shown in Fig. 2.6, x'¢

f(x) = a*

The graph of the function f(x) = a* is similar to the W4

N W A U N 93 0 O
h } 1 ] 1 n i 1
t t t t t t t t

If 0 < a < 1then y = a* is decreasing function.

If a > 1 then y = a* is increasing function.
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The curves y = a* close to the positive y-axis as a > 0 increases.
(i) f() = logax

A function of the form y = f(x) = log,x y
where a > 1 is known as logarithmic function with 51 / 5
base ‘a’. Its graph depends on the value of ‘a’. 4 v
Since the inverse function of y = log,x is the 2 /y 1=
exponential function y = a*, the graph of y = log,x T =a A .
. . _ X . . _ ) — . o
is the reﬂectlon of y = a* withtheline y = x asshown x<==—— 18] T4 o
in the Fig. 2.8. "|_1 / J=tbe [
The graph indicates that: 3 /
o The curve y = log,x cuts the x-axis at the ,' [:
point (1,0). ;,'
e the domain of the curve y = log,x is R. Fig. 2.8

e the curves y = log,x approaches to negative y-axis as x € (0,1)
as shown in Fig.2.29.

e Changing the base b in
f(x) =logpx can affect the graphs
of f(x). It is observed that the graph y = logs x
compresses vertically as the value of
the base increases.

e f(x) increases if b > 1, Fig. (2.10)

o f(x) decreases if 0<b<]1,
Fig.(2.11) Fig. 2.9
y
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(iv)  f(x) = logex

Logarithmic function f(x) = log,x is 3
known as natural Logarithmic function and 2
represented by Inx, which is displayed as in
Fig. 2.12.

0
¢ Display graphically the implicitly defined _3
functions such as x*+y®>=a’ and _,
X2 2
P + b= 1 and distinguish between -1 Fig. 2.12

graph of a function and an equation
To display graphically the implicitly defined function, we solve the equation f(x,y) = 0
for y in terms of x where more than one function may be obtained.

Now, we draw the graphs of each function separately. Finally, by combining both
graph, the graph of F(x,y) = 0 can be obtained.

For example, to display graphically x% + y? = a?, first we solve y for x,
We get
y=va?—x? ory = —Va? —x?

Now, we separately draw the graph of each function as shown in Fig. 2.13 and 2.14.

Fig. 2.13

Now, by combining both graphs, we get the graph of

x? +y% = a? as shown in Fig. 2.15.
It is circle whose radius is ‘a’ unit and centre at the

origin.
X2 2

Similarly, we can display the graph of P + v 1.



Functions and Limits

It is an ellipse whose major axis is along x-axisand | [_q 0 (,0)
X< » X
minor axis is along y-axis as shown in Fig 2.16.
(0,—b)
\
Distinguish between graph of a function and an Y Fie. 2.16
equation: &~

The graph of a function and an equation (implicitly defined function) can be
distinguished by drawing vertical line on the same plane. If vertical line cuts the graph at only
one point, then it is the graph of the function and if it cuts the graph at more than one point then
it is the graph of the equation.

Example: Distinguish between the following graphs of function and equation.
y

A/ -
e > xu_é_.x
VARV, P

\4

’

y y
Fig. 2.17 (a) Fig. 2.17 (b)
We check it through vertical line test.
2 ?
A
\ )
’ Q
X' > x X' / > X
\ R
S
y vV
Fig. 2.18 (a) Fig. 2.18 (b)

In Fig. 2.18 (a) vertical line touches the graph at only one point P, so the Fig. 2.18 (a)
represents the graph of the function.

In Fig. 2.18 (b) vertical line touches the graph at more than one point, so Fig. 2.18 (b)
it is the graph of the equation.
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o Display graphically the parametric

Example 1. Draw the graph of parametric equations of function

x = at?, y=2at,whena=2and -3<t <3

Solution: Parametric equations for a = 2 are

x = 2t? (1)
y =4t ...(i)
By constructing a table as =3 <t < 3
t -3 |-=-2|-1]011}|2]3
x=2t*| 18 | 8 2 102 |8]18
y=4t |-12| -8 | -4 |0 | 4 | 8 | 12

By plotting the points (x,y) on coordinate axes,

we get the required graph Fig. 2.19.

equations
x=at?, y=2at;x=asec, y=hbtan 6

of functions such as
y
lqn
10 1
10 —
> P
4
|/
> x
_,9 2 4 6 1012 14 16 18
TN
19 ™
12 [~
M
Y
Fig. 2.19

Example 2. Draw the graph of parametric equations of function x = asec, y = btan 9,
wherea =5, b=3and-n <6 <m.

Solution:

Parametric equations for a = 5and b = 3 are

x = 5sec 0 ..(4)
y = 3tan @ ...(ii)
By constructing atableas —t < 6 <m
0 e s P L L A R
6 3 [ 2] 3 6 6 3|23 |6
x=>5secd | =5 | =58 | =10 | oo 10 5.8 58| 10 | o | =10 | =5.8 | =5
y=3tanf | 0 1.7 52 | —o0 | =5.2 | =17 1.7 |52 || =52 |-17| 0
\‘ ,/
By plotting the points (x, ¥) on coordinate axes, we 40 - 5 0~

get the required graph of Fig. 2.20.
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¢ Display graphically the discontinuous functions of the type
_ {x when 0 <x<1
Y=lx-1 when1 <x<2

Here we have a discontinuous function. Let us draw both the function at their respective interval.
e Fory=xwhen 0<x<1
By constructing atableas 0 < x <1

X 0 [ 02 04 [06] 08 | 0.99 Y
y=x 0 | 02] 04 [06] 08 | 099 1
e Fory=x—1when 1<x<2 T ﬂ//* N
By constructing atableas 1 < x < 2 ’ / \3//*“
X 1 [12] 14 J1e] 18 2 | x ¢ >
VvV O0<x<1l 1<x<2

y=x—-1 0 0.2 04 (06| 0.8 )
The graph of discontinuous function as shown in Fig. 2.21. 4 Fig. 2.21

2.5.2 Use MAPLE graphic commands for two-
dimensional plot of

e an expression (or a function),
e parameterized form
e implicit function,
by restricting domain and range of a function
(a) An expression or a function (2D plot using MAPLE)
The standard scale for a Maple plot is x (horizontal axis) ranging from —10 to 10 and

the vertical axis is based on the value of the function when x ranges from -10 to 10. The view
option allows you to scale the axes in order to see details of interest.

>fi=x-ox*t+x3-2.x%-3

10
5
-10 -5 \0 |/ 5 10
15
-4 3 2=r 2 -10
Fig. 2.22 Fig. 2.23
> plot (f2) > plot(f2,view = [-10..10,—10..10])
2D plot of the function without x and y 2D plot of the function with x and y ranges.
ranges (Restricted Domain)

)
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(b)  Parameterized form (2D plot using MAPLE)

Maple Command format for 2D plot of

Parametric function is as under: il
> plot([x(1), y(b), t

= range of t], h, v, options) 21

Where,
[x,y, range] is the parametric
specifications
h and v are the horizontal and vertical
ranges
Example:
> plot([t?,2t,t = =3..3)])
x =t?,y = 2tand range t = 3..3

Fig. 2.24

(¢)  Implicit function form (2D plot using MAPLE)
Maple Command format for 2D plot of

implicit function is as under: o1

> with(plots, implicitplot) 44
> mplicitplot(f,x = a..b. y = c..d, options) N
Where, fis the implicit function
x =a..bandy = c..d are the range on x and —:8:—:6: ol 5
y-axis. ol
Example: ol

> with(plots, implicitplot)

> impliciitplot -6

o Fig. 2.25

2.5.2 Use MAPLE package plots for plotting different types of functions

Different type of functions is plotted with Maple package. The Maple command format
is as under:

> plot(f,x = xg..%1)
f is a function and x = x.. x4 is the interval on x-axis.




Plot (1+x%,x=-1..1)
Algebraic function

Fig. 2.28
Plot ([In(x)],x = —5..5, color = ["Red"])

Logarithmic function
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AN

T 3n 2m Sk 3m 7 4m
2

Fig. 2.27

Plot (cos(x),x = 0..4m)
Trigonometric function

) -1 0 1 2

Fig. 2.29
Plot ([exp(x)],x = —2..2,color
— ["Red"])

Exponential function

Exercise 2.2 )

Which of the following are algebraic, exponential, logarithmic, trigonometric, inverse
trigonometric, hyperbolic and inverse hyperbolic functions.

i) y=x?>+5x+6 (i)  f(x) =tan"x

(i) y=2%*1 (iv) y=logs(x+2)

v)  f(x)=3sinx (vi) y=asin¥

.. 245x+7 i

(vi)  f(x) = % (viit)  f(x) = :::J;

(ix) vy =log,sinx (X)) f(x) =cosec1{x%2 -1
(xi)  f(x) = tan(sinx) (xii) y= o _T_ 3
(xiii)  f(x) = sinhx (xiv) y =lIncoshx

(xv)  y=tanh x (xvi) y =cos (Inx)
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2. Identify, whether the y is the explicit or implicit function of independent variable x if:

(i) xy*+5xy+7=0 (i) y=3x*-3x+5
(i)  yx?+y*x=3-5y (iv) x*+xy*=2+3xy
x+3 . x 3
-2 —=3xy-5
v = vi
M) y=s (O
3. Draw the graph of the following functions:
i fe)=e* (i)  f(x) = 3logiox
x2  y?
— V362 . L A
(i) y=v X (iv) TRET
4. Draw the graph of parametric equations of function
x =at? y=2at,whena=4and -5<t<5
S. Draw the graph of parametric equations of function

x=asecH, y=btanf,whena=3,b=4and <60 <m

_(x%, x<1
6. Draw the graph of the f(x) = {Zx > 1

b

2.6 Limit of a Function
2.6.1 Identify a real number by a point on the number line

A number which does not involve the square root of negative number is called real
number, any real number x can be represented on a straight line by a point P such that the

distance of P from a fixed-point O on the line is equal to |x|. The straight line is called the
number line (Fig. 2.30).

D I |
4 3 2 -1 oo 1 2 3 4

Fig. 2.30

For each real number there is a unique point and conversely for each point of the line,
there is a real number, i.e., there is one to one correspondence between the set of real numbers
and the set of point on the number line. So, every real number can be identified through a point
on the number line.
2.6.2 Define and represent

e open interval

e closed interval

e semi open and semi-closed intervals, on the number line
e Open interval:

Let p and g be two real numbers with p < g then the set of all real numbers x such that
p < x < q is called an open interval and denoted by |p, q[ or (p,q) (i.e., it does not include
the endpoints p and g).
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ie, (@q ={x[xeRAp<x<gq}

and geometrically it is the set of points on the number line between p and g as shown in the
Fig. 2.31.

& >
< »

Fig. 2.31
e C(Closed interval:
Closed interval is the set of all real numbers x such that p < x < g and denoted by
[p,q] (i.e, it includes the endpoints p and q),
ie., pql={xxeRAp<x<gq}
and geometrically it is the line segment with end points p and g on the number line as shown

in the Fig. 2.32.
< @ L >
p q

Fig. 2.32
¢ Semi open-Semi closed interval
Semi open- semi closed interval is the set of all real numbers x such thatp < x < ¢q
and is denoted by (p, q]. It includes the end point g but not p,
ie., (0, q] ={x|x€R Ap<x<q}
and geometrically it is the set of all points between p and g where end point q is included and
the end point p is excluded on the number line as shown in the Fig. 2.33.

< L >
p q
Fig. 2.33
Similarly for p < x < g, we denote the interval by [p,q) (i.e., it includes the end point p but
not q), also defined as: [p,9) ={x|x €ER Ap <x<q}

and geometrically it is the set of all points between p and g where end point p is included and
the end point q is excluded as shown in the Fig. 2.34.

< @ >
p q
Fig. 2.34
Notes: (i) [p,q] — (0, q9) = {p.q} i e -Ipqa=1{}
(i)  [pqlV @ = [p.ql ) [aln@qe=
v {pgv®q9=Ipql (vi)  (-o,0) =R
(vi)  (p,p) =1 } (viii)  [p,pl = {p}
Examples: Find the following
(i) [—4,0) U (=27) (i) [3,00)—(2,00) (iii)) (2,0)n(1,3)
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(IV) (—OO, 4] - (2' OO) (V) (—OO, 4] - (—OO, 3) (Vl) (—OO, 4] - (_ 4, OO)

Solution:
(1) [_4r OO) U (_2!7) = [_4' OO) (11) [3, OO) - (Zr OO) = {}
(i) (2,9) N (1,3) = (2,3) (iv) (—00,4)— (2,00) = (—o0,2]

(V) (=0,4] = (=,3) = [3,4] (Vi) (=0,4)— (—4,00) = (-0, —4]

2.6.3 Explain the meaning of phrase

o x tends to zero (x — 0),
e xtendstoa (x — a)
d x tends to infinity (x — o0)

Before the definition of the limit of a function, it is necessary to know the clear
understanding of the meaning of the following phrases:
e x tends to zero (x — 0)

x tends to zero means x varies in such a way that its numerical value becomes ‘closer’
to 0 but not 0. Symbolically we write as x — 0.
e xtendstoa (x — a)

x tends to a mean x varies in such a way that the numerical difference of x and a tends
to 0. Symbolically [x —a| = 0 = x — a.
e Xx tends to infinity (x — o)

x tends to infinity means x increases without any bound in such a way that no real
number exists which is greater than or equal to x. Symbolically, we write x — oo.
2.6.4 Define limit of the sequence

Recall the definition of the sequence, it is a function whose domain is the set of natural
numbers. Consider the sequence a,,a,, as, ... ay,, ... denoted by {a,}. If the terms of the
sequence {a,} getting closer to a specific real number [ as n tends to infinity, then [ is called
the limit of the sequence and is written as

lim a,, =lorlima, =1

n—-oo
If the value of a,, gets larger and larger without bound as n tends to infinity, then we
say limit does not exist and we write

lim a, = o
n—->oo

Nevertheless, if value of a,, gets smaller and smaller without bound as n tends to
infinity, then limit also does not exist and we write

lim a, = —o0
n—-oo

For example, the limit of the sequence 1,%,%,%,%, .. will be 0 as each next term of the

sequence decreases and becomes closer to 0.



lim(c) = ¢ where c is constant
lim(c.a,) = c.lim a,

lim(a, + b,) =lima, + limb,
lim(a, — b,) =lima, —lim b,
lim(a,b,) =lima, lim b,

. fap) _limay
* lim (E) = lim by,
2.6.5 Find the limit of a sequence whose nth term is given
2
Example 1. Find the limit of the sequence a,, = 53:21-75':—4-171
Solution:
i . 3n?2+5n+7
nbe M T 355502 — 8n — 11
n?(3+ = )
lim a,, = lim non
(621
n nz
3+ % + n—72
A dp = lim g1
n nz
: . (5 : 7
_Jim @)+ lim (3) + lim (53)
lim5 — lim 2 — lim 21
n—-oo n—-oo n—ocon
(Applying limit)
~3+0+40
" 5-0-0
li _3
nl—r>1;lo n = 5
. e _ 5n+7
Example 2. Find the limit of the sequence a,, = onZ+11
Solution:
y — 1 Sn+7
oo T % on? ¥ 11
7
n (5 + ﬁ)

lim a,, = lim
n—-oo n-oo n2 (9 + %)

Functions and Limits



Functions and Limits

542
= lim
n—oo 11
n(9+?)
540

lim ——' =
nl—r>rc>lon(9+0)

2.6.6 Define limit of a function

Limit of a function f (x) at point a is the number L such that the values of the function
get close to L as long as x becomes close enough to the point a.

Mathematically it is written as
lim f(x) =1L
xX—-a

For example, to find the limit of the function f(x) = %(x +1(x—1)(x—5)atx = 3.

We find all the values of the function when x approaches to 3.

x 2.5 2.55 2.6 2.65 2.7 2.75 2.9 2.95
fx) —3.28 | =337 | =346 | —3.54 | —=3.62 | —3.69 | —3.89 | —3.95

When x approaches to 3, the values of function become close to —4, as shown in the
above table.

Hence, the limit of the function at 3 is —4.

1
ie., lim|-(x+ 1D -1)(x—-5)]|=—-4
x-3 |4

Note: Let p(x) is polynomial function, then lim p(x) = p(a)
X—-a

2.6.7 State the theorems on limits of sum, difference, product and quotient of
functions and demonstrate through examples
Let f(x) and g(x) be two functions defined on an open interval containing the number
“a”. If x approaches “a” both from left and right side of “a”, f(x) and g(x) approaches, a
specific numbers ¢ and d, called the limit of the function f(x) and g(x) respectively. The
same may be written as:
ie., lim f(x) =c and limg(x) =d
xX—-a xX—-a
Following theorems of limits or properties may be applied for finding the limit of the functions:
Theorem 1. (Limit of Sum of Functions)
The limit of the sum of functions is equal to the sum of their limits
ie., lim[f(x) + g(x)] = lim f(x) + lim g(x) =c+d
xX—a x—-a x—a
Theorem 2. (Limit of Difference of Functions)
The limit of the difference of functions is equal to the difference of their limits

ie, Im[f(x)—g(0]=limf(x) - lim g(x) = ¢ — d
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Theorem 3. (Limit of Product of Functions)

The limit on the Product of functions is equal to the product of their limits
ie., lim[f(x).g(x)] = lim f(x).lim g(x) =c.d
X—a xX—a X—a
Theorem 4. (Limit of Quotient of Functions)

The limit on the Quotient of functions is equal to the Quotient of their limits

lim f (x)
ie, lim f® _ x2a _< where g(x) #0
x-a|g(x) ,1‘"2 glx) d

2.7 Important limits

2.7.1 Evaluate the limits of functions of the following types:
2_ 2

x“-a J x—-a b
L4 -
an NN when x - a
1 X
o (1 +—) when x -
x
1 +Vxta—/a a*-1 (1+x)"-1 sin x
o A1+x)x, X s and when x - 0
x X x X
x2-a? x-a b
o x_a,\/}_\/awenxﬁa
. L x%-a? _ (x a)(x+a) _ _
M chl—r>r(11 x-a x—>a x—a chl—>ntll(x+a) 2a
.. x—a_ Jx+va
() lim == lim o
x—a) Vx++va _ x
= lim &Y lim — =D (Vx + Va)

’Ha\/— \/_\/—+\/_ x=a (V)2 — (Va)?
(\/_+\/_)—hm(\/_+\/_) =2va

=

° (1+%)x when x - o

X

1
To Find J!I_{?o (1 + —) we use binomial series,
X

X

(12 = m[ren () 20E2( 22D
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_ 1 N1 o1 1

= lim [1+1+—'x2<1——>.—+—x3(1——)(1__) +. ]
X—00 3| X x x3

im [1-14+ = (1= +2(1-2)(1

i 1=t g (-2 g (- (0-5)+

, ... tends to zero.

)

1
whenx - oo, All —,—,—
x'x'x

1 1 1 1 1 3 B x? x3 x*
[1+1+2|+3'+— St ] : =1+x+ortort ot
1 1
=el=1+1+ 4o+
1 X
lim (1+3) =e [Approximate value if ¢ is 2.718281]
X—00
1 Vx+ta—Va a*-1 (1+x)"-1 sinx
o (1+x)x, y " and — when x >0
x x x x
1
i (@+x)*x when x—-> 0
Let x = 1
y
Asx —» Otheny — oo
I 1 I 1
Now, xl_l’)r(l)(l +x)x = yl_r)glo (1 +§) =e
Jita-Va
(ii) T when x - 0
CVxFa-va . (XTa-va) (ATa+va
lim ——— = lim .
x—0 X x—-0 X (\/m+\/5)
o x+ta-a 1
= lim .
20 ¥ (xtatva)
_ 1 1
= lim =
(T ra+va) 2va
a*-1
(iii) when x - 0,a>0, a#1
X __
To find lim &2
x>0 X
Let a*—1=y .0
= a*=1+y
= x =log,(1+v)

From (i) when x — O then y — 0 we have
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Consider a unit circle with circular sector OAB. If x is the angle measured in radian
between the radial segment OA and OB, then it follows from the definitions of the
trigonometric functions that BD = sin x, 0D = cosx, and AC = tan x,. Also, x is the length of
the arc AB from figure 2.35, we have

1 1
=lim———— = lim ——=lim ——
0 x o y=ologa(T+y) 270 Sloga(L+y) Y70 jog (1 4y)y
__lnw
- 1
lim [ log, (1 + y)y]
y—=0
1
= N » lim logb(f(x)) = log, (limf(x))
. - x—-a x—a
log, lim [(1 + y)y]
y—=0
im® 1o = logea =1
= x log,e OBed=1na
x_ 1
)161_1;1’(1) o =Ilna [i’lir(l)(l +y)y = e]
Corollary: If a is replaced by e, then above formula reduces to
-1
lim =lne=1
x>0 X
. e*—1
i.e., lim =1
x-0 X
(1+x)"-1
(iv) T when x - 0andn € Q
By using Binomial series
nn—-1)n-2
1+x)"=1+n(x)+ ( )( )2+ e 3)'( )(x)3+
1 1)(n-2
(1 + x)n 1 [1 + n(x) + 11(7;l )(X)Z n(n- )(n )( )3 ]
lim ——————— = lim :
x—0 X x—0 X
n(x) + 208 (02 + 200D (3 4
= lim 2 3!
x—0 X
rfp+ MO  MOD@D) ]
= lim :
x—0 X
nn-—1 nn—1)(n-2
=lim[n+ ( )x+ ( X ) 2+~~]=n
x—0 2! 3!
sinx
) . when x - 0
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Area of AODB <Area of sector OAB < Area of AOAC

. sinx cosx < X < tanx
ie., =
2 2 2
1 smx
0sx < == < —— [leldlng by ——
sinx ~ cosx
1 sinx sinx 1
= @>T>cosx =>COSX<T<m
. 1 .
lim——=1=limcosx
x—0COSX x—-0
~ By sandwich theorem, we have A
sinx
lim=——==1 Fig. 2.35

Note: Sandwich Theorem also called squeeze Theorem states that, if f{x), g(x) and
h(x) are three functions defined over an interval I such that g(x) < fix) < A(x)
and suppose lin% ga(x) = lin% h(x) =L then lin(r)l fix)=L

X— X— x>

2.7.2 Evaluate limits of different algebraic, exponential and trigonometric

functions
(a) The evaluation of the limits of algebraic and exponential functions:
. 1 1 .. 1
D e S
3
53 515
3 =XE X\T 3
. X2 . \x*5 : x 2
— = — = — = e5
(iii) }Cll’)l(l)(l + 5)x }Cl_r)r(l) (1 + 5) jlcl_r)r(l) (1 + 5) e X
lim[1+x]x=e
3 x-0
X X3 X5
: 3\5 3\3%5 _ |, 3\3 3. *
i =) =1 = = = =e5 -] =
o (2 =i (147 i (] = m (43T
. 3%-5*
-17x
W Jm= (vi) lim 3¢ —¢ ' —4
-0
_ i 351 * b
_x—% _1im5x—5 e —4+5
= lim -
_ o BED (1) ’
I _ lim 5@"-D-1(e"-1)
= x-0 X
) 321 - s5%1 A7x 9
= lim [ ‘ _ slim &~ —jim ¢ =1
x—0 X X = x-0 x x—0 x
X X -17x
. -1 - . 5-1 -1
= lim — _
}51_13(1) X }}l% X 5(x—>0 17x )x( 17) (hm ) ( 9)
= In3-In5 =In =51 ¢17) = (D9

=-8+9=-76




(viii)

(b)
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x—>o (1+5x) -1 putting y=5x= x = % > as x>0 = y—0

n
-1 y a+»"'-1 . A+x0)"-1 _
m 5 = 5 lim~——~—— + lim~—F——=
Y y=0 y x—-0 x
= 5n
n_on
lim xx Z =na™ ! wheren € Q
x—a -

Letx=a+ h,asx — a, wehave h — 0

h n
x" —a" (a+h)"—a" a”(1+a) —a"
lim——— = lim———— = lim
x-a X —a h—0 h h—0 h
1 nn-—1)
— AN im — -~ 7 e —
¢ #—%h(l-'_n(a)-'_ 2! (a) 1)
n n nn—1)h
= a"lim 2t gzt ) = na™ 1 (by applying limit)

The evaluation of the limits of trigonometric Functions:
sin2x . 2sin2x . Sin2x

(1) lim === = lim == Zzlglcrllo T 20 =2
.. . 1—cosx _,. 1—cosx _ 14cosx . 1—cos*x
(1) lim =i 1 = lim———
x-0 X x>0 X +cosx  x-0x(1+ cosx)
~ lim x sin® x lim b4 ) sin x\? 0x1=0
x-0x2(1 4 cos x) _x1—>01+cosx xl—g(l)< x ) U=
) ins . sin5x . 5sin5x . sin5x
(i) lim S0 S5x m S”;C * ,lcl_r)r(l) X ,lc_>0 5x 5 51,1511,10 5 _ 5
50Sin3x ~ xoo Sin3x sin3x ~ 4. 3sin3x . sin3x 3
¥ ¥ x alcl—rf(l) x alcl—% 3x 3 3195130 3x
i) i X _ llm(n x) _n_
v x>0 cos(m—x) — llm [cos(n ] -1~ n
. 2sinx—1 ) . _ y+ T
(v) chl_r)nn Y S —— ; putting y = 6x — 1T=>x—T asx—>7=>y—>0
yrm e b
— lim ZSlTl( ) — lim V3sin g tcosg—1
x— 1r y=0 y
Yy Yy
cos = —1)(cos = +1
i f¢< e
y(cos 3 )
s 2y
— 1 i sin"g 3 _ 1 lim_sin*& _V3 1,3
- \/§X1X__yll%—y_? 2y1_r,%y2—><y— 6 2(0)— 6
y(cosg + 1) (?) X 36
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2.7.3 Use MAPLE command limit to evaluate limit of a function

The format of limit command to evaluate limit of a function in MAPLE are as under:

> limit(f, x = a) for [lim £
x—a
> Limit(f,x = a, dir)
Where,
f stands for function whose limit is to be evaluated
X=a stands for x - a
dir means direction i.e., real/complex or left/right of a in x = a
Examples:
(1 .. (sin(x)
> limit (—,x = 5) > ll‘mlt( ,X = 0)
x x
1 1
5
Directional limits are: Limit of Piecewise functions:

> g = piecewise(x < 3,x2 —6,3<x,2x — 1)

1
> limit (—,x = 3)
x g;={x2_6 x<3

1 2x—1 3<x
3 > limit (g, x = 3)
> limit ex =0, real) < it (gx = 3 Z?;(Z})”ined
undefined :
> limit (%,x =0, right) > limit (g,x =3, left)3
o

1
> limit (;,x =0, left)

—o00
Exercise 2.3 )
1. Solve the following:
(1) [2,0)U3)5) (i) [-11]-(2,) (iii) (5,%) N (-3,6)
(iv) [35]-@)5) (v) [1,10]n[3,11] (vi) (=9,5) = (=,3)
2. Find the nth term and limit of the following sequences
L L1 ;) 12 34 56
W1 2'4'8"7" (@) 34°56 78"
3. Find the limit of the following sequences whose nth terms are:
. 1+5n (3n—1)(n*-n) (n+1)!
O === () ay= (nZ45)(3—7) (i) an =y

y
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Find limit of the function y = % for x — oo.

Evaluate by using theorems on limits.

. . .. . 1+x
54 ,2
@ lim S +x+x+ D) (i) lim (—2)
(iii) chmri [(2x3 + 3x%)(x + 1)] (iv) chmré {(x+1)— (x?+2x +3)}
Evaluate the limits of following algebraic and exponential functions:
. .. 4 5
. 2 3 . .
6] ’lcl_rg (x*+4) (ii) }Cl_l‘)r(l) o) (i) ,11_{20 510
. . x2—49 . x+3-V3 . . x=7
@iv) ll_tg . v) }CIL’% — (vi) }CI_I;I; N
. ) x % . a S\ 1 p\P*
(vii)  lim (1+3) (viii)  lim(1+ ax)x (ix) lim (1+2)
X
: v . 171 Lo (142" -1
0 m(-EY gt e
1
Lo 284" —g"—1 . . (1+7x\x . a*=b"
(xiii) ’161_1’3(1) 3z (xiv) }Cl_l‘)r(l) (1——9x) (xv) Jl{lil(l)
—2x_p—11x —5x_gp—2x
(xvi)  lim &=¢ (xvii) lim S =5e”7H2
x—0 X x—0 . X 5
N cotx . . X'—16 . 2X - X
(xviii) )lcl_l‘)r(l)(l + 3tanx) (xix) Jl}_}rr; —x o (xx) )lcl_r)rgo—3x T
Evaluate the limits of following trigonometric functions:
G imEME Gy im 3 G lim(3cos x + 2tanx)3
x—0 X x—0 & x—0
. . 3sinx—x3 . sinpx . _ (2m—x) sec(m—x)
(iv) ,151_% 2 ™ ,1513(1) singx (vi) ,IC‘L% g
B . sinx? . 1-cosmx . sin3xsin5x
(vii)  lim (viii)  lim —— (ix) lim
x>0 X x-0 1— cosnx x—-0 7x2
Evaluate the limits of the following functions:
. sin’(3) NN T .
6 lim > (i1) lim x sin= (iii) lim [\/x2 +x+1- x]
x—-0 4x X—00 X xX—00
. . 1—cos3x . d+a*=2 . _ 6Y-3%-2%41
™ Mz, Iz O I
5 1 1
x _3 > > -1
.. . %3275 . y2-16y2 . . Vx
(vii) chl_rg 3 (viii) y_r)r‘)} —y—4 (ix) }CI_I)I} x
() lim Y2FCosx=2 ki) limx®D  (xi) lim i £
X-TC =X x—1 x—1 \/E—l
— s Inx—1 i -
(xiii)  lim Y2ZOSXTSINX (xv) lim S Dsin (£=2)
x—% (4x-m)? x-oe XxX—e X2 x2-4
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2.8 Continuous and Discontinuous Functions

If the graph of function takes a sudden jump or has a break at x = x,, it is said to be
discontinuous function at that point (Fig 2.36), if on the other hand, no such jump occurs then
the function is said to be continuous (Fig 2.37).

Discontinuous function Continuous function
;L ' i\ '
L=l L y=g)
:\_/ /:\
—— s
5 - > X 5 = > X
Fig. 2.36 Fig. 2.37
2.8.1 Recognize left hand and right-hand limits and demonstrate through
examples

There are two possible limits of the function at any point a. They are left hand limit
and right-hand limit. When x approaches “a” from left side, the obtained limit is called left
hand limit. It is written as

lim f(x) =m
xX—=a

Here m is the left-hand limit of function f(x) at x = a.

Similarly, when x approaches “a” from right side, the obtained limit is called right
hand limit. It is written as

lim f(x)=n
x—at

Here n is the right-hand limit of f(x) at x = a.

The limit of the function f(x) exists at x = a if both left hand and right-hand limit
exist and are equal i.e.,

lim f(x) = lim f(x)=m=n=1L
x—a x—at

Example 1. Find left and right-hand limit of f(x) = l%' at x = 0 and check the existence
of the limit.

Solution:
Left hand limit = lim f(x) = lim 2 (+ x>0—=>x <0 = Ix|= —x)
x>0~ x—0~ X
—X
=—=-1
X

Right hand limit  lim f(x) = lim 2 (+ x>0-=x>0=IxI=x)
x—0t x-0t X

x
=1

X
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Left hand limit # Right hand limit

Limit of the f(x) = % does not exist at x = 0.

2x+1, x<2
Example 2. Find left and right-hand limit of f(x) = { x, x =2 at x = 2 and check
the existence of the limit. 3x—-1, x>2

Solution:

As the function f'deviates when value of x approaches to 2 from both sides, so we need to find LHL
and RHL to check the existence of limit.

LHL = lim /() (v x-2 =x<2= fix) =2x+1)
= lirgl_(Zx +1)=22)+1=5
X—
RHL = 11r§1+f(x) (v x-2t =x>2= fix) =3x-1)
X—
= lim(B3x—-1) =3(2)-1=5
x-2%
Left hand limit = Right hand limit

lim f (x) exists.
x—2

Example 3. Check the existence of the limit for f(x) = \/ﬁ at x = 0.
Solution:
xV1+cosx
limf(x) = lim [Multiplying and dividing by V1 + cos x |
X0 x-0~/1 — cosx -1+ cosx
I xV1+cosx y xV1+cosx . xVl+cosx
= lim = lim = lim
0 [(1—cosx)(1+cosx)  *0V1—cos2x *20 +sin?x
y xV1+ cosx
= lim ————
x-0 |sinx|

As the function [sinx| deviates when value of x approaches to 0 from both sides, so we need
to find LHL and RHL to check the existence of limit.

xV1+ cosx . xv1l+cosx

LHL = lim ——————— = lim ——— (~ x>0 =x<0= sinx<(0 = |sinx|=—sinx
x>0~ |sinx]| x>0~  —sinx
. x . . x
= — lim (—) lim v1 + cos x ( lim — = 1)
x-0~ \sin x/ x~0~ x-0~ sin x
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= (-1V2= V2
. xVl+cosx - xVl+4cosx + ) ) )
RHL = lim ————= lim ——— (~x-0 =x>0= sinx>0 = |sinx|=sinx
x-0%  |[sinx| x>0t sinx
0 x . . x
= Jim, (553) Jim, VT cos> (- dim 5z = 1)
= (V2 =42
«+ LHL # RHL
. X .
lim ———=——== does not exist.

x-0y1—cosx
2.8.2 Define continuity of a function at a point and in an interval
(a) Continuity of a function at a point.

A function f(x) is continuous at the point x = a if it satisfies the following conditions:

@A) f(a) is defined i.e, a is in the domain of f (x).

(ii) lim f(x) exists.

xXx—a
(i)  lim f(x) = f(a)
xX—-a
(b) Continuity of a function in an interval:

A function f is continuous over the open interval (a, b) iff it is continuous on every
point in (a,b). The function f(x) is continuous over the closed interval [a, b] iff it is
continuous on (a, b), the right-hand limit of f at x = a is f(a) and the left-hand limit of f at
x =bis f(b).

(c) Discontinuity of a function at point

If a function f is not continuous at a point a then it is said to be discontinuity at a point
a. Similarly, if a function is not continuous on interval, then it is called discontinuous on
interval.

2.8.3 Test continuity and discontinuity of a function at a point and in an
interval.

Example: Test the continuity and discontinuity of the following functions:
@) f(x) =tanx +x2 + 3x atapointx = 0
Solution:

Left hand limit _lim f (x) = Jim (tanx + x24+3x), x<0

= (lim tanx + lim x?2+ 3 limx) +~tan0 =0
x—0— x—0— x—0—
= 0+0+0=0 [Applying limit]
Right hand limit: lim f(x) = lim (tanx + x% +3x), x>0
x—0+ x—0+
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= Gl tanx + i x4 3,1, )
=04+04+0=0 [Applying limit]
Left hand limit = Right hand limit
Limit exists at x = 0. Now the value of the function f(x) atx =0
f(x) =tanx + x2 + 3x
f(0) =tan0 + (0)2+3(0)=0

Thus lin(l) f(x) = f(0) So, function is continuous at x = 0
x—

.. 2+ x, when x <3
(i) f(x):{S—Zx, when x > 3 at x =3
Solution:
As the function f deviates when value of x approaching to 3 from both sides, so
we need LHL and RHL
Left hand limit xligq_ flx) = xll)r? (2+x), asx—>3 >x<3
=2+43=5 [Applying limit]

Right hand limit lirgr} flx) = lirzg (5—2x), asx—3 =x>3
X— xX—
=5-23)=-1 [Applying limit]
Left hand limit # Right hand limit

Limit does not exist at point x = 3. So, the function is discontinuous at x = 3
1

ex—1
_ )T when x # 0
i) fE@ =41,

1, when x =0

Solution:

1
As the part of the function fi.e eX shows deviation when value of x approaches to 0 from
both sides. So we need to find LHL and RHL.

1
X — 1
LHL = lim f(x) = lim <ejlc 1) (v x>0 =x<0= ex-(0)
x—=0" x—=0" =
ex+1
_0-1 1
04+1
1 1
RHL = lim_f(x) = lim (ejlc_1> (x=0" =x>0= eX— 00)
x—-0%t x—0t ex+1
0
1 (1 ——1) 1
ex ex 1-—ex

1
(v x=0" =>x>0= ex- 0)
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1-0
1+0

=1 as LHL # RHL

-+ Given Function fis discontinuous at x = 0

Note: Polynomial functions are continuous on R = (—o0, 00).

2.84 Use MAPLE command iscont to test continuity of a function at a point
and in a given interval
In MAPLE we use following commands to test whether the expression or function is
continuous or discontinuous at a point and in a given interval.
>iscont (expr, x =a..b)
>iscont (expr, x =a..b, ‘closed’)
>iscont (expr, x =a..b, ‘open’)

Where,
expr is an algebraic expression
X is a variable name
a.b is a real interval
‘closed’ is (optional) indicates that endpoints should be checked
‘open” is (optional) indicates that endpoints should not be checked(default)
Examples:
. 2 . 1
> iscont (—,x = 1..2) > iscont ( ,X = 1..2)
x+1 x—1
true true
2 1
> iscont ( ,X = —2..1) > iscont ( ,X = —1..2)
x+1 x—1
false false
1
> iscont ( ,X = —1..1) > iscont ( ,X = —00..00)
x+1 x—1
true false
x 1..11s ?m ().pen‘ 1nterYal, so at point S iscont ( x=0.. 1)
x = —1 function is discontinuous but other -1
points of the interval it is continuous. So, it is true
1
true. > iscont ( 1,x =0..1 ’close’)

false




Functions and Limits

> iscont (sec (x),x =0..1) > iscont (piecewise(x < 3,x + 8,3

true <x,x%+2),x=0..0)
> iscont (sec (x),x = 0..2m) true
false > iscont (piecewise(x < 3,x + 2,3
<x,x?+2),x=0..0)
false

2.8.5 Application of continuity and discontinuity

We have numerous applications of continuity and discontinuity in our daily life. Few are
given below.

(i) Ifwe drop an ice cube in a glass of warm water the temperature of water continuously
changes with the time and eventually approaches the room temperature where the
glass is stored.

(i) The human heart is also an example of application of continuity as it beats
continuously even the person sleeps.

(iii) The continuous spreading of corona virus however, be controlled or discontinued
through precautionary measures such as social distancing, wearing mask and
vaccination.

(iv) Population growth is a continuous process and be measured by an exponential
function known as population growth model.

Example: The profit obtained by wholesaler of biscuits is given by continuous function
2_
p(x) = %24 , here x denotes the number of packets of biscuits. Find the profit of wholesaler
for selling two packets of biscuits.
. . : x2—4 : . x2—4
Solution: Since, the function p(x) = ~=7 Is continuous, therefore llrr% Y7 = p(2)
- ame—

" x2—4_1_ (x—2)(x+2)
xl—rgx—z_xl—rg (x-2)

=limx+2=4=p(2)
x-2

Hence, the wholesaler would obtain profit of Rs. 4 for selling of two packets of biscuits
to retailer.

Application of discontinuity of function

Discontinuity of function plays a significant role in various real-life scenarios. Here
are some practical applications of discontinuity of function in daily life.

1. Electrical circuits: In electronics and electrical engineering, functions often
describe the relationship between voltage, current, and resistance in a circuit. Discontinuities
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in these functions can represent abrupt changes, such as a switch turning on or off, or a diode
transitioning between conducting and non-conducting states.

2. Stock market and finance: Financial data often exhibits discontinuities due to
sudden price changes, market openings and closings.

3. Population growth and decay: In demography and biography, functions that
describe population growth or decay may experience discontinuities due to sudden events line
disease outbreaks, natural disasters, or population control measures.

4. Internet and network traffic: Data transmission rates in computer networks can
experience discontinuities when network congestion occurs or when there are abrupt changes
in data flow, such as a sudden spike in website traffic.

Exercise 2.4 )

1. Evaluate the following limits.
oo X—2 o X242x-3 o v X244x—12
(@) lim, 5=7] (i) im =5 (i) lim ==
2. Determine whether lirri f(x), lirré fx), lirré f(x) and lirri f (x) exists or not when
x> X— X— X—

2x+1 if0<sx<2
f(x)={x—7 if2<x<4

x if4<x<6

3. Test the continuity and discontinuity of the following functions.
() f(x) =sin(x? + mx) + 7x* +x  atapointx =0
(ii) flx) = 2-cos 3§_COS dx atapointx =0
_(7+3x, whenx<1 _
(i) f(x)_{l—Sx, when x > 1 atx=1
4. Determine whether the following function are continuous at x = 2
2
. x2—4 y x°—4
0 f@=i5 i) 9@ = {x—z when x # 2
3 when x =2
x2—4
(i)  h(x) = {ﬁ when x # 2
4 when x =2
—x*+3 when x <2 -
5. S that ={ X = Is J continuous everywhere ?
uppose that f(x) x2+9 when x > 2 4 Hous eveyw
sinkx +0
6. Find the value of k if f(x) = { x =0 is continuous at x = 0.
2 T

=)
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kx—9 x<5
Find the value of k if f(x) ={9x — k x > 5 iscontinuous at x = 5.
36 x=5

Find the values of m and n, so that given function f is continuous at x = 3.
mx if x <3

() f(x) = n ifx=3 (ii) £ (x) ={
—2x+9 ifx>3

mx if x<3
x? ifx>3

V2x+5—yx+7 2
Iffx)={" x=—2 ' X7
k , XxX=2

Find the value of k so that f is continuous at x = 2.

Review Exercise 2 )

Choose the correct Answer
@) The function f(x) = x is called -------------

(a) Quadratic function (b) Cubic function

(c) Identity function (d) None of these
(i1) The set {x| x € R} can be written as

(@) [-oo,00]  (b) (=o,a) () (=00, ) (d)(a, )
(iii) [3,5] — (3,5) = -

(a) @ (b) (3,5) (c) [3,5] (d) {3,5}
>iv) LetR = {(x,y)| x,y € Randy = 5}

(a) Set of real numbers (b) {5} ()9 (d) {1,5}
W) A function f(x) = %,x # 0 is an:

(a) odd function (b) even function

(c) linear function (d) none of these
(vi) If f(x) =4"then f(x+1) — f(x) = -

(a) 4 (b) f(x) () 3f(x) (d) 2f (x)
(vii)  The limit of the sequence having general term a,, = 2—1n is:

(@0 () 1 (c) @© (d) None of these
(viii)  lim =

1

@) — (b)a (c)oo (d)0

(i) lim ’;2 __39 =?

()3 (b) oo () 0 (d)6
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)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

Iff: [-1,4]> R is givenby f(x) = x? then f(-3) is:
(a) 9 (b) -9 (c) does not exit (d)o6

}li_r)r(l) sin (g + h)

1

(a) 1 (b) -1 (c) 0 @7

-1
lime x
x—0
() 0 (b) 1 (c) o (d) —o0
Li_t:r} f(x) exits if and only if
(a)xlirzl+ f(x) exist (b) xll)rgl_ f(x) exist
() lim £(x) = lim f(x) () lim, f(x) # lim f(x)
pim [
(a) e”’ (b)e (0)1 (d)
The limit of the sequence 1, ™1, ™2, ™3, ...is
(a) 1 (b)m (c) (d)0
Which of the following represents parametric function
@y =fx) () flx,y) =0
©x=f(1),y=g9() (d) None of these

If g(x)=3x+2 and g(f(x)) =x then f(2)=___

(a)2 (b) 6 (©0 (d) 8
x

The value of k for which the function f(x) = {tin 3x’ ¥ ¢00 is continuous is
’ X =

1 1
(@0 ()3 © 3 @7

1
lim(1 — x)x
x—0

@e? t)e? © e @ et
sech™ x = oo

1 J1-+*
(a) ln(x + m) (b) In (E +3i—— )

o (22) o ()




10.

11.

12.

13.
14.
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If h(x) = Vx%2 +3 and k(x) = x? — 2, then find composition of function

(i) hok(x) (ii) koh (iii) hoh (iv) kok
If f(x) =x+3 and g(x) = x2, then find gof (x) for x = 1.

f(x) = %1 and g(x) = 3x + 5 are two given functions then verify that:
i (fog)™'= g lof ™ (i)  (gof)™t= flog™

Recognize in the following as explicit or implicit functions and expressed the implicit
function as explicit function if possible.

@) x3 + 2xy = 5x% — 3y (i) 3y =5x%—-3x
(i) x?’y+xy=5y—3 (iv)  2x%y—xy=5+3xy
Show that the parametric equation x = asec 8,y = btan 6. represent the equation of
x2  y?
—-S=1L
a? b2
Draw and explain the graph of the following functions:
x2 y?
(i) fx)=e> (i) y=vV4-x2 i) =1

Draw the graph of parametric equations of function

x = at? y=2at,whena=6and -5<t <5

Draw the graph of parametric equations of function
x=asecl, y=btanf8,whena=4,b=3and—-n <0<

Solve the following:

6] [1,0) U (2,3) (i) [-1,1] N (2, )
(1ii) (4,0) N (-3,3) (iv) [2,3] — (2,3)

v [1L9]n[3,12] (vi)  (=90,7) = (=,2)
Find the limit of the sequence 1, %, 1i6 , 61 )

n

Find the limits of a, = —1+ (3)

Find limit of the function y = x% for x —» o

Evaluate

. . 3 4 . . llx
(1) chl_rg (x> +x*+x+5) (i) chl_rg ( 7 )

(i) lim [(2x* + 3x3)(x + 3)] (iv)  lim [(x+3)— (x®+5x +5)]
cosec? x—2 . sin(m—x)

Mmoot o) lim ==
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5 2x_q
(vi) chl_r)% (1 + 2x)x (viii) )lcl_r)r(l) e
Determine whether the following functions are continuous at x = 3.
2
2_ x“—9
0 fe =1 i) g0 = [_x—B » When x %3
x—3
5 when x = 3
x2—-9
(iii) h(x) ={%=3" when x # 3
6 when x = 3
3x if x < -2
If f(x) ={x?—1 if —2 < x < 2. Discuss the continuity or discontinuity at
3 if x=>2
x=2and x = -2,
2
2_ X% —
0 fe =1 (i) g0 ={yg—g > Whenx=#3
x—3
5 when x = 3

x2_
(iii) h(x) ={%=3" when x # 3

6 when x =3
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e Weightage = 11% e Periods = 32

Unit

Introduction

The differential calculus is the branch of mathematics developed by Isaac Newton and
Gottfried Wilhelm Leibniz (G. W. Leibniz). This branch is concerned with the problems of
finding the rate of change of function with respect to the variable on which it depends.

3.1 Derivative of a Function

3.1.1 Distinguish between independent and dependent variables

An independent variable is a variable whose value never depends on another variable,
whereas a dependent variable is a variable whose values depends on another variable.

The equation y = f(x) is a general notation which expresses the relation between the
two variables x and y, where y depends on x.

e.g., in function y = f(x) =3x +4, x is the independent variable and y is
dependent variable.

3.1.2 Estimate corresponding change in the dependent variable when
independent variable is incremented (or decremented)

Lety = f(x) is a function with dependent variable y and independent variable x. If Ax
is the small change in the independent variable x then corresponding change in y will be Ay

ie, Ay=f(x+Ax)—f(x)
Similarly, when independent variable x is decremented then corresponding change in
y will be Ay

e, Ay=f(x)—f(x—Ax)
Example 1. y = x3 + 1 then calculate the corresponding change in y when x is incremented
from 1to 1.01.

Solution: Since x is incremented from 1 to 1.01, therefore the change in independent variable
X is Ax =1.01-1
Ax = 0.01
Now, the corresponding change in y will be
Ay = f(x + Ax) — f(x)
Ay =f(1+40.01)—f(1)
Ay = f(1.01) — f(1)

Differentiation
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= (1013} + 1) - ((D*+1)

= 2.03031 -2
Ay = 0.030301
Thus, the corresponding change in y when x is incremented from 1 to 1.01 is
0.030301.
Example 2. If y = e* calculate the corresponding change in y, when x is decremented from 2
to 1.98.

Solution: Since, x is decremented from 2 to 1.98, therefore

Ax =2—-1.98

Ax = 0.02

Now, the corresponding change in y will be
Ay = f(x) — f(x — Ax)
Ay = f(2) = f(2—-0.02)
Ay = f(2) — £(1.98)
Ay = e? — 198
Ay =~ 7.38905 — 7.24274
Ay ~ 0.14631.
Thus, the corresponding change in y when x is decrements from 2 to 1.98 is 0.14631.
3.1.3 Explain the concept of rate of change
The rate of change is the speed at which a dependent variable changes with respect to
an independent variable. It can generally be expressed as a ratio of change in dependent variable
and change in independent variable. Let y = f(x) is function and Ax and Ay are the changes
in independent variable x and dependent variable y respectievly. Now,
By _ f+80) - f(x)
Ax Ax
is the rate of change of y with respect to x, which is commonly known as average rate of

change. However, when Ax is very small that is Ax — 0, then such rate of change is called
instantaneous rate of change.
Example 1. If y = x? — 6x + 8 determine the average rate of change of y which respect to x

when x varies from 1 to 1.3.
Solution: Given function is
y=f(x)=x*—6x+8
and Ax=13-1=0.3
Now, average rate of change of y with respect of x is
by fa+A0)-f®)

Ax Ax
dy _ f(+03)—f(Q1)
Ax 0.3

y
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by  fA3) - fQ)

Ax 0.3

Ay  ((13)2-6(1.3) +8) — (1)* - 6(1) +8)
Ax 0.3

Ay 1.89-3

Ax 03

Ay -1.11

= =_37

Ax 3

Thus, the required rate of change is —3.7.

Exercise 3.1 )

Find the average rate of change of the following functions when x varies from a to b.
(i) y=f(x)=x*+4;, a=2b=23

i) y=fx)=x*-4 a=2b=23

(i) y=f(x)= x3-8; a=3b=25

Find out the average rate of change when x changes from a to b.

(1) A = 1t x?, where x is the radius of the circle; a=3,b=31

(i1) V= %n x3, where x is the radius of the sphere; a = 2,b = 1.9

The price p in rupees after “t” years is given by p(t) = 3t + t + 1. Find the average
rate of change of inflation from t = 3 to t = 3.5 years.

A ball is thrown vertically up, its height “4” in metres after t seconds is given by the
formula h(t) = —16t2 + 80¢t. Find the average velocity when t changes from a to b.
(a) a=2b=21 (b) a=2b=201

Define derivative of a function as an instantaneous rate of change of a
variable with respect to another variable

The instantaneous rate of change of dependent variable y with respect to x is called the
derivative of the function y = f(x).

For example, consider displacement of an object is the function of time i.e., s = f(¢).
Now, instantaneous rate of displacement with respect to time is called velocity and it is the
derivative of displacement with respect to time.

3.1.5 Define derivative or differential coefficient of a function

Let y = f(x) the derivative of f(x) is the limit of ratio of increments 8y and dx at

. ) . oy dy d )
zero i.e., 8ljlcr_r}0 6_3; and it is denoted by f'(x) d—z, af(x) ory'.

A real valued function f(x) is said to be derivable or differentiable at x, iff alimo %

exists where 6y and 6x are the increments in y and x respectively.

e, f'(x)= 51xi£>no W exists ...(0)
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The derivative of a function f(x) at any point a is denoted byf'(a) and is defined as:
fla+6x)—f(a)

6x
Now, if we substitute, x = a + ox = ox =x—a, as ox—0 = x— a, then;

f'(@) = Jim LS (i)

fl=im

Notes: 1. The process of finding derivative is called the differentiation and to find the derivative
by either (i) or by (ii) is called ab-initio method/ first principle or by method of definition.

dy . .4y
2. — does not mean the ratio of dy and dx i.e., — # dy + dx
dx dx

d

d d
= means derivative of y w.r.t. x, i.e., — (y), — is a differential operator.
dx dx dx

Example 1. Find derivative of y = x% + 2 w.r.t x by definition
Solution: Given that

y=f(x)=x*>+2

S flx+6x) = (x+6x)*+2
By definition, we mean that:

0 = 2 = gy [T+ D=1

x  ox—0 Sx
PO = dy _ - [(x + 6x)%+ 2]—(x* + 2)
dx  ox—0 Sx
, dy . x*+2x.6x+(6x)?+2—x%-2
= f(x)zazg}crfo ox
ox (2x + 6x)
ox

, dy .
= [0 =g = Jim,

, dy
:f(x)=a:2x+(0)=2x

Thus, derivative of x% + 2 is 2x.

Example 2. Find the derivative of x by definition.

Solution: Given that
y=f()=vx
“y+68y =f(x+0x)=Vx+0x
By definition
o4y fx+80) - f(x)
f@ = =i 5

y
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o _dy_l, Vx + 6x —x
"f(x)_%_sggo Sx

dy . (JFEBE VR (R +F)

= f'(x) =— = lim
[0 =g = dim, 8x (Vx +8x ++x )
dy x+ 6x— x
= f'(x) =—= lim
P = = B G (W w ox 4 )
dy 1 1

== T T Ve 2

Thus, derivati f/x i 1
us, daerrvauive o X 1S ——
2Vx

3.1.6 Differentiate y = x", where n € Z (the set of integers), from first principle
(the derivation of power rule)

Case-l:Lety = f(x) =x™, where n is positive integer
S Y+ 8y =f(x+6x)=(x+06x)",

By definition of derivative,

flx +8x) = f(x)

N TN
fax s @)= fim,

ox
dy , (&)™ —xm
R A A e —
d 2™+ (M) 1(6x) + ()x™2(6x)% + -+ + (6x)™ — x™
— _y — fl(x) — 111’1’1 (1) ( ) (2) ( ) ( )
dx 8x—0 ox

(apply binomial theorem)

dy_ Y — 1; ox n-1 n-1
= =00 = lim [t 4+ (80"

d
= ézf,(x)=nxn_1+0+0+---+0=nx"'1

Thus, |f'(x)= %(x”) = px"t

Case-II: Lety = f(x) =x™  when n is negative integer
Ly + 8y =f(x+8x) = (x+ )"
By definition of derivative,

flx +8x) — f(x)

NPT
'a_f(x)_a}go

ox
dy , (x4 ox)t—x"
fge s S0 = fim e




Differentiation

n(14+2)

dy ' X X
= gx =0 = limg ox
ox\"
dy . ( +7) -1
g =S @) =t lim S

using binomial series, we have,

()R () |

d_y = f'(x) = x™ lim
dx R )}

ox
ay o ox 1 nn—1)/6x
= g =S @ =t lim, (7-&)[’”—2! (F)+
dy ., a1 nn—1)/6x
=>a—f(x)—x .(};r_l)lo [n+T(7)+
= ﬂ=f’(x)=x”‘1 lim [n+0+0+ -] =nx""1
dx T 5x50

Thus, f'(x) = %(x") =nx"1! vnez

3.1.7 Differentiate y = (ax + b)", where n = g € Q and p & q are integers
such that g # 0, from first principle.

Let y = f(x) = (ax + b)", where n=§EQandq¢0.

Ly + 06y = f(x+ 6x) = [alx + 6x) + b]",
By definition of derivative,

dy , .
" dx _f(x)_gcrgo

fGx+6x) — fF(x)

6x
LAy i [a(x + 6x) + b]™" — (ax + D)™
St () = lim, 5x
dy _ . [(ax + b) + adx]™ — (ax + b)™
=g -0 =lim 5%

adx 1"
dy (ax + b)n [1 + m - (ax + b)n
= oS @ =l 5
adx
1+——3=]"—1
dy . N S ey
a0 = g, bx

Using binomial series, we have

adx nn—1) ( adx \?

dy 1+ n ax+b) +...—1]

+
— £ — n 1; ax+b 2!
= Ir f'(x) = (ax + b) .;;r_r)lo

ox

y



Differentiation

= dy - ) _ ( + D) i adx 1 TL(TL - 1) adx n
dx_f(x = (ax+1b) gt (ax +b) "6x " 21 " (ax + b)?
N y — ! _ + b n-1 1. + n(n - 1) a6x n
dx f'&) = (ax +b) o " 2! “(ax +b)
d
ﬁ—y=f'(x) =(ax+b)" Lalim n+0+0+--]
dx Ox—0
dy— ! = n—1
=a—f (x) = na(ax + b)

d
Thus, - (ax + b)" = nalax + b)"*.
Examples: Find derivative of the following the w.r.t. x by first principle.

5
(a)2x> +1 (b) x~3 (c) 2x +5)2
Solutions (a): Lety = f(x) =2x>+1
LY+ 8y =f(x+6x)=2(x+6x)°+1
definition of derivative, we have
oo [+ ) - fx)
dx f1e) = gm, Sx

5 (945
d_y i) = gﬁ}o [2(x+6x)>+1]—(2x>+1)

dx ox

dy o 2(x + 6x)5— 2x°
=g =@ =], 5x

dy o (e + )5 = x°
= dx f'e) = 2'};130 ox

Using binomial theorem, we have,
N f'(x) =2 lim _|x°+5x*(6x) + >4 x3(6x)2 + -+ (6%)° — x°
dx " ox—0 21

(.60
X  ox—0

"Sx

=2 pw=2

4
xt +57 x3.6x+ -+ (6x)4]

4
X+ =3 6x + -+ (60)F

Y _ i) =10

lim
ox—0

d
=>d—z=f’(x)=10(x4+0+0+---+)

dy_ , _ 4
:E_f(x)—lox

d s 4
Thus,— (2x + 1) = 10x
dx



Differentiation

Solution (b): Lety = f(x) = x3
2y + 8y =f(x+6x)=(x+6x)73
By definition of derivative, we have,

dx
(x+6x)3—x3

AP
a dx - f (x) - égcrgo

ox
-3
dy , _ x3 (1 + %) — x73
=g = lim, 5%
5x\ 3
dy 1 -3 s (1 + 7) -1
:E‘f(x)‘x 'él“gcrfo ox

Using binomial series, we have

e [l o () EREDEY ] L

dx x 2! X ox

dy o o (=36x 1\ (—4) /6x

=& =@ = (S )l [1+T(7>+'"]
dy . B i
dx - f (.X') - 3x

a3y L4
Thus, T (x )— 3x

Solution (c):  Given that

() =y = @x+5)2
flx+6x)=02x+5+ 26x)%

Now, by using the definition of derivatives

N

5
(2x + 5)2

dy . f(x+26x)— f(x)
= lim
= lim
_ 1]
dx 81)1(1_1)10 ox

a_Sx—w Sx
5 5
dy i (2x+5426x)2 — (2x +5)2
dx  8x-0 ox
26x
(1+57s)
=(2 +5);1' ! 1+5( 28x>+5 3( 26x >2+ 1
= (ex svs0dox |  2\2x+5/ 722




Differentiation
 (2xas %1, sx( 5(2) 53/ & 1
= (2x+5) sirgoa(Z(Zx +5) +§ E(Zx + 5) + >
s 3
=(2x+5)25 75 =5(2x +5)2
Exercise 3.2 )
I. Find by definition (ab-initio) the derivatives w.r.t "x" of the following functions
defined as:
. . L 1
@ f(x) = 2x (i) f(x) =1 —+x (iif) Ve
(V) f)=3-x* (V) f(x)=x(x+1) (vi) f(x) = x* =3
(vii) f(x) =x3+5  (viii) f(x) = 4x? — 3x
Mf)=gr (0f0)= g
2. Find f'(x) for the following functions using definition:
1
() fo) = V2x + 1 (i) f(x) = (2x —1)72
(i) £ (x) = (6x +7)2 (iv) f(x) = (3x - 5)2

3.2 Theorems on differentiation
We will prove different theorems for differentiation.

e The derivative of a constant is zero.

Proof: Lety = f(x) =c.. (1), where c is constant
Ly+dy=f(x+dx)=c
dy _ . flx 4+ 8x) - f(x)
“ g =@ = Jim, 5
. c—c
~ 5xs0 5x 0
d
Thus, = (c)=0

Hence proved.

e The derivative of any constant multiple of a function is equal to the product of that
constant and derivative of the function.

. d d !
ie, —laf@]=a f()=af ().
Proof: Lety = af(x) = g(x), (say)

~y + 08y =af(x +d0x) = g(x + x)



Differentiation

dy

dx

dx

g

glx + 6x) — g(x)

@ = jm,

g1 =],

ox

af(x +6x) —afx)
ox

flx + 8x) — f(x)

Ox ’

gx)=a.

lim
ox—0

flx +6x) — f(x)

d
== g0 =af (),

) = })1(1‘_1‘)10

ox

Thus,

d
—lar@] = of' @)

Hence proved.

The derivative of a sum (or difference) of two functions is equal to the sum (or
difference) of their derivatives.

d / ,
e, g =f@ g

Proof: Lety = h(x) = f(x)tg(x)
~y+8y =h(x + 0x)=f(x+6x) + g(x+ 6x)

Y ..o . h(x+6bx) — h(x)
E_h(x)_}}rfo ox
N %: B (x) = ;ir_r,lof(HSX) + 9(x J:%t:X) ) 9]
Ay _ ey — i [fEF60) = fOOT, 4o [9(x+ %) —g(x)
= o= 00 = lim [FESrm B s tim |85 2= B
dy_ /] _ lJ !
RN HCEFAC)

d
Thus, =~ [f(0) £ 900 = f'(x) £ g'(0).

Hence proved.

o The derivative of a product of two functions is equal to (The first function) x (derivative

of second function) plus (derivative of the first function) x (the second function).
. d _ L3 4
ie.  —[f(0).g()] =7(). - 9() + 9(0). —F ()

= f().g'(x)+g(x).f'(x)
Proof: Lety = h(x) = f(x) - g(x), (say)

~y + 0y = h(x + 8x) = f(x +6x).g(x + 6x)

% _ i R 80) — b
X ox—0

ox

y



Differentiation

W iy [+ 8%) g0t 6x) - f(x) .9(x)

dx  5—0 ox
W iy [ 48%) gt %) - fx 4 6%) .g(0) + fx +6%) g(x) - f(x) .9(x)
dx gx_>o ox

g(x + 6x) - g(x)
ox

:%_yuu+&)z V“+M)f@

lim g(x)

5x—>0 6x-0

:Ez flx+0).9'(x) +f'(x).9(x)
d
= % = f(x).g'(x) +g(x).f'(x)
4 , ,
Thus, ——[f(x).g()] = f(x)-9 () + f (). 9()

This is known as product rule for differentiation of two functions.
Hence Proved.

e The derivative of a quotient of two functions is equal to denominator times the
derivative of the numerator minus the numerator times the derivative of the
denominator and all divided by the square of the denominator.

, [ﬂ@ g@)wf@)f@)wg&) gx). f'(x)- f(x). g'(x)
| axlg@ g2 9T
Proof: Lety = h(x) = % (say)
Let y=hx) =
flx+6x)

y + 8y = h(x + 0x) =

g(x+6x)
dy _ _ h(x+86x)—h(x)
dx W(x) = <$lx—>0 ox
LY o o i [[EF 8D @) 1

8x—>0 g+ 6x)  g(0)| éx
gx). fx+ 6x) — glx+ ox). f(x)
ox. glx+ 6x). g(x)
ge). flx+ 8x) - f(x).g(x) + f(x).g(x) — glx + 8x). f(x)
dx. glx+ 6x). gx)
900 [ T - rw- g, [FE2 =)

dx

Yo v = i
o () = Sx20

Y e = i
T () = 840

dy
E‘h () = Slyicr_r}o. glx+ 6x). g(x)




Differentiation

LDy 9D L e - oL g
dx glx+0).gx)
Ly 9L 1006/ ()
= [9COT?

. 4 [f@] _ 90 @18’ @)

’ dx Lg(x) [g(x)]?

This is known as quotient rule of differentiation

Hence proved.
3.3 Application of Theorems on Differentiation

e Differentiate constant multiple of x"
Let us try to understand by solving the following examples:

“ 2

Example 1. Differentiate the following w.r.t.

4x5 5 2
(@ 4 (b)  ~x5
Soluti Lety = 4x° 2
(') uton .(a? &ty x Solution (b) Lety = ng
Differentiating w.r.t. ‘x’, we have
dy Differentiating w.r.t. 'x’, we have
a = —(4x5) dy d (5 Z)
—_— = —\|—x5
dy _ 5 dx dx\2
> Ft o) dy 5 d 2
dy _ 5-1 d . n n—1 = _x_z'ax
=2 = =4x5x""", [v 5=(x™) =nx"""]
dx dx d 5 2 2
dy 4 = y = _xg -1
= dr 20x dx 275
dy _%
> —= .
dx x

e Differentiate sum (or difference) of functions
Example 2.  Differentiate the following functions w.r.t. ‘x’
@y=Q@x*-3x+D+@x+1) {My=@3-1)-1+)
Solution (a):  given that
y=h(x)=2x*-3x+1)+ (4x—1)

Differentiating w.r.t.’x’, we have,

DL 2x? —3x+ 1) + (4x + D))
ax — dx x?=3x+ 1)+ (4x + 1)
dy d

=>———(2x —3x+1)+ (4x+1)

dx



dy 2-1
=== =4’ = 3(1) + 0 +4(1) +0

d
=>—y=4x—3+4

dx

dy
>—=h{Kx)=4x+1

dx

Solution (b): Given that

y=h(x)=(zx3—1)—(1+xi4)

Differentiating w.r.t. "x", we have

dy

dx
dy

dx

d )
= (@ =1 — (A +x7)]

L ooy - Ly
T dx x dx x

d
> _3xx2 —0-0- (—4).x~5

dx

dy
ﬁa—

4
6x% +4x75 = 6x2% + —
x

e Differentiate the polynomials

Example 3.
(a)
(b)

Solution (a):

Differentiate w.r.t. "x" the following polynomial functions.
flx) =2x3— 4x2 +3x+1

f(x) ==5x3+2x2+3x+5

Given that

flx)=2x3—4x*+3x+1

Differentiating w.r.t “x”, we have

. if(x) _4 (2x3) - 4 (4x%) + i(Bx) + i(1)
T dx dx dx dx dx

= f'(x) = Zi(x3)—4i(x2)+3£(x)+0
dx dx dx

= f'(x) =2%3x% —4x2x+3(1)
= f'(x) = 6x% — 8x + 3

Solution (b):

Given that;

f(x)=—-5x3+2x2+3x+5

Differentiating w.r.t “x”, we have

if(x) = i (—5x3) + i (2x?) + i (Bx) + i (5)
dx dx dx dx dx

Differentiation



Differentiation

> f(x) = sd 3+2d 2+3d +0
fe)= dxx dxx dx @)

= f'(x) = =5 % 3x% + 2 x 2x + 3(1)
= f(x) =-15x? +4x +3
e Differentiate product of functions
Example 4. Differentiate w.r.t “ x  the following product functions using product rule.
(a) h(x) = (x? + 1)(5x% + 6)
(b) h(x) =+ D(x+2)(x+3)
Solution (a):  Given that;
h(x) = (x* + 1)(5x% + 6) = f(x). g(x) (say)
Let f(x)=x?>+1and g(x) =5x%>+6 ...(ii)

(3 2

Differentiating equations both sides of (i) and (ii) w.r.t “x”,
d d a d
» = f(¥) = - (@* + 1) and 9 =— (5x* + 6),
= f'(x) = 2x and g'(x) = 10x,
d , ,
= [f@)-900] = F().g'(0) + g@f @),

%h(x) = (x? + 1)(10x) + (5x% + 6)(2x),
= h'(x) = 10x3 + 10x + 10x3 + 12x,
= h'(x) = 20x3 + 22x,
= h'(x) = 2x(10x2 + 11).
Solution (b):  Given that;
h(x)=(x+Dx+2)(x+3)
= h(x) = (x + )(x? + 5x + 6) = f(x). g(x), (Say) ...(0)

d , , ,
) =h() = f(0).g () + g00)-f (%)
Now differentiate both sides of the equations (i) w.r.t “x”

, d d
~hx)=(Cx+ 1).E(x2 +5x +6) + (x2 + 5x + 6).a(x+ 1),

= h(x)=(x+1).2x+5+0) + (x% + 5x + 6)(1 + 0),
= h'(x) = (x +1).(2x +5) + (x% + 5x + 6)(1),

= h'(x) =2x>+7x+5+x*+5x+6,

= h'(x) = 3x% + 12x + 11.

72)




Differentiation

o Differentiate Quotient of two functions.

Example 5. Differentiate w.r.t “x” the following quotients (rational) functions using quotient rule;

. x+1 _ (=D (x+2)

@ M= s ® = G=2)e+)
Solution (a):  Given that

h(x) = 962%;-3 - % Provided g(x) # 0,yx €R  ...(i)

f)=x+1 ... (il)

gx)=x%-2x+3 ...(iii)
Now,

R (x) = goo.f'0—f.g'x (iv)

[ge0)

d d
vos B . )
f(x)——dx(x+1)—1+0=1 and g(x)———dx(x +2x+3)=2x-2

Now, substitute the values in (iv), we have,
x?2-2x+3)1)-(x+1D2x-2)

h ) = (x2 —2x+3)?
W _x?=2x+3-(2x* - 2x+2x-2)
() = (x2 —2x +3)?
W) = —x?—2x+5
() = (x2 —2x + 3)?
Solution (b):  Given that;
_(-DEx+2)
M) = e+ 3
= h(x) = i;ii:é = % Provided g(x) # 0 ..(1)
R V6] I (€ D MO R (N Ko
g9(x) [9()]?
H ) = (x? +x—6)(§1—x(x2 +x—2)—(x? +x—2);—x(x2 +x—6)
“h)= (x? +x—6)2
W) = x2+x—-6)2x+1)— (x> +x—-2)2x+1)
2 h)= (x? +x —6)2
, 2x3 +3x% —11x — 6 — (2x° + 3x* = 3x - 2)
2h) = (X2 + x — 6)*




Differentiation
, 2x® 4 3x* — 11x — 6 — 2x° — 3x* + 3x + 2
=>h(x) = >
(x> +x—6)
h() —8x—4
>h(x) =——m—
(x2 + x — 6)*
, 4(2x+1
() = -2
(x* + x — 6)

Note: The derivative of an even function is always an odd function and viceversa.

i, iff(-1) = f() = f'(=0) = =f () and f(-x) = =f(0) = f'(-2) = f ().

Exercise 3.3 )

1. Differentiate the following w.r.t “x”
7 =3
(i) 5x° (i1) 5 x’ (iii) —25x 5 (iv) 124+/x
1 2 . i\ g3 N I
v) ety (vi) x~100 (vii) 15¥x (viii) 16+ x4
-4 3
(03 x) _V_z
x4
2. Differentiate the following w.r.t “x”
Dz 22 (i) 2x +5x (iii) V2 + Vx
1 =3
(1V)ZX21+5X22 (V)—§x5 +§x2
3. Differentiate the following w.r.t “x”
3 Z 3 17
(i) 2ax3 — 7 +6 (ii) x3 — = x3 (iii) 5x5 — = x3
(iv) x1° — 10x15 v) 3(Vx2) — 4(¥x)
4. Differentiate the following polynomial function w.r.t “x”

(i) p(x) =x3-3x2+2x+1 (i) p(x) = x* —3x2+2x—3

1x5—%x4+x+1

iii p(x) =x®—x*+x3+x (V) p(x) =9x° + 7x7 +
5

5. Find the derivative of the following functions using product rule.
@A) h(x) = 2x —5).(5x + 7) (ii) h(x) = x.V3x2 + 4
(i)  h(x)=Vx+1 \/x2 +1 (iv)  h(x)=x*(Vx+1)

(v) h(x) = (x + 1)3.x 2
6. Find the derivative of the following functions using quotient rule.

G h(o) = 3"+4 G) RGO = (% —1).(x2 + 1)




Differentiation

(iv)  h(x) =

_xz

v ke =25

3.4. Chain Rule

The rule for differentiating composite function is called chain rule. In this rule we take
the derivative of the outer function and then multiply it with the derivative of the inner function.

The derivative of the composite function fog is (fog)' = f'(g(x)).g'(x) which is
called chain rule.

dy dy du
3.4.1 Prove that T du'dx’ when y = f(u) and u = g(x) . (chain rule)

Proof:

Let y=flg()] = f(w), whereu = g(x)
~ 8y = flglx + 60)] = flg(0)] = f(u + 6u) — f(w),

Y lim flgx + 801 - f[g(x)],provided dx #0

Cdx 6x-0 Sx
LAy flaGe+ 801 - flgGIl | g+ 6%) — g(x)
Tdx T 6x0 glx+6x)—g(x) x-0 ox

dy lim flu+du) - f(w) du
dx S50 du 5xr—r>10 5x’
[where du = g(x + 6x) — g(x) as 6x » 0 ,6u - 0]

dy dy du S B
e (R [+ = f@andu = g(x)]
dy dy du

~dx dx  du dx
Hence proved.

Example 1. Differentiate y = (5x*— 4)°.
Solution:
y = (5x%2 —4)% and letu = 5x% — 4
then y=u® (i)
u=>5x%-4 ...(i1)
Differentiating equation (i) w.r.t “u” and equation (ii) w.r.t

D _ st and ™= 259 -0 = 10
du—uand— X—U= X

‘G 99




Differentiation

By chain rule is:
dy dy du
dx  du'dx

dy 4 2 4
..E—Su .10x = 50x (5x° — 4)

Example 2.  Differentiate x3w.r.t x2

Solution:

Letu = x® and v = x?

Differentiating v and v w.r.t x,
we get

dv
= = =2
e = 3x2 and I X

Now, by chain rule, we have
du _ du/dx du _ 342

: —_—
dv dv/dx dv 2x
3.4.2 Show that

dy 1
dx d_x
dy

Proof: If y = f(x) is any differentiable function in the domain of x, then its inverse function
is defined as x = g(y), such that:

(gof)(x) = g(f(x) = g(») =x --(1)
Differentiating both sides of equation (i) w.r.t x
go.f'tx)=1 (by chain rule)
’ — .. 4 — d_y ’ o d_x
= 160 =5, [ £/ = GFand ') = |
dy 1
= dax _ ax Hence Shown
dy

3.4.3 Use chain rule to show that — [f(x)]" =n[rG)] L 0.

Let y=[f(x)]"* VxeR

Suppose that
u = f(x) .. (@)
then y=u" ... (i)

From equation (i) and (ii) by differentiating

du dy n
ao= f(x)—f(x) and a=— )

By chain rule, d_y dy  du
dx du dx
dy

d
== a(u").a(u) =nu™"1 f'(x)

= :_x [F (O] = nlf(x)]™ L. f'(x) Hence Shown



Differentiation
5
Example: Differentiate (x* — 4x2 + 5)2.

5
Solution: Let y = (x* — 4x2 + 5)2

N| U1

Here f(x)=x*—4x?2+5 and n=

d

v OO = nlf (I £/ ()

d 5 §5 5 . d

RN 2 5 — (4 _ 2 51 = 4 2

--dx(x 4x* +5)2 2(x 4x* 4+ 5)2 .dx(x 4x* +5)
d 5 5 3

:a(x4—4x2+5)2=E(x4—4x2+5)2.(4x3—8x+0)
d 4 2 >_20 2 3.3

=>a(x —4x +5)2=7.(x —4x° +5)2(x° — 2x)

d 5 3
= (x* — 4x% + 5)2 = 10x(x? — 2)(x* — 4x? + 5)2

3.4.4 Find the derivative of implicit functions

The chain rule will help us to find the derivative of implicit functions.
d
Example 1. Find ﬁ, ifx2+y%2+2gx+2fy+c=0.

Solution: Given that
x2+y2+2gx+2fy+c=0

Differentiating both the sides w.r.t. "x", keeping y as a function of x ,

-d(2+2+2 +2 +)—d0
s Ty 4 2gx + 2fy +0) = o= (0)
=L+ ionrLamrLam+Lo=0
T O T 0+ - (2g0) + —(2fy) + (o) =
dy dy
= 2x+2y.——+29() +2f ——+0=0

d
=+ =G +g)

dy (x+g9) x+g

= lax T G+pH  y+f

L ady 3
Example 2. Flnda Jif x"y + 2y° = 3x + 2y

Solution: Given that
x%y +2y% =3x+ 2y
It is an implicit equation
~ diff: both the sides w.r.t. "x" regarding y as function of x,



Differentiation

3.5

d d
i (x%y +2y3) = 2y B3x+2y)

L 2)+d(2 3)—d(3 +d 2

d
dy d dy dy
2 —+y.—(x? 2y2.—=3(1)+2-—
=x dx+ydx(x)+3>< yho 3()+ Ix
dy dy _dy
2 2 220 _ 20 _ g
=>x.dx+6y I de 3—2xy

=>(x2+6y2—2)3—2:=3—2xy

dy  3—2xy

dx x?+6y2—2

Differentiation of trigonometric and Inverse Trigonometric
Functions

Differentiate Trigonometric functions

(sinx,cos x,tanx,cscx,secx and cotx) from the first principle
In the process of finding the derivative of trigonometric functions, we assume that x is

measured in radians.
e Differentiate sin x from the first principle.
Consider the sine function s:R — R, where s(x) = sinx,Vx € R.

Let

s(x) =sinx
y + 8y = s(x + 6x) = sin(x + 6x)

Using the first principle, i.e.,

m S(x+6x)—s(x)

§ (x) = Slyic—>0 ox
. Sin(x+6x)—sin(x
$(x) = Jim SRS —sinG)
2COS(x+6‘2x+x) _Sin(x+62x—x)
= s'(x)= 61im0 S
X—

v sina —sinb
[ a+by  (a—b
=2cos< )sm( )

2 2
1)
ory o sin(5)
= s'(x) = lim 2cos(x+—)- lim
g—)O g 0 26_x
2 2 2

. (0x
) dx ) sin —2)
= s'(x)= lim cos|x+—) lim ——=*
5x 2

== 50

2




s'(x) =cos(x+0)-1

= s'(x) =cosx

d , . _
Thus, Ix (sm x) = cosx

Differentiation

sinx
lim —=
x—>0 X

1

d

d
Notes: 1. —sinax = cos ax.— (ax)
dx dx

d
—sin x
dx

.. n—1
= nSsin

d . .. n—1
X d_ SInxXx) = nsSsin X. COS X
X

= acosax

Let t(x) =tanx
Using first principle,

/ g t(x+ox)—t(x)
f1ea) = 6191cr—r>10 Ox
tan(x + 6x) —tanx

Ox
sin(x + 6x)

Differentiate tan x from first Principle

1.€.,

! = lim
t (X) (5)16—)0

sinx

1

Y=,

[cos(x + 6x) “cosx] ox

O g, [

sin(x + 6x — x)

sin(x + 8x).cos x — cos(x + 6x).sinx
6x cos(x + 8x).cosx

1

t'(x) = lim

86x—0 ox

sin 6x 1

lim cos(x + &x) - cosx
5x—0

t'(x) = lim

8x»0 Ox  lim cos(x +
5x—0

t'x)=1

cos(x + 0) cosx
1 1
COSX' COSX COS2x

=

t'(x) =

d
dx

Thus, (tan x) = sec’ x

=sec?x

0x) - cosx
sinx

lim
x—->0 X

[ Provided cosx # 0]

a

d
Notes: 1. — (tan ax) = sec’ ax -
dx dx

d d
2. n = n_l . = n_l - 2
Ix (tan x) ntan ~ x Ix (tan x) ntan ~x-sec” x

(ax) = asec’ ax

Differentiate sec x from first Principle.
y =secx
y + 6y = sec(x + dx)

Let




Differentiation

dy . sec(x + 6x) — sec(x)
— = lim
dx 6x-0 ox
dy . sec(x +0x) —secx
— = lim
dx 6x-0 ox
dy T 1 1 1
= —= lim - ] T
dx sx—>0lcos(x + 6x) cosxl Ox
dy . [ cosx—cos(x+ dx)
= —= lim ]
dx 6x-0lcos(x + 6x) - cosx - Ox

dy | ‘Zsin(x+x+6x)_Sin(x+6x—x)
= dx 6191(1_1)10 cos(x2+ 6x) *cosx - 632c
dy _ 2 sin (x + 6735) . sin ((;—x)

= — = lim .
dx  6x-0|cos(x + 8x) - cosx| ox  , Ox
| 2 "2

a+b b—a
['.'Cosa—cosb=Zsin( 5 )sin( 5 )]

dy 2sin(x + 0) 1 . sinx
—= =-1 [ llm—=1]
dx cos(x+0) - cosx 2 x>0 X

dy sinx 1

dx cosx cosx

dy
= — =tanx .secx
dx
dy
= —==secx .tanx,
dx
d
Thus, | — (sec x) = secx.tanx
dx
Notes: 1. i

d
secax) = secax.tanax.—— (ax) = asecax.tanax
T ) T (80

2. 4
dx
=nsec"x.tanx

3. The derivative of cosine, cosecant and cotangent are left as an exercise for readers.

n _ n—1 i _ n-1
(sec” x) = nsec x.d (secx) =nsec *x.secx.tanx
x




Examples 1. Differentiate “x” cos v/x by ab-intio/first principle.
Solution: Let y = f(x) = cosvx
y+06y =f(x+dx) = cosVx + bx,

dy ., .. flx+8x)—f(x)
E‘f () = 61alcr—r>lo 5x

cdy - x + 6x — cosv/x
s == Jim =

Using trigonometric formula

. (a+by  (a-—b
cosa—cosb=—251n< 5 ) sm( )

2
we have,
[(Vx+6x+ Vx\ . [Vx+6x—x
—2sin| ——=——=]. sin| ————=
dy_ , o 2 2
dx f(x)_ 891cr—r>10 ox
sin Vx + 8x — Vx
:>dy_ =21 Vx + 6x + Vx 2
dx_f X) = 2o S 2 " 5130 x+6x—x
sin Vx +8x — \x
dy o (Vx+ex 4 Ax) 2
= —= f'(x) = -2 lim sin[———— . lim 5 >
dx 8x~0 2 Sxeoz[(M) —(\/J?)]
2
lim si (\/x+6x+ ﬁ) " sin® 1
= — lim sin| ———— |.lim .
5x-0 2 620 8 " lim (Va + 6x + Vi)
x—
Vx + 6x —
[where9=w],asdx—>0,9—>0
. (\/x+0+\/§) . 1 [ _ sinx 1]
= —sin 1. v lim — =
2 Wx+0++/x 6x-0 X

Differentiation



Differentiation

Example 2. Differentiate:

() y= 3x+2tanx w.

Solution

x2+tanx

(i): Given that
x% 4 tanx
y= 3x + 2tanx

Differentiating w.r.t “x” by using quotient rule, we have

dy_
oo
dy_
ﬁa—
dy_
ﬁa—

(Bx + 2tanx).;—x(x2 +tanx) — (x? + tanx).%(Bx + 2tanx)
(3x + 2tanx)?

(3x + 2tanx)(2x + sec?x) — (x? + tan x) (3 + 2 sec? x)
(3x + 2tanx)?

6x? + 3xsec’ x + 4xtanx + 2 tanx sec® x — (3x? + 2x? sec? x + 3tanx + 2 tan x . sec? x)

(3x + 2tanx)?

=

dy  3x®+ (4x —3)tanx + x(3 — 2x) sec’x

Solution

and let

dx (3x + 2tanx)?

(ii):  Given that:
y = cos?x, ...(0)
u = sin’x, ...(ii)

d
In this case, we have to find ﬁ

Here,
dy d 5 d .
ix = a(cos x) = 2cosx.a(cosx) = —2sinx.cosx
du 2 _ a . .
and — =—(sin"x) = 2sinx.— (sinx) = 2sinx.cosx
dx dx dx
Using chain rule:
dy_ dy dx
du dx du
dy dy du
du dx  dx
dy  —2sinx cosx

du 2 sin x cos x

= Q = -1 Provided sinx # 0 andcosx # 0

du

rtx (i)  y= cos?x w.urt sin®x



Differentiation

3.5.2 Differentiate inverse trigonometric functions

(arc sinx,arccosx,arctanx,arc cscx,arcsecx and arc cotx)
using differentiation formulae.

e Differentiate arc sin x or (sin~1 x)
Let y=sin"lx Vvxe(-1,1)
= siny =x

-~ Differentiating w.r.t “x”, regarding y as a function of x, we have
% (siny) = )
. — (siny) = —(x
ax oY dx

d . dy
> @(smy).a =1

dy

= ——=1

cosy. -~

d 1
= % = o5y [Provided cosy # 0]

cosy = +,/1 —sin?y.

d 1

L W

dx 4+ 1—sin?y

The principal domain of siny is [—% , %] in which cos y is +ve.

dy 1
dx 1—sin?y
dy 1 )
= e — ( x =siny)
Thus, di (sin"1x) = 1 , Vxe(-11)
x 2
1—x
d x 1 d rx a 1
. —_ in—1_ [ — =] = =
Nt (sm a) ) (x)2 " dx (a) aaZ—x2 JaZ —x2
“\a

e Differentiate arctanor tan™! x
Let y=tan'x vx € R
= tany=x
Differentiating w.r.t “x” regarding y as a function of x,

d d
w o (tany) = —— (x)



Differentiation

= d t dy_
& (tany). —-=
sec’y. d_y:
dx
dy 1 -T T
> — = Vy € N 5
dx sec?y y (2 2)
dy 1
L w1 + sec?y = 1 + tan?
dx 1+tan?y L secty =1+ tanty]
dy 1
o ir e vee R
d _
Thus, |~ (tan 1x) = o2’ vx € R
ot d a1 = 1 d(x)_ a? 1 a
ot dx(an a)_ 1+£. dx \a/ (a2 +x2?)'a a?+ x?
o2
e Differentiate arc sec x,Vx € R — [—1,1] (0%) U (gn)
Lety = sec”lx,Vx e R—[-1,1] — (0,%) u (g,ﬂ)
then, x = secy, vy€el[0,m]andy # g;

It is an implicit equation:
Differentiating w.r.t “x” regarding y as function of x

.d()_d
Tdx x —dx(secy)

= 1= d d )
_dy (secy).dx y

dy
= 1 =secy.tan y.a

or

dy
secy.tan y.a= 1
dy 1

s
vye(0,m)andy # =

dx secy.tany 2

when, y € (0, g) ,secy and tan y are positive, so that secy = x, i.e., x is positive in this case,

andtany = \/sec2y—1=vVx2-1,

Thus LS (sec_]L x) = — whenx > 0
| dx xyx2-1 "




,when x < 0,

1 1
(—x)(—VxZ = 1) CoxVxZ—1

Combining equations (i) and (ii) we have,

. (ii)

d -1, —
a(sec x) =

Differentiation

Thus, 4 (sec_1 x) = — 1 Vx € R - [—1,1]
dx |x|vVx2-1
Notes: d -1 d
. — “1,) = - -1, —
Ir (cos™ x) — 2. Ir (cot™ x) 172

d -1
3. —_ -1 = —
Ir (csc™x) 1

4. The derivatives of cos ~1x, csc~1x and cot ~1x are left as an exercise for readers.

d
Example 1. If y = x sin‘1§+ Va? —x2, ﬁndd—y
X
Solution: Given that
X
— v cin-1(Z 2 _ 42
y=xSsin (a)+ a“—x

diff: w.r.t “x” we have,

Z—z=di[xsm 1t ya? —x2 ]
%zdi(xsm‘lf)+%(\/a2—x2 )
¢%=xdd—x (sin‘1§)+sin‘1(x) %( )+ Zm —( 2—x%)

dy x.;.i(f)+sin‘1(2)x 1+ _0-2z

~ix \/1_7(%)2 dx

dy xXa 1 X
> r =t (5) - =




Differentiation

Example 2. If y = -1("—
xample 2. If y = cos v

Solution: Given that:

dy -1 d [x*-1 [d . -1
— = — , —cos 'x =
dx 5 12dx x?+1 dx V1= x2
x —
1= (xz + 1)
2 2 1 i 2 _ 1) — 2 _ 1 i 2 1
:dy_ —(x“+1) X(x + )dx(x ) —(x )dx(x +1)
dx  [(xZ+1)2 — (x% — 1) (x2+1)?
dy -1 « (x?+1)(2x) — (x* = 1)(2x)
dx X2+ 17 x4 221 —x* + 2x2 — 1
:>dy_ -1 ><2x3+2x—2x3+2x
dx  x2+41 Vax?
S ided x # 0
dx  2x(x2+1) providedx
dy -2
= P
dx (x?+1)
Exercise 3.4 )
1. Find the derivatives of the following using chain rule.
3
. 3 .. x—1\% 2+x
(i) y = (x* + 5x% + 6)2 i)y = (55) (iii) y = /m
: n 3341
(iv)y = (x+Vx2 —1) V) y= {ﬁ
%3
2. Differentiate 3 WLt x3.
1+x 4
3. If /is a function with y = f(x), given implicitly, find d_ic/ , where it exists in the

following cases.
)y —xy—siny =0 () y® —3y+2x=0




Differentiation

(i) x? + y?+4x+6y—12=0  (iv)sinxy + secx = 2

WMxJ1+y+yV1+x=0 Vi) y(x2+1) =x(@y*+1)
u? v du dv

If — 4+ — = 1, where a and b are non-zero constants, find — and —.
a2 b2 dv du

Find the slope of the tangent to the curve 3x% — 7y? + 14y — 27 = 0 at the point
(=3,0).
Differentiate the following by using first principle method.

(i) sin4x (i) cos?2x (iii) secvx
(iv) Vtanx (v) csc3x (vi) cot2x
Using differentiations rules, differentiate w.r.t. their involved variables:
(i) f(x) = (x+2).sinx (i)  f(6) =tan®8.sec®H
2 3 . _[sin2x
(i)  f(t) =sin“3t. cos’t @iv)  f(x) = o5 x
_tan -1 . T .
W) fO) = ech (vi)  f(x) =sinx* +sin“x
, ~ 1+tan®x
Differentiate ———— w.r.t. tan® x.
1-tan?x

. dy :
Find — of the following;:
dx

1—cosx .. 1+cosx
. i1 S |
(1) y = sin > (i1) y = cot < T—cosx
sin 2x

(i) y=tan™! (—1+cos Zx) (iv) y=x+costx .V1—x2
) xtan~lx i) ! (\/1+x—\/1—x)
v =— vi = tan —_—

y 1+4x2 y Vitx +/1—-x

. d 1+y?
Ify =tan (2 tanl%), then prove that d_z =4 (4_;:2)
Y

X a
If Y = tan" ! (—), show that—y =
X y dx x

Given that tany (1+ tanx)=1—tanx, show that 2—2: =—1
If y = tan(a tan™! x), show that (1 + xz)% —a(l1+y?»)=0.

a
Findd—zwhen: (i) x=asinfandy = a cosd (i1) x=t+%andy=t+1

-\




Differentiation

3.6.1

Let

Thus,

(i) x= al ) andy = 2bt (a and b are constant)
1+t° 1462
(ivy  x=aB%?andy = 2af ,(ais constant)
If y= Jtanx + «/tanx + Vtanx+...400, prove that (2y — 1) 3—3; = sec?x.

Find the derivatives of cos ™' x, csc™! x and cot ™! x by using differentiation formula.

Differentiation of Exponential and Logarithmic Functions

Find the derivatives of e* and a* from first principle

Derivative of e*
y=f(x)=e*
Ly + 8y = f(x + 8x) = e¥+ox

L [0 - @)
—_— m

“dx  sx—0 ox
d ex+6x —ex

lim

dx 6éx—0 ox

e* (e6x -1)

3 86x — 1 .
5x—0 ox '

e*—1
=e* lim lim =1

x—0 X
=e* 1=¢e"

d X\ — X
=>dx(e)—e

d
Note: —(e*) = e,

_ — qp0X
Ix Tx (ax) = ae

(b)

Lety =f(x) =a*,Va>0,a#0andx € R

Derivativeof a*,Va >0 anda # 1

~y+ 8y = f(x + 6x) = a5,
S [ — @)

“dx  sx—0 ox
dy ax+6x —a*
o—=lim ——
dx 6x—0 ox
dy I X a® -1
dx exmo Sx

y



Differentiation

a®* —1
a*. lim < ),
Sx—0 ox

dy oa¥—-1
=>—x= a*.lna, « lim =lna

x—0 X

i x) _ x
Thus, = dx(a)—a Ina

d
Notes: 1. a(a’”‘) = ab*. blna (bx) = ba*Ina

2. Ifa=1 then there would be no more exponential funtion.

d .
Example 1. Find d_icl when y = eS™"¥ 4 g€s*

Solution: Given that
y = esinx + qCosx
diff: w.r.t “x”
) dy _ d

o= a(esinx + acosx)

dy_ d sinx d cosXx
= d_y = eSinx i(sinx) 4+ a®s* lna i(cosx)
dx dx dx
d .
-2 eS’™* cosx + a®°*Ina (—sinx)
dx
d )
ol = eSM¥ cosx — a®S* lnasinx
dx

3.6.2 Find the derivative of In x and log, x from first principle
e Derivative of In x from first principle
Let y=f(x)=lnx, Vx>0
~y+ 6y = f(x+ 8x) =In(x + 5x)
dy . flx+6x)—f(x)
v —= lim

dx ~ 6x-0 ox
dy o In(x + 6x) — In(x)
— = lim
dx 6x-0 ox
x + 8x
d In

dx  6x50 ox



Differentiation

1
[ lim (1 + x)x = e]
x—0

1
a_ xl_; [ lne—l]
d 1 .
Thus, a(ln x) = , vV x>0 (D)
1 1
Slmllarly,—ln( x) = — —X(-1) ==, Vx<0 ..(ii)
Combining (i) and (ii), we have
d
alnlxl =—
Note: d 1 = 1 4 = ! Vx>0
ote: dx(nax)—ax.dx(ax)—x, x

e Derivative of log, x by first principle
Let y = f(x) =log, x

y+ 08y = f(x + 8x) = log,(x + dx)
LAY _ [t 60 — £

, (Provided éx # 0 and limit exist)

dx  8x-0 ox
dy . logga(x + 8x) —log, x
— = lim
dx 6x-0 ox
_ Y dy y 1 x 1 (x + 8x)
dx x50 x “ox OBa x
X
dy 1 i 1 " Ox\6x
= dx  x x50 ©8a ( + 7)
dy 1 1 I 1 6x\6x
:E_; 08,4 15r3r61_>0 ( +7)
dy 1 1 T 1 1
_— - b b =
=>dx p og,e , [ xl_r)r(l)( + x) e]
dy _ 1 ["l _ 1
dx xlna’ "108a€ = 1y
d 1
Thus, I (loga x) = Tina
Note: d 1 b ! A\ >0
otes dchga x) = bxlna’ dx( )_ nx ’ x




Differentiation

. ady
Example 1. Find Ir when y = In(x? + 4)

Solution: Given that

y =In(x? + 4)
Differentiating w.r.t “x”
R SN [ 1 ]
s dx n(x ) nx =
dy 1 d 2x
CAN — 4) = —"
dx x*>+4 dx(x 9 x?+4

Example 2. Find Z_ic] when y = log;oVx2 + 2x — 4x*

Solution: Given that
y =logio/x2% + 2x — 4x*
= y = log, Vx2 + 2x.logyg e — 4x* [+ log’, =log’.log¢, andlog} = Inx]
> y = In(vx2 + 2x).logyg e — 4x*

logip e
_ D810¢ In(x? + 2x) — 4x*

G‘ 99

Differentiating w.r.t
dy d [log10 e
Tdx  dxl 2

dy logpe d d
- = —In(x? + 2x) — 4— (x*
=>dx 2 dx n(x” +22) dx @)

b 1 L9 2 hon)—axax®
dx 2In10 "x2 4 2x dx x* + 2x x

dy 1 (2x+2x1)

T dx 20\ %2 + 2x
dy (x+1)
dx  x(x+2)In10

3.6.3 Use logarithmic differentiation to find derivative of algebraic expression

involving product, quotient and power.

+1)

JAn(x? + 2x) — 4x4]

—16x3

Example 1. Differentiate [

x(x+1)
(x+2)

Solution: Lety =1In

Taking In on both sides

v = (X& D
Y= x+2




Differentiation

Iny=Inx+In(x+1) —In(x + 2)

Differentiating w.r.t x

1dy 1 1 1

§E=§ x+1 x+2

dy x(x+D[Gx+Dx+2)+x(x+2)—x(x+1)
dx  (x+2) x(x + D(x + 2)

dy x(x+1)(x?+3x+2+x%+2x—x%—x)
dx  (x+2) x(x + D(x + 2)

dy x*+4x+2
dx (x + 2)2
Example 2. If x¥Y = y* , find Z—gg
Solution: x¥Y = y* Given that
Taking natural logarithm of both sides, we have
InxY =Iny*
= ylnx =xIny [ Ina* = xIna]

Differentiating both sides w.r.t. “x” regarding y as a function of x.
. LX) == (xIny)
Tdx YN T g Y

d d d d
= ya(lnx)+lnx.a(y)—x.a(lny)+lny.a(x)

d d d d
=>3;/+lnx .£=x.a (lny).% + Iny x1 [':a(lnx) =
dy x dy y
x\ dy y
= (=) 3 = (my=3)

dy _y&xIny—y)
dx x(ylnx—x)

1

pa

]



Differentiation

List of Derivatives of the basic standard functions shown in the list 1.

Derivative
Sr No. y = f(x) dy
dx
1. y =sinx COS X
2. Yy = COoSX —sinx
3. y = tanx sec? x
4. y =secx secx tanx
5. y = cotx — cosec? x
6. Yy = cosecx — cosecx cotx
7. y =sin"lx 1
i
8. y=cos 1x __
N
1
9. y=tan"lx T
10. y =cot™lx 1
1+ x2
11. y=csc tx - !
xVx?—1
12. y =sec lx !
xVx?—1
13. y =log,x ! , Va>0
xIlna
14. y=Inx % , Vx>0
T Gareseds )
1. Differentiate the following w.r.t. “x”
(i) x2+ 2% (i) 4* + 5% (iii) etanxtcotx
(iv) etan x2 ) e2ln(2x+1) (vi) logyo x
(vii) xsj-l (viii) x% 4+ 2¥ + a?*  (ix) (Inx)*

x) In(vVe3* + e-3%) (xi) In(sin(In x)) (xii) In[tan (5 +7)]



Differentiation

a
2. Using logarithmic differentiation to find d_ic} if
i y= =1 (i) y = x3 VX (iii) y = xecos*
x2+1

i - eX . 1+e*
(ivfy=e 2x (xz +2x + 1) V) y= In (m) (vi) y = T

d
3. Find cd if
dx
. 1—x2 . 1—x
Hy= (i) y= Tz
J1+x2
a
4. Find cd if
dx
(i) y = xsinx (i) y = (sin"tx)!"*  (iii) y = (tan!x)Sin¥+cosx
Jx+1-
(iv) ¥y = (Inx)“os* V) y =x* (vi)y =In T
x2+1+x
d
5. Find cd , when:
dx
() xY.y*=1 (i) InCxy) = x2 + y?2

(iii) y = sin"!(cosx) + cos "I (sinx) (iv) y = x¥

(v) ¥ = cosxIn(sin™! x) (vi) x™y" = a"
3.7 Differentiation of Hyperbolic and Inverse Hyperbolic Functions

3.7.1 (a) Differentiation of hyperbolic functions

@) Differentiation of Sinh x

eX—p—X
2

Let y=f(x)=sinhx =

Differentiating w.r.t. “x”

dy df(e¥—e™

E"E( 2 )

ﬁﬂ_i@)_i(i)
dx dx\2 dx\ 2
dy_ex -X

e



Thus,

Differentiation

dy e*+e™

= = = h
Ix 5 cosh x

% (sinh x) = cosh x

d
Notes: —(sinhax) = acosh ax
dx

Derivatives of cosh x, tanh x, csch x, sech x and coth x are explained below:
d d [eX-e™* (e*¥+e™*)(eX+e™™)—(e*—e *)(eX—e™¥)
— (tanh x) =— =
dx dx le¥+e=* (eX+e~%)2
e +e 42— (e +e ™ -2)
(e¥ 4+ e~%)?
4 2\ )
T (e te )2 (ez + e"‘) = sech™
d d 2 (e*+e*)(0)-2(e*+e™*x-1)
— (sech x) = — — | = =
eX+e~¥ (e¥+e~%)?
X

-2 e*—e”
T (e¥4+e¥) eX e

= —sec hx.tan hx

Derivative of cosh x, cosech x and coth x are left as an exercise for the readers.

Thus, we have the list of derivatives of hyperbolic functions.

d d
L. —(si = 2. — = qj

I (smh x) cosh x I (cosh x) sinh x
4
dx

d d
5. Ix (tanh x) = sech® x 6. o (coth x) = —csch® x

d

I (sech x) = —sechx.tanhx

(csch x) = — csch x coth x 4.

Example 1. Differentiate the following w.r.t. “x”

csch2x

(1) x cosh2x (i1) "

Solution (i): Let y = x cosh 2x

Differentiating w.r.t x, we have

. L) =L (xcosh2x)
# () = (x cosh 2x

Y _ L cosh2x) + cosh 202
dx_xdx cosh 2x) + cos xdx(x)




Differentiation

D _ e x sinh 2x-- (2x) + cosh 2x x 1
dx—x Sin xdx X COS X

dy .
—— = 2x sinh 2x + cosh 2x
dx

a
Thus, Ix (x cosh Zx) = 2x sinh 2x + cosh 2x

Solution (ii): Lety = CS;};Zx

Differentiating w.r.t x, we have

] d o) = d (cscth)
T dx Y= dx\ x2

dy , d d 1

—~ = |x2.— (csch 2x) — csch 2x — (x2 ] —

I [x Ix (csch 2x) — csch 2x Ix (x%) o)

dy ) d 1
— = |x* — csch 2x.coth 2x — (2x) — csch 2x. Zx] —
dx dx x4
dy 1

— = [-2x? csch 2x coth 2x — 2x csch 2x] - —

dx x4

dy 1

—=1[-2 h 2 h2x —1)]-—

I [—2x csch 2x (x coth 2x — 1)] o

dy  —2csch2x (xcoth2x —1)

dx x3
d (csch Zx) —2csch2x(xcoth2x—1)

Thus, —
dx x2 x3

e Differentiation of inverse hyperbolic functions
sinh™! x, cosh™! x,tanh~1 x, csch™1 x,sech™! x, coth~1 x

J Find derivative of sinh™1 x, w.r.t “x”

Solution: Lety =sinh™'x , VxeR

then sinhy = x, vV yeR

Differentiating w.r.t. “x” both sides, regarding y as a function of x

d d
S (sinhy) = o (x)

=% sinm). Y =1
dysm o=

= h dy—l
cos y.dx—
dy 1

dx  coshy ( coshy >0)



[+ sinhy = x]

Thus, = ! , VxeR
V1+x2
(iii) Find the derivative of tanh™1x, w.r.t. "x".
Solution: Lety =tanh™!x,Vx € (—1,1)
Then tanhy = x, Vy € R

diff: w.r.t. "x" both sides, keeping y as a function of x
- d can h d
* 7 (@anhy) = (x)

=>d tanh dy_1
dy(an y)dx—

dy
= sech’y.—=1
sech®y. -~
dy 1
dx  secZhy
dy 1
—= = sech?y = 1 — tanh?
dx 11— tanh?y [+ sech%y anh7y]
dy 1 _
™ P ,V x E( 1,1)
d I} 1
Thus, a(tanh x) = 1~ 22 ,Vx € (—1,1)

(iv) Find the derivative of csch™ x.
Solution: Lety =csch™x,Vx € R—{0},
thencsc hy = x,Vy € R —{0}.

Differentiating: w.r.t "x" both sides, regarding y as a function of x.

AL
oz (eschy) =—— (%)

- (~ cschy > 0 and cothy > 0)

Differentiation

[ coshy =,/1+ sin hzy]



Differentiation

dy 3 -1
dx cschy.1+csch?y-1
dy -1

d
Thus, — (cosech?x) =———,Vx € R—{0}.
dx( ) diie? {0}

Note: The derivatives of cosh™! x, sech™! x and coth™! x are left as an exercise for readers.

. dy
Examples: Find — ; when:
dx

(i) y = sinh™! (2x + 5) (i) y = cosh™1(secx)
Solution: (i) Given that
y =sinh™! (2x +5)
Differentiating w.r.t "x" by applying chain rule:

~i()—£-'h*2 +5
"dxy_dxsm (2x+5)

1
1+4x2

dy 1 d d .
S—=——=_,— (2x+5) v — sinh “x =
dx /1+(2x+5)? dx dx

dy_ 2

N ___“
dx 4x2420x+26

Solution: (ii) Given that

y = cosh™!(secx)

“«_n

Differentiating w.r.t. “x” by applying chain rule

. i — i h—l
o ) = 1z &0 (secx)

dy 1 d
>—=—=.— (secx)
dx sec2x—1 dx

dy _secx. tanx _

dx > = Ssecx
tan” x

=

y



Differentiation

List of derivatives of basic standards functions shown in the list 2.

o y = () ot

1 y = sinh x coshx

2 y = coshx sinh x

3 y = tanhx sech? x

4, y = cothx —csch?x

5 y =cschx —cschx .cothx

6 y =sechx —sechx .tanhx

! y =sinh™1x L —0< x <

8. y = cosh™1x . x>1

0 y =tanh™1x lx] <1
1-x2"°

10. y =coth™1x et x| > 1

. y =csch™tx = x>0
x14x2’

12. y =sech™!x S 0<x<1

xJ1-x2’

3.7.3 Use MAPLE command diff differentiate a function:

The diff command computers the partial derivatives of the expression with respect to
X1, X3, ... X, respectively. The most frequent use is diff (f (x), x), which computes the
derivative of the function f(x) which respect to x.

You can enter the diff command using either the 1-D or 2-D calling sequence, e.g., diff

d
x,x) 1S equivalent to — x.
(x,x) is eq I

diff has a user interface that will call the user’s own differentiation functions. If the
procedure “diff” is defined, then the function call diff (f(x,y,z),y) will invoke
diff/f (x,y, z) to compute the derivative.

If the derivative cannot be expressed (if the expression is an undefined function), the
diff function call itself is returned. The pretty printer display the diff function in a two-

d
dimensional Ix format. The differential operator D is also defined in Maple.



Differentiation

Examples. 1 > diff 2x, [x]) =2
2.> diff (sin 2x, [x])2 cos 2x
3. > diff (sec?(x), [x]) =2 sec2 x.tanx

/ 3
5. > diff (cos(sin(2x)), [x]) = —2sin(sin 2x). cos 2x
3.7.3 Use MAPLE command diff to differentiate a function
The format of diff command to differentiate a function in MAPLE are as under:

4.> diff (Vx3 + 3 [x])

d
>diff(f, [x]) is equivalent to the command Tx f in Maple version 2015.

f stands for function whose derivative is to be evaluated
x stands for the variable x, the derivative with respect x
a

means 1* order derivative with respect to variable x

Note: All above operators should be taken from the Maple calculus pallet
Use MAPLE command diff or (% f ) to differentiate a function:

Derivative of functions:

d d
2 (943 2 a
> I (2x° + 3x“ + 5x + 42) > I sin(x)
6x% +6x+5 cos(x)
d d
>E3\/x+ 1 >Ecos(\/§)
1 1 sin(\/})
— 2 A
& 2
3(x+1)3 d Vx
d -
S 3% > I In(x)
dx 1
3e3*¥ —
x
Derivative on Product form: Derivative on Quotient form:
> L (eryx) N
dx dx\x +3
x
e*\x + 1e” e* 3 e*
p 2 x x+3 (x+3)2
> d_(ex (xz + 1)) S i In(x + 1)
x dx \ sin(x)

eX.(x?2+1) +2(e*.x)




Differentiation
d 1 In(x + 1) cos(x)
> — (e*.si -
dx (e%.sin(x)) (x + 1) sin(x) sin?(x)
e*.sin(x) + e*.cos(x)
Exercise 3.6 )
1. Differentiate the following w.r.t. x:
@) sinh[In(x + 3)] (ii)  sinh(e3¥) (iii)  cosh(2x2 + 3x)
tanhVx N sinh~1x
; sinh™ x ; i
W) Vcoshx @ tan(e ) D) sech=1x
(vii)  coshx.cothx? (viii) sinhxtanhx? (ix) In[tanh(x? + 2x + 1)]
d
2. Find d_ic, , for the following functions:
(i) y =xcosh™tx —vx2 -1 (i) v =xtanh™1(3x)
(iii)  In(cosh™'x) +sinh™'y=C (iv) y=In(1-x2)+ 2xtanh™1x
(v)  y=tanh !(tanx?) (vi)  y=xsech™'(vx)
3. Write MAPLE command diff to differentiate the following:
(i) f(x)=2x3+3x2+6 (i)  f(x) =sin(2x + 3)
, x%2-3x+2
(i) @)= (x+ 1D +2) () f) =
d
4. Write MAPLE command > Ix to differentiate the following functions:
@) f)=x3+5x2+3x+7 (i) f(x)=sinx?
_Vx+1
i)  f00 =5
Review Exercise 3 )
1. Select the correct options:
. o 2
(1) The derivative of 23S
2 2 5 6
@ 5 0) -5 ©= @-g
(i1) The derivative of vx + x+/x is:

3% 14x 1 1 2R

1
@ x ®) -7 © 7 +3vx (d) NS



Differentiation

(iii)

(iv)

)

(vi)

(vii)

(viii)

(ix)

x)

(xi)

(xii)

dy .
Ify = (x+ 1)(x? - 2), thena is:

@x3+x2—-2x—2 (b) 3x2+2x—2 (c) 3x2—2x+2 (d) 3xZ+2x+2

dy
If ax? + by? = ab, then — is:
ax y a endxls

—-2ax —-bx —-ax
(a) by (b) E (©) E
Ify = \/m then 4y =?
’ dx
tanx —csc?x sec? x
a (b) c
2y+1 2y—-1 2y-1
_ dy
If y = tan 1\/§thena =?
1
@) 1+x2 ®) x+Vx © 2(x+xvVx)
The derivative of tan x w.r.t. cot x is:
(a) sec®xcsc?x (b) —tan®x sec” x
csc2 x

The f(x) = ax? —3x — 5 and f'(2) = 9, then a is equal to:

(a) —2 (b) 3 (c) 4
The derivative of x2e?* is:
(a) x2e?* + 2x%e* (b) 2xe?* (c) 2e#*(x? + x)

The derivative of a*,ifa < 0 is:

ax
—_qXx x —-
(@) —a*Ina (b) a*.Ina () na
1—-cos2x d
Ify = tan~?! /— then—y =?
1+cos2x dx
(a1 (b) -1 (c) 2

o (sinh™ x + cosh™! x) is:

(a) cosh™ x —sinh~ 1 x (b)

1 1

V1+x2 B V1-x2

1
(© VxZ+1 +\/x2—1 @ VxZ-1 B V1+x2

q —ax
(d) _Zby
q sec? x
@ 2y+1
1

) 2(Vx+xv/x)
(d) tan?x

(d) 5

(d) 2e?*(x2+1)

(d) Does not exist

@ 3




(xiv)

(xv)

(xiii)

Differentiation

The derivative of tanh ax is:

(a) sech?ax (b) asechax (c) asech?ax (d) 2asech? ax
The derivative of coth™1(2x) is:
1
b d
®) 1-4x2 ®) 1-4x2 © 1-4x2 @ 1-x2

If is the function with rule f(x) = In2x (x > 0), if g is the inverse of f, then
g'(x) =

2 oL 2 N
@ ~ ®) 5 © @
T
(xvi) If f(x) = acos3x and f’ (E) =6, thena =
(a) —6 (b) —2 ©) 2 ) 3

Find the derivative of v/cos x and secvx by first principle.
dy
Ify = (sinx)™*, find —.
y = (sinx)™*, fin I
a
Findﬁ , if ax? + 2hxy + by? = 0.
—1( 2x ’ ’
Let f(x) = cot (m), find f'(x) and f (—\/?_))
dy
x =4(t —sint) and y = 4(1 + cost), find I
Differentiate w.r.t. x:
x?+x~1 - 3x-2
W

d
Ify = x* 4+ 2x2, show tha ﬁ =4x/y + 1.

(1)

Ify = Jsinx +/sinx + vsinx + -, show that 2y — 1)y’ = cosx.
Differentiate w.r.t. x:
(i) cosh(cos™1vx) (i)  tanh™!(cos2x).



Higher Order Derivatives and Applications

i Higher Order Derivatives
Unit and Applications

e Weightage = 4% e Periods = 16

4.1 Higher Order Derivatives

da
The derivative of a function y = f(x) i d_ic/ = f'(x), which is itself a function. Now
. dy .

the derivative of Pl f'(x) , written as
d dy\ _d%y _ . _
@) =@ =1

Generally it is referred as the second order derivative of f(x) and this differentiation
process can be continued to find the third, fourth,...., nth order derivative as under, and are
called higher order derivatives of f(x) .

d (d*y\ d3y
< > ylll — f’l’(x)

dx\dx?) " dxd

d (d3y\ d*y
a<ﬁ)=@=y“=f“(">
d dn—ly dny

4.1.1 Find higher order derivatives of algebraic, trigonometric, exponential and
logarithmic functions.
@) Higher order derivatives of algebraic functions:
Example 1. Find the first, second, and third order derivatives of
y=5x*—-3x3+7x2-9x +2
Solution: We have y=5x*—3x3+7x%—9x +2

Differentiating w.r.t x, we get
d
= —y=20x3—9x2+14x—9
dx

Again, differentiating w.r.t x, we get

d2
= 2 60x%—18x + 14
dx?
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Differentiating 3™ time w.r.t x, we get

d’y
= e 120x — 18

Example 2. Find f"'(4) if y = f(x) =vx

1
Solution: As f(x) = Vx = x2
Differentiating successively three times, we have

1 1
= f)=5x72

— 3
= f”(x)=Tx_f

3 5
= f”’(x)=§x 2

Replacing x by 4, we get
3 5
Hence, @) = 3 2

_ 3( 1 ) 3
- 8\32/ " 256
Example 3. If f(x) = % then find £ ™ (x).

Solution:
f)===201-0"
Differentiating successively w.r.t x and patterning for nth derivative, we have
fio=2-1)1-0?(-D=21HA -x)7?
f'e0 =21)(2)A -0 (=) =22H(1 -x)7°
fre)=2@H(=-3)A -0 () =2@H1 -0~
fP@ =26DEHA -0 (=1) = 24D (1 - )7
Therefore,
f™@) =21 —x)~"*Y
(ii)  Higher order derivatives of trigonometric function:

The higher order derivatives of trigonometric functions are explained in the following
examples.

Example 1. Find the third order derivative of y = sin?x.
Solution: As y = sin?x

Differentiating successively thrice times w.r.t x, we have

y . .
— = 2sinx cosx = sin2x
dx
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= @ = 2 cos 2x
dx?
d3
= —)3] = 2(—sin2x)(2)
dx
d’y .
= T3 = —4sin 2x
i ond . _cosx
Example 2. Find 2™ order derivative of f(x) = Troinx

coSx
1+sinx

Differentiating successively two times w.r.t x, we have

Solution: flx) =

, (1 +sinx)(—sinx) —cosx cosx  —sinx — sin?x — cos?x
= fi(x) = — = —
(1 + sinx) (1 + sinx)
_ —sinx — (sin®x + cos?x) —(1 + sinx)
- (1 + sinx)? ~ (1 +sinx)?
— () = — —
f@ 1+ sinx

= f"(x) = —;—x(1+sinx)‘1 = (1+sinx) % cosx
cos x

(1 +sinx)?

(iii)  Higher order derivatives of exponential function:

= =

Example 1. Find the 3" order derivative of y = a*
Solution: As y =a*

y=e

Differentiating successively three times w.r.t x, we have

xlna [ a* = exlna]

= y' = e*"% (Ina) = Ina e*"®
= y" = (Ina) e*"* (Ina) = (Ina)? e*"®
= y"" = (Ina)? e¥™4, (Ina) = (Ina)3 e*"@
or y"" = a*(Ina)?
Example 2. Find the 2 order derivative of f(x) = e1**”
Solution: Fx) = e+

Differentiating successively three times w.r.t x, we have
= f'(x) = (). 2

= f'(x) = Z[xe(1+x2) 2 2x + e(1+2?) . 1]
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— 2[2x26(1+x2) + e(1+x2)]

= f"(x) =20+ (2% + 1)
@iv) Higher order derivatives of logarithmic function:

The higher order derivatives of logarithmic functions are explained in the following
examples.

Example 1. Find 3" order derivative of f(x) = log,x?
As f(x) = logpx?

Solution: y = log,x?
or = 2logyx

Differentiating successively three times w.r.t x, we have

— 22 1 [..i[l ]_l.L]
Y =% b T dx 09X = mp

- e
Y " Inb x2

2 (2 4
= =)

“Inb \x3) " x¥Inb
Example 2. Find the 2" order derivative of f(x) = In (1 + x?)
Solution: f(x)=In(1+x?
Differentiating successively two times w.r.t x, we have
Y — d 2y —
= f(x)—(1+x2)a(1+x)—(1+x2).2x
d X
= f”(x)=2a(m)
1+ x3)(1) —x (2x) 1+ x?% —2x?
) A+ | [W]
=2
(1+x2)2

4.1.2 Find the second derivative of implicit, inverse trigonometric and
parametric functions
(@) 2nd order derivatives of implicit function:
The method of finding the second order derivatives of implicit functions is explained
in the following examples.

E 1 F'ddz—y'f + 2y—1=0
xample: Find—5 if xy +x —2y =

Solution: Asxy+x—2y—1=20
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Differentiating w.r.t x, we have
d d d d d
N+ -2 =0 - =) = -0
= xy'+y-1+1-2y'-0=0

= YE-2=-0+1D

1 _(y+1)
(x=2)

Differentiating y', to get 2" order derivative, we have

G-DEOHD- DL -2)

= y

—1 y” =

(x — 2)?
N u=_(x_2)y,_(y+1)(1)
g (c—2)2
w-[-LF -0+

-y (x—2)?
- . 20y +1)

C (x-2)?

(ii) 2nd order derivatives of inverse trigonometric function:

The method of finding second order derivatives of inverse trigonometric functions is
explained in the following examples.

Example:  Find the second order derivative of tan™1x
Solution:
Let y = tan™x

Differentiating y w.r.t x, we get
d d
—(v) = — (tan™!
— () = —(tan ")

dy
dx 1+ x2
Again, differentiating w.r.t x, we get

()

=(1+x?)71

dx \dx

d?y

— = —1(1+x)7%(2
= Tx? (1+x)"°(2x)

d?y —2x

dx?  (1+x2)2

y
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(iii) 2nd order derivatives of parametric function:
Let y = f(x) is a function, x = f(t) and y = g(t) are the parametric equations of
y = f(x). Then, by using chain rule.

dy
d_y _dt )
D dx
dt
d2y dy
To ﬁnd I 2, let z = Ix = h(t).
Now, using chain rule on z= /4 () and x = f{¢), we have
dz
dz g
&
dt

From equation (i), we have

i(ﬂ)
d (dy) dt \dx B Z_d_y
dx \dx d_x) 7 dx
t

()
dz_y dt \dx
dx? dx

(@)

Formula is used to compute the second derivative of the funtion when it is defined parametrically.
2
. y . .
Example: Find — where y =1 + 5t2; x = 5t+ 3t? are parametric equation of

y = f(x).
Solution:
dy
| ay _ ()
By using formula = Tdx
o (&)
dt
a
Here 2_Z (1 +5t%) = 10¢
dt
dx _ (5t+ 3t?) =5+ 6t
dt N
_ _y _) 10t
Now T dx T (dn) T S
For second order derivative we use the following formula
it (&)
d? y _dt\dx
dx? ~ (dx
(@)
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d (dy)_ d( 10t)
dt \dx)  dt\5 + 6t

_ (5+6t)(10) — (106)(6) _ (50 + 60t —60t) 50

(5 + 6t)2 (5+6t)2  (5+6t)2
) 50
. g, d 5461)2
By using formula y' = d_x)zl = (5 T 63:
"no_ 50
(5+6t)°

4.1.3 Use MAPLE command diff repeatedly to find higher order derivative of
a function

The format of diff command to differentiate a function repeatedly in MAPLE is as

under:
n
>diff (f", [x]) is equivalent to the command dx_n f in Maple version 2022.

Where,

fn stands for function whose nth order derivative is to be evaluated
x stands for the variable x, for the required derivative with respect x.
d‘l’l

Ten  means n™ order derivative with respect to variable x.
Note: All above operators should be taken from the Maple calculus pallet
n

Use MAPLE command diff repeatedly or :—n f to differentiate a function repeatedly:
x

nth order Derivative of functions:
d d
>%(x3+2x2+5x+7) >a\/x2+4x+3
3x%24+4x+5 1 2x+4
d? 2Vx2+4x+3
> — (x3+2x2+5x+7) 2
dx? > d—(\/x2 +4x + 3)
6x + 4 dx?
d3 5 , 1 (2x+4)? N 1
> — (x> +2x*+5x+7) .y 3T T >
dx3 4(x2+4x+3)7 x%2+4+4x+3
6
d3
= (]2
> dx3( X +4x+3)
3 (2x+4)3 3 2x + 4
8 E) 3
(x%2 +4x + 3)2 (x% + 4x + 3)2
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> 4
asm(x)
cos(x)
d2
> ESID(X)
—sin(x)
3
> @sm(x)
—cos(x)

d
2x+5
> —— ()

dx3
8e2x+5
d3
- 213
> I3 (Inx=)
1201n3 x3

Derivative on Product form:

Derivative on Quotient form:

2

> d_ (e2x+1)(\/§)

dx?

1 D(z)(32x+1)(\/§) _1 D(62x+1)(\/;)

3
4 X 4 =

d X
> a(e .(XZ + 1))
e*.(x2+ 1) + 2(e*.x)
d3
> @(ex sin(x))

2e* cos(x) — 2e* sin(x)

dd® [ e*
> w<x—+ 3>

e* 3e* N 6e* 6e*
x+3 (x+3)% (x+3)3 (x+3)*

_ & (inGtD)
dx3\ sinx
2

(x 4+ 1)3sinx
d3 (1 + sin x)

dx3\ cosx
6 sin 6 (sinx + 1)
cosx3 cos x*

(i) f)=Vr -y VR

If x2 +y% =10, find y"'.
2
Find a4 if
dx?

() 2y?+6x2 =76

() x3+y3=1

Exercise 4.1 )

Calculate the first, second and third order derivatives of y = cos? x.
Find the 2™ order derivative of f(x) =

cosx

1+sinx’
Find the fourth order derivatives of the given functions.

@) h(t) = 3t — 6t* + 8t — 12t + 18

Determine the fourth order derivative in each of the following function.
(i) r(t) = 3t2 + 8t (ii)y = cosx

(iii) f(y) = sin3y + e™% + In(7y)
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dZ
7. Find—y if
dx?

@) x =-5t3—7andy =3t?+ 16

(i1) x=cosB andy =sin®

8. The derivative of function r(t) is given by
r'(t) = 6t + 4t~12 £ et ; find r"(t), r'"'(t) and rP(t)
a?y
9. If x? + y2 = 25 then find 22 point (4,3).

12. Write MAPLE Command to find higher order derivatives of the following functions:
(1) f(x) = x3+3x2+ 6x + 8 ; (third order derivative)

(ii) f(x) = cosv2x + 3 ; (second order derivative)
(i)  f(x) = e@+5%+3) . (third order derivative)
(iv) f(x) = Inv3x+2 ; (second order derivative)
) f(x) = esSinx ;  (third order derivative)

4.2 Maclaurin’s and Taylor's Expansions

4.2.1 State Maclaurin’s and Taylor's theorems (without remainder terms). Use
these theorems to expand sinx, cosx, tanx, a*, e*, log,(1+ x) and
In(1+x)

Maclaurin’s Theorem:

If f(x) is nth order differentiable function at x = 0 then it can be expanded as the

infinite sum of the terms of the polynomial centered at x = 0 that is
X3

Le, f)=f0O)+f'O)x+f ”(0) +f ”’(0)
Taylor’s Theorem:

If f(x) is nth order differentiable function at x = a then it can be expanded as the
infinite sum of the terms of the polynomial centered at x = a

. " ( — )2 " ( — )3
e, f0)=f@+f@0-a)+f" (@ ——+f"(@) 5

Example: Find the Maclaurin’s series of sinx, cos x, tan x, a*, e*, log, (1 + x) and In(1 + x).

Solution:

(i) f(x) =sinx

The Maclaurin’s series is given by

2 3 n
FG) = F(O) +3f'(0) + 57 £7(0) + 5 £ (0) -+ - fT(0) + -
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f(x) =sinx = f(0)=0
f'(x) = cosx =f'(0)=1
f"(x) = —sinx = f"(0)=0
f"'(x) = —cosx = f"(0)=-1
f®(x) = sinx = f®0)=0
FO(x) = cosx = fO0)=1

By putting the values of £(0), £'(0), £ (0), f"'(0), f*(0), .., in Maclaurin’s series we get,
x? x3 x* x>
sinx = 0+ x(1) +E(0) + a(—l) +E(0) +§(1) — e

3 5

] x> x
or smx=x—i+§—---
In summation form,
d x2n+1
sinx = ;(—1)" —(Zn D

This is the required Maclaurin’s series of the function f(x) = sinx.
(ii) f(x) =tanx

f(x) =tanx =y at = f(0)=0
flx)=y =sec?’x=1+tan’x=1+y? =f'(0)=1
f'e) =y" = 2yy' = f"(0)=0
) =y" = 2lyy" +y"?] = f"(0) =2

fO@ =y =2[yy" +y"y'T+22y'y" =f®0)=0
=2[yy" +y".y" +2y'y"]
=2[yy"" +3y'y"]
fO@ =y% =2[yy® +y"y' | +6ly'y" +y"y"]
=2yy™ +2y"y" + 6y'y" + 6y"y"
=2yy™® +8y'y"" + 6y"y"
=2yy™ +8y'(2) + 6y"'y"
=2yy™® +16y" + 6y"y" = f5(0) =16
By putting the values of £(0), f'(0), £(0), £ (0), f ®(0) and f >(0) in Maclaurin’s series,
we get,

2 3 4 5
tanx = 0+ x(1) + > 0) +%(2) +2:(0) +%(16) oo

tanx = x 422t 4 xS 4
anx = x 3X 15x
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This is the required Maclaurin’s series of the function f(x) = tanx

(iii) f(x) =a*

f(x)=a* atx=0 =f(0)=1
f'(x) =a*Ilna = f'(0) =1Ina
f"(x) =Ina(a*Ina) = (Ina)?a* = f"(0) = (Ina)?
f"(x) = (Ina)?(@*Ina) = (Ina)3a* = f"'(0) = (Ina)?
f®(x) = (Ina)®@*Ina) = (Ina)*a* = f®(0) = (Ina)*
fO(x) = (Ina)*(@a*Ina) = (Ina)®a* = f®)(0) = (Ina)®

By putting the values of £(0), £'(0), £ (0), "' (0), f ®(0) and £ ®(0) in Maclaurin’s series,

we get
x?2 x3 x* x5
a*=1+x(lna) +5(lna)2 +§(lna)3 +E(lna)4 +§(lna)5 +

xlna)? (xIna)® (xlna)* (xIna)®
( )+( )+( )+( )+

= a*=1+ (xlna) + o1 30 2 =

In summation form,

This is the required Maclaurin’s series of the function f(x) = a*
(iv) f(x) =log,(1+x), wherea >0anda # 1

£() = logy (1 +x) = f(0)=0
) = ﬁ = fO)=r-
o =CE
e = -0 = 0= —ﬁ
ey = 20 = 0=
o) - =80 = fO0) =52
FO @y = 2 =[O0 =1
Putting values of £(0), £'(0), £ (0), £"'(0), f ®(0), f ®(0) in Maclaurin’s series, we get

xZ 3 4

oga(1+0) =0+ x() + 55 () + 5 () + 5 () + 5 () +
8a x) = \ina) " 21\Ina) T 31\na) " 2 \Ina) T 51 \ina
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1
log,(1+x) = na [x -

In summation form,

( 1)11 n+1

loga(1+x)——a ——]

n=0

Which is the required Maclaurin’s series.

Note: Maclurin’s series of cos x, e* and In(1 + x) are left as an exercise for readers.

Find the Taylor’s series of the expansion of sinx, cos x, tan x, a*, e*,log,(1 + x) and
In(1 + x) at particular point a

Solution: () f(x) =sinx ata= %

The Taylor’s series is given by

(x—) (—)3

f) = fl@+&x-a)f'(a)+ f'(@)+—7—f"@+-
Ma= /=1 (§)+ ()7 <%>+<";?>zf~ <%>+<x;?>3f~'<%>+-~
fx) =sinx = f(n)—sing=% o
f1x) =cosx = f’(g)=cosg=§
f(x) = —sinx = f" (g) = —sing = —%
T V3

F700) = —cosx = f"(6) = —cosg = -

Putting these above values in equation (i), we get

fa =2+ (x5 <§> +(x;—|%)2(—1) +("_—%)3(_ﬁ) o

6/\ 2 . 2 31 2
2 7.[3
. 1 3 1(x - V3(x—%
= sinx = 3 7("‘%)‘1—( 216) ‘7( 3l6)

s
Which is the required Taylor series of sin x at the point o

(i) f(x) =cosxata = %

The Taylor’s series at a = % is given by:
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f(x) =f(g)+(x—g)f’(g)+ﬂ

f(x) =cosx = f(g) = cosg=—

f'(x) = —sinx = f' (%) - gint o

f"(x) = —cosx = f”(g)=—cosz=
f"(x) =sinx = f" (g) = Sing _1
V2

By putting values in equation (i), we get
Com o D D
R G A O A )
SR N o 1

=c0sX = ——— + -
V2 2 V22! V2 3l

4
Which is the required Taylor series of cos x at the point "

4

(iii) f(x) =tanxata = L

4
T[ T
f(x)=tanx=y atx=Z=>f(Z):1
f'(x) =y =sec’x =1+tan’x = 1 + y? =>f,(%):2
n 17} 7 . T
fre=y"=2yy = f"(3) =4
f”’(X) = y’” = Z[yy" +y’2] = f/// (%) - 16

fr) =y* =2[yy"" +y"y" +2y'y"]
— Z[yylll + y”.y’ + Zylyll]
— " 1.1 4 E _
=2[yy"" +3y'y"] = f (4)—80

By putting the values of £(0), £(0), " (0), £ (0), f*(0), ..., in Taylor series we get,

F@ = 1 (r D) e (0= 5) 4o (x-2) o (x-0) 4o

4/ 2! 4 3! 4 4! 4
tanx = 1+2(x—%)+2(x—%)2+§(x—%)3+%(x_%)4+...

This is the required Taylor series of the function f(x) = tanx ata = %
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(iv) f(x)=a* atb =2

f(x) =a* at x =2 f(2) =a?
f'(x) =a*lna = f'(2) =a’lna
f"(x) =Ina(a*Ina) = (Ina)?a* = f""(2) = a*(Ina)?
f""(x) = (Ina)?(a*Ina) = (Ina)3a* = f'"(2) = a?*(Ina)?
The Taylor’s series of the function at point b is given by
2 3
fx) = f(b)+(x—b)f’(b)+( ) f"(b) + & ) ——f"'(b) + -

Ath=2,f() = f(2) + (x - 2f' @) + 552 2) fr(2)+ B2 2) @)+
Putting values of f(2), f'(2), f"(2),f'"(2), ... we get

_9\2

f(x)=a2+(x—2)(a21na)+( 2) (a®(Ina)? )+( 2) (a’(Ina)3) + -

v (x — )2 24 (x — )3 3y
= a*=a?|1+x—-2)lna+ o (Ina)* + (Ina)® +
Which is the required Taylor’s series of a* at the point 2.

w) f(x)=e*ata=1
f(x)=e* atx=1=f1) =e
f'(x) =e*.Ine =e* =>f(1)=e
fl'(x)=e* =>f'D=e
fm(x) = X = f”’(l) —e
By putting the values of £(0), f'(0), f"'(0), f"'(0), ..., in Taylor series we get,
(x — )2 (96—1)3
= e*=e+(x—-1DE)+—— () + (e)+ -
_1\2 _ 3
= e*=e 1+(x—1)+(x2!1) +(x3!1) +

This is the required Taylor series of the function f(x) = e*ata =1
(vi) f(x) =log,(1+x)atb=1
Solution: By Taylor’s series we have,

( ) " ( — )3 nr
f@x)=f()+ x—Db)f'(b) + F(b) + ————F""(b) + -
At b =1, we have
J— ! ( - )2 n ( - )3 nr .
fO=fO+E-Df D +——f"D+—=—f"1D) +- (@)

f(x) =log,(1+ x) > at = f(1) =log,2
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, 1
[ = (1+x)Ina

or f'(x) = —(1;2
" —(1+ 2 1"
fre) = ( lnz) = ff= 4lna
-3
Fren = 2 SO

Putting values in equation (i), we get

(x) =log,2 + (x — 1) x ! +(x_1)2 D) (x—1)3x !
f(x) =loga2 + (x 2lna 2! 4ina 3! 4lna
-1 (-1  (x—1°
— log.2 _
= f(x) =logg2 + 2lna 42!(Ina) +4.3!(lna) *
Which is the required Taylor’s series of the function
f(x) =loga(1+x) at b=1

|(vii) fx)=In(1+x)ath=2|

FGO) = In(1 + %) at = f(2) = In3
f0 == +0™ = (@) =3
') =-1+x)? = f(2) = _5
FG0) = 214207 L ) = 21
f¥x) =—-6(1+x)7* > fY(2) =5

By putting the values of £(0), f'(0), £ (0), f""'(0), f¥(0), ..., in Taylor series we get,

_ ( ~ )2 " (x_ )3 "
fO)=f2)+&x-2)f"(2)+ fr@O+——f"@+

(x—2)2 (x=2)23/2\ (x=-2*/ 2
(1 +x) = In3 +(" 2 (3)+ S5 (- 5)+T<ﬁ)+T(‘ﬁ)+
In(1+x)=Imn3 += (x— 2) ——(x—2)2 +—(x—2)3 —ﬁ(x— 2)* +
This is the required Taylor series of the function f (x) = In(1 + x) at point 2.

4.2.2  Use MAPLE command Taylor to find Taylor’s expansion for a given function
The format of Taylor’s expansion command in MAPLE is as under:
> taylor (f(x), x = a,n)
where,

f(x)  is the function whose Taylor’s expansion is required
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is about the point x=a, series is expanded
n is the number of terms series expanded.
In order to compute the Taylor series expansion following examples are given:

1 Xy =
> taylor ( x=0 5) > taylor (e*,x = 0,5)
v1i+x 1, 1. 1, 5
1+x+-x°+=x"+—x*+0(x>)
1—1x+§x2—ix3+£x4+0(x5) 2 6 24
2 8 16 128 > taylor (e*,x = 2,5)
>taylor< ! x=06) ez+e2(x—2)+1e2(x—2)2
i :
1 3 5 35 2 3
_Zaa22_ 2 3,22 4 +-e“(x—2)
1 2x+8x 16x +128x 6
35 +iez(x—2)4
—mx5+0(x6) 24
+0((x —2)%)
> taylor (sin(x),x = 0,10) > taylor(In(1 +x),x = 1,4)
PSR T T In(@) +3 (x = 1) = (x - 1?
*7er T120° 5040 e 8"
1
9 0 11 _ -1 3 0 -1 4
+ 380" T (™) +24(x )+ 0((x —1D%)
> taylor (cos(x),x = 0,10) > taylor(In(1 + x),x = 2,4)
1 1 1 1 1 1
1—cx?+—x*——x6+——x% In(3)+=(x—2) —— (x — 2)?
2¥ Y 2% T70" Taoser M@ P3G -D a2
+ 0(x19)

1
+ a(x -23+0((x—-2)%

Exercise 4.2 )

Obtain the first three terms of the Maclaurin’s series for

(i) cosx (i) e* (iii) In(1 + x) (iv) sin?x
; N L1
v) e (vi) xe (vii) Tix

Find the first four terms of the Taylor’s series for the following functions
(i) Inx centeredata =1 (i1) % centeredata =1

oy T . i3
(iii) sin x centered ata = ) (iv) cos x centered at a = 3

Does Maclaurin’s series of the functions f(x) = %, g(x) = cosecx and h(x) = vx

exist? If not why? Give appropriate justification.
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4. Write MAPLE Command to find Taylor’s Expression of the following functions:
(1) f(x) =e* at x =1 upto 10 terms.
(i) f(x) =sinx at x = 7 upto 10 terms.
(i)  f(x) =cosx at x = upto 10 terms.
(iv)  f(x)=In(1+x) at x =0 upto 10 terms

W) f(x) = % at x =1 upto 5 terms.
vi) f(x)= % at x = 2 upto 5 terms

4.3 Application of Derivatives

Derivatives have various important applications in Mathematics such as to find the
Rate of Change of a Quantity, to find the Approximation Value, to find the equation of Tangent
and Normal to a Curve, angle between two curves and to find the Minimum and Maximum
Values of algebraic expressions. Derivatives are vastly used in the fields of science,
engineering, physics, etc.
43.1  Give geometrical interpretation of derivative.

Let P(x,y) be any point on the curve y = f(x).

Referring to Ffure 4.1, we have, v y = f(x) I3
y= f (x) = MP A
5x = MN = PK (x+8x,y+8y) #Q T h
y+ 8y =f(x+6x) = N_Q /gngent line
~ 8y =f(x+6x)— f(x) =KQ ) by
For average rate of change, we divide both P(x, y)
sides of equation (i), by éx, bx

by _ f0c+60) ~ f() _KQ /7

— = ==—=tan® N

ox ox PK ) > X

i o & * M N
= gradient (slope) of secant PQ g
Fig. 4.1

Now, as dx approaches zero, the point Q will
approach P along the curve, then secant will eventually becomes tangent

.0y dy . f(x+6x)—f(x)
So lim —=—=Iim
8x->00x dx  8x-0 ox

= gradient (slope) of the tangent PT = tan 6

where 6 is the angle between the tangent at P and positive direction of x-axis.

Note: For derivative, Q — P = tan @ — tan6.
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e, f'(x)= % = tan 0, which is the slope of the tangent to the curve y = f(x) at point.

We conclude that slope of the tangent to the curve is the derivative of the function of
the curve at the point of tangency.
4.3.2 Find the equation of tangent and normal to the curve at a given point

Let f(x,y) = 0 is the equation of the curve. Then, to find the equation of the tangent
at any given point (a, b) is found using following steps.

. . . _(dy
(1) Find slope of tangent at (a,b) i.e.,m = ( dx)(a,b)
(i) By using point slope form, equation of tangent is y —b = m(x — a).
2 2
Example 1. Find the equation of tangent and normal to the curve x3 + y3 = 2 at (1, 1)

2 2
Solution: Given curveis x3 + y3 =2

differentiate with respect to x regarding y as a function of x.

B (or)2-o
3* 37 7 )dx

- (e

& _

dy x_% y 3

===
y3

d
%) 1,1) -

Hence, the slope of the tangent at the point (1, 1) is (

Now, by using point slope form of line

y=1==1(x—Dory+x—-2=0
To find the equation of normal, the slope of the normal at the point (1,1) is equal to negative
reciprocal of the slope of tangent. Therefore, the slope of the normal is 1.

Hence, the equation of the normalisy —1=1(x —1)ory—x =0
Example 2. Find the equation of the tangent to the curve y = (x—(Zx)% at the point where

it cuts the x-axis.

Solution: The equation of curve is y = % (1)
As curve cuts the x-axis, soy = 0.
Using y = 0 in (i) we get
0=—2"7 =7
T -2)x-3) *=
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Thus, the point where the curve cuts x-axis is (7, 0).
Now, differentiating (i) with respect to x, we get
(x=7) (x=7)
T (x—2)(x—3) (x2-5x+6)
dy (x?>-5x+4+6)—(x—-7)2x—-5) x*—-5x+6—2x?+19x—35
dx (x%2 — 5x + 6)? - (x% — 5x + 6)?
dy —x%24+14x-29
dx (x2-5x+6)2
dy —-494+98-29 20 1
[E 70 (499—35+6)2 400 20

y

=

1
slope of the tangent to the curve (i) at point (7, 0) is %0
Equation of tangentis y — y; = % (x —x1)

At (7,0) y—0=2—1()(x—7)=~20y=x—7
=>x—20y—7=0
4.3.3 Find the angle of intersection of the two curves.

Angle between two curves:

Let y; = f(x) and y, = g(x) be two curves which intersect each other at point
P(x41,y1) as shown in the figure 4.2. If we draw tangent line passing through intersecting
point of the curves, then the angle between these tangent lines is called the angle
between two curves.

>

To find the angle take m;, m, be the slopes of tangent
lines. By the definition of slope y=fx) y=gk)

P(x1,y1)

my =tana
and m, =tanp

where o and B are the inclinations of the lines and can be
calculated by using derivative.

(04
The acute angle between the curves is given by 0 T, >x
0 = tqn-1 | "M Fig. 4.2
1+mym,
Steps to be followed to find the angle between two curves:
(1) Find point of intersection by solving the equations of both curves.

. . dy
(i1) Find — of both curves
dx
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. . .. dy
Put value of point of intersection in Tx and get my and m,.
X

(iii)

(iv)  Put value of m; and m, in 6 = tan™?

M| and find ©.

1+my m,
Example: Find the angle between the curves xy = 2 and y? = 4x .
Solution: Given equations of curves are xy =2 (1)
y2=4x (i)

From equation (i) and (ii), we get

4

Z= 4x

= x3=1 >x=1

To get the value of y, put x = 1 in equation (i), we get y = 2, so the point of
intersection of curves is (1, 2).
Let m, be the slope of curve (i) at the point (1,2).
By differentiating on both sides of equation (i) with respect to x we get,
dy dy _-y

- =0 =
xdx+y =>dx X

@) -F),, -
m, =\\— = |— = —
P\dd gy V1

Similarly, m, be the slope of curve (ii), at the point (1,2) is given by

dy 2
"y
me),,-0),,"
dx/12)  \V/ (12
Angle between the given curves,
mi—my| | —2-1 | 23|
tan® = 1 | = |1 T2l |—_1‘ =3

Hence 6 =tan"1(3) =71.56°

4.3.4 Find the point on a curve where the tangent is parallel to the given line

Example 1. Find the point on the curve xy = 12, the tangent at the point is parallel to the
given line 3x +y = 3.

Solution: The slope of the line 3x + y = 3,ism; = —3

From the equation of curve xy = 1250,y = %

dy -12

By differentiating with respect to x to get i =m,
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. . -12
As the given line is parallel to tangent to the curve so my = my or —3 = ~Z

>x:=4 or x=+2

By substituting the value of x in the equation of curve xy = 12 we have

y=12—2=6 atx =2
y=%=—6 atx = —2

The points at which the tangent line is parallel to the given line are (2, 6) and (-2, —6).

Exercise 4.3 )

3 27
1. Determine the slope of tangent to the curve y = x3 at the point (E ) ?) .

2. Find the slope of tangents to the curve x?+y?=25at the point on it
whose x—coordinate is 2.

3. Find the equation of the tangent and the equation of the normal to the curve
y=x+ % at the point where x = 2.

4. Given two curves y = x2 and y = (x — 3)2. Find the angle between them

5. Prove that the tangent lines to the curve y? = 4ax at points where x = a are at
right angles to each other.

6. At what points on the curve x? +y% —2x — 4y + 1 = 0 the tangent is parallel to
y-axis.

4.4 Maxima and Minima

44.1 Define increasing and decreasing functions

Maximum and minimum values of function are called maxima and minima of the
function.

A function f(x) is said to be increasing at a point x = a,
if f(a—h) < f(a) < (a+ h), where h is a positive change in x. (Fig. 4.3)
A function f(x) is said to be decreasing at a point x = a, if
f(a—h)> f(a) > f(a + h) (Fig. 4.4)
A function is said to be increasing or decreasing over an interval if it is increasing or
decreasing at every point of that interval.
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a—h a a+h a—h a ath

Fig. 4.3 Fig. 4.4

The Fig. 4.3, represents the increasing function and the Fig. 4.4 represents the
decreasing function.

4.4.2 Prove thatif f(x) is differentiable function on the open interval (a, b) then

. f(x) is increasing on (a, b) if f'(x) > 0 Vx € (a, b)

. f(x) is decreasing on (a, b) if f'(x) < 0 Vx € (a,b)
e f(x) isincreasing on (a, b) if f'(x) > 0 Vx € (a, b)

Let f(x) is increasing function at x where x € (a,b), then by the definition of
increasing function.

f(x+ h) > f(x), where h is positive change in x.

Now, by definition of derivative,

von 1 Jle+h) = f(x)
=
fx+h)—f(x)>0
rrn _ s fx+h)—=f(x0)
f'(x) = }Ll_r}(l) — > 0
Hence, the function f(x) is increasing on (a, b) if f'(x) > 0V x € (a, b).
e f(x)is decreasing on (a, b) if f'(x) < 0 Vx € (a, b)
Let f(x) is decreasing function at x where x € (a,b), then by the definition of
decreasing function.

f(x + h) < f(x), where h is positive change in x.
Now, by definition of derivative,
We have

fle+h)—fx)
h

f'(x) = lim

fx+h)-f(x)<0
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/ _ o fx+h)—f 0
f'(x) = }ll_r)r(l) ——g < 0
Hence, the function f(x) is decreasing on (a, b) if f'(x) < 0V x € (a,b).

Example 1. Check whether the function f(x) = x2 + 5 is increasing at x = 3 or not.

Solution:
f(x) =x%+5
Differentiating w.r.t x,
We get
fl(x) =2x
Putx = 3,
f3)=203)
f'3A)=6>0

Hence, the function f(x) = x2 + 5 is increasing at x = 3.

Example 2. Check whether y = sin x is decreasing on (%, 1'[).

Solution:
f(x) =sinx
Differentiating w.r.t to x
We get

f'(x) =cosx

i
cosx<0Vxe€ (E,T[)
f(x) = sinx is decreasing on (g, 11).

4.4.3 Examine a given function for extreme values.
Let y = f(x) be a function, and the graph of this function be shown in Fig. 4.5.

A

B
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From diagram function fis increasing from A to B, C to D, E to F and decreasing
fromBto C,DtoEandF to G.

Points B, C, D, E and F are such points where the function is neither increasing nor
decreasing. The tangents to the curve at these points are parallel to x-axis. The derivative of the
function at these points vanishes, these points are called turning points or points of extreme
values or extrema.

B, D and F are such turning points where the function changes from increasing to
decreasing. These are called points of maximum values or maxima.

C and E are such turning points where the function changes from decreasing to
increasing. These are called points of minimum values or minimas.

Maxima and Minima through first derivative
Lety = f(x) be a function.
1) Differentiate w.r.t ‘x” and obtain f'(x).
(i1) Put f'(x) = 0, solve it and obtain critical points.
(i)  Let x = a be a critical point.

f'la—h)<0
If f'(a)=0 = x = a is point of minima.
f'la+h)>0
f'la—h)>0
If f'(a)=0 = x = a is point of maxima.
f'la+h)<0
f'la—h)>0 f'la—h)<0
If f'(@)=0 or If f'(a) =0 = x = a is point of inflection.
f'la+h)>0 f'la+h)<0

Note: Point of inflection is that point of curve which is nether point of minimum nor

maximum.

4.4.4 State the second derivative rule to find the extreme values of a function at
a point
Lety = f(x) be a function.
@A) Differentiate w.r.t ‘x’ and obtain f'(x).
(i) Put f'(x) = 0, solve it and obtain critical function.
(ili)  Differentiate again w.r.t ‘x” to obtain f"'(x).
(iv)  Letx = a be a critical point.
Ifthe f"(a) < 0 = x = a is a point of maxima.
Ifthe f"(a) > 0 = x = a is point of minima.
Ifthe f"(a) = 0 = test fails.
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44.5  Use second derivative rule to examine a given function for extreme
values.
Example 1. Find extreme values of f(x) = x* — 8x? using the second derivative rule.
Solution: Here f(x) = x* — 8x?
f'(x) = 4x3 — 16x = 4x(x? — 4)

Put f'x)=0

4x(x*—4)=0

= x=0orx=4%2

Again Differentiate

f"'(x) =12x%-16
Putting the values of x = —2,0 and 2 into f"'(x).
f'(=2) =12(=2)? =16 = 32 > 0 that is function has a minimum at x = —2
f"(0) =12(0)2—16 = =16 < 0 function has a maximum at x = 0
f'(2)=12(2) =16 =32>0 function has a minimum at x = 2
Minimum value at x = —2

f(=2) = (-2)* - 8(-2)* = -16
Minimum value at x = 2

f2)=@2)*-8(2)*=-16
Maximum value at x = 0

f(0)=0
Example 2. Find points of extrema of f(x) = sinx + cos x on [0,2n] using the Second

Derivative Rule.

Solution: f(x) =sinx + cosx
f'(x) = cosx —sinx

As f'x)=0

We have cosx —sinx =0
sinx = cosx

Dividing both side by cos x

tanx =1,x = tan"1(1) =% andSTZT

so in the interval [0,27r] we have f'(x) = 0 atx = % and ‘%T

Again Differentiate

f"(x) = —sinx — cosx
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T 5T

Put the values of x = O’Z’T’ 21

f"(0) = —sin(0) — cos(0) = —1 < 0 that is function has a maximum at x = 0
m(TY — _gin (%) — m_-1_1__ ; ; -

f (Z) = —sin (4) cos (4) A V2 <0 function has a maximum at x = 7

" (%r) = —sin (%T) — cos (%Tn) = % + % =+/2 > 0 function has a minimum at %T

f"(2m) = —sin(2m) — cos(2m) = —1 < 0 function has a maximum at 21t.

4.4.6  Solve real life problems related to extreme value.

Example 1. A farmer wishes to enclose a rectangular field using 1000 yards of fencing in such
a way that the area of the field is maximized.

Solution: Let x and y be the length and breadth of the field and A be the area of the field. then
A=xy.

For fencing we have an equation for perimeter

2x+2y =1000, = y=500—x
Area of rectangular field

A =x(500 — x) = 500x — x?

dA
Now — = 500 — 2x,

dx

dA
SO — =0,

dx

500—2x =0, x =250
when x = 250.

d?A

dx?

2
d“A
H — = —
ence (dxz) 2<0
x=250

The maximum area occurs at x = 250.

ie, A=250(500—250) = 62500 square and dimension of rectangular field is
x = 250 and y = 250.
Example 2. A company finds that the cost of goods C(x) is given by
C(x)=—-x3+9x2—15x+9
where x represent thousand of units If the.company can only make a minimum of 6000 units,
what is the minimum cost company required. Here, cost is in dollar.

Solution: since x is in thousand of unit we must find the minimum cost in the interval [0,6]
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C'(x) = —3x%2 +18x — 15
=—-3(x?—-6x+5)
=-3x-5x-1)=0

x=5,1

C"(x)=—-6x+18

C"(1) = —6x+18=12>0

C"(5) = —6(5)+18 = —12< 0

e, C(1)=12.

The minimum cost for the company exist at x = 1.1i.e., C(1) = 12.

U

U

4.4.7 Use MAPLE command Maximize (Minimize) to compute maximum
(minimum) value of a function

The format of Maximize (Minimize) command in MAPLE is as under:
> maximize(f(x), x=a..b)
> minimize(f(x), x=a..b)
where,
f(x) is the function whose maximize (minimize) value is required
x = a..b is the interval for maximize (minimize) value

In order to compute the Maximize (Minimize) value of a function in the interval, following
examples are given:

> minimize (cos(x),x = —M.. M)
-1 > minimize(exp(x),x = 0..10);
. —n T 1
> maximize (cos(x),x = E)
> maximize(exp(x),x = 0..10);
1
exp(10)
> minimize(sin(x),x = —T.. ) L
L > minimize(exp(x),x = 0..5);
o exp(1)
> maximize (sm(x),x = E) > maximize(exp(x),x = 0..5);
1 exp(5)

> maximize (x? + y? — 2x + 2y + 2),x = 1.2,y = —2..2, location);
10,{[{x = 2,y = 2},10]}
> minimize (x> + y2 —2x + 2y + 2),x = 1.2,y = —2..2, location);
10,{[{x =2,y =12}0]}
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Exercise 4.4 )

1. Show that function f(x) = —x% + 10x + 9 is increasing at x = 4.
2. Show that f(x) = tan® x is decreasing at x = %TT[
3. Find the maximum and minimum values, if any, of the function f:R — R in the
following cases:
Q) f(x)=x*-2x+3 (i) f(x) = x3—9x? + 15x + 3
(iii) f(x) = —x* + 2x? (iv) f(x) = e*sinx
(v) f(x) =2e*+e™* (vi) f(x) = 2x — x?
4. A rectangular reservoir with a square bottom and open top is to be lined inside with

1
lead. Find the dimensions of the reservoir to hold E a® cubic metres, such that the lead

required is minimum.

5. Find a right-angled triangle of maximum area with a hypotenuse of length h.

. o o 1
6. A particle moves so that its distance s at time is given by s = ut + Eatz, where u a

are fixed real numbers. Find its speed and magnitude of its accelerations at time t.

Review Exercise 4 '

1. Choose the correct answer
(1) If y= % ,then ¥ (1) = —---mmmmmmmeev

(a) 6 (b)—6 (c)2 (d) None of these
(i) What will be the nth derivative of 2e*

X
(a) 2ne* (b) 2e™ (c) 2e* (d)e?
(iii)  If xy =k? theny' = __
2k? —2k? 3k? 2k?
(a) 7 (b) 3 (c) 3 (d) 3
(iv) 39 order derivative of 2% is ----mmmmmmmmmev
(a) (In3)? e*in2 (b) (In2)3 e¥i3 (c) (In2)3 e*2 (d) None of these
(v) 2" order derivative of f(x) = Asinx + B cOSX 1S ----mmmmnn-m-
(a) f(x) (b) —f(x) (c) £f(x) (d) None of these
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(vi)  IfSis the distance covered by a car, then F will be its --------------—--

(a) Velocity (b) deceleration (c) acceleration (d)Average velocity

(vii) y=tan"lx, then y"'(1) = -mmmmmmv
-1 1 -1 1
(&) = ®7 © (Gl
x3 x5 . . :

(viii) Ify=x-— rtEr— " XER, then y is the Mclaurin series of

(a) sinx (b)cos x (c)e* (d) None of these
(ix) A function f(x) is said to be a decreasing function when x; < x, and

(@) f(x1) < f(xz) (b) f(x1) > f(x2)

(© f(x1) = f(x2) (d) f(x1) < f(x2)
(x) If a function f(x) is such that f'(c) = 0 then the point (c, f(c)) is called

(a) Maximum point (b) Minimum point

(c) Stationary point (d) Critical point
2. Find 2" order derivative of f(x) = In (1 + x2)
3. Find the second derivative of following parametric functions

2
.o dy

— 2,2 — 2.2
x =3u”+1landy = 3u” + 5u, Find Tx2

4. Evaluate the third derivatives of the given functions.
(i) v(x) =x3—-x?2+x—-1
(i)  f(x)=7sin(3)+ cos(1 - 2x)
(i) y=e > +8In(2x*)

5. Determine the second derivative of the given functions.
(i) g(x) = sin (2x3 — 9x) (i) z(x) =In(7 —x)
(i) q(x) =—=— (iv) h(t) = cos?(7¢)
(6+2x—x2)
(v) 2x3+y2=1-4y (vi)6y —xy? =1
6. Given that y = cosx; find y'; y"; y"and y®,
2
7. Find -~ ifx =4sint, y =5cost.
dx
8. Find the rth derivative of f(x) = x™ where r < n.

9. Find the Taylor series of the function x* + x — 2 centered ata = 1.
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Obtain the Taylor series for the function (x — 1)e* near x = 1.

11. Find the McLaurin series for In(1 + x) and hence find for In (%)

12. Find the equation of the tangent line to the curve y = x3 — 3x2 + x at the point
(2,-2).

13. At what point on the graph of y = x? where the tangent line is parallel to the line
3x—y=2.

14. Determine the interval on which the function f(x) = x? — 3x + 1 is increasing and

decreasing.
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Unit Differentiation of
ni Vector Funtions
e Weightage = 4% e Periods = 12

5.1 Scalar and Vector Functions

5.1.1 Define scalar and vector function
Scalar function:
A scalar function is a function whose domain and codomain are the subsets of real number.
For example, area of circle is the scalar function of its radius which is defined as
A = ir? and temperature is the scalar function of time.
Vector function:
A vector function is a function where each real number in the domain is mapped to
either a two or three-dimensional vector. It is donated z o
as 7(t).
Mathematically, it is written as
7(t) = f(OI + g(8)f + h()k Ft;)
where f(t), g(t) and h(t) are the components v (tj(tZ)
of the vector and they are scalar functions of variable t.
Examples include velocity and acceleration are
the vector functions of time. >
Let F (t) be a vector function. If the initial
point of the vector F(t) is at the origin, then the graph

F(ts)

of vector F (t) is the curve traced out by the terminal

point of the position vector F (t) as t varies over the ! Fig. 5.1
domain set D. This is shown in the figure 5.1.
5.1.2 Explain domain and range of a vector function

The domain of the vector function is the set of real numbers and the range of the vector
function is the set of the vectors. According to the definition of vector function, it is written as

7(6) = f(OI+ 9] + h(Dk

Hence it is function of variable t which is scalar quantity. Therefore, the domain is the
set of real numbers. However, the output of the function is a vector. So, its range is the set of
vectors.

The intersection of the domains of each components of vector function
#(t) = f()I + g(t)] + h(t)k is the domain of #(¢).
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ie, Dom#(t)= Dom f(t) n Dom g(t) N Dom h(t)

Example: Find the domain for the following vector function 7(t) = t2i + % T+ 3)k.
Solution: The vector function is 7#(t) = t%{ + %j +(t+3)k

here f&) =t g(t) = % and h(t) =t +3
Dom f = R,Dom g = R— {0}, Domh =R
= Dom 7 = R — {0}
5.2 Limit and Continuity
5.2.1 Define limit of a vector function and employ the usual technique for
algebra of limits of scalar function to demonstrate the following properties
of limits of a vector function.
o  The limit of the sum (difference) of two vector functions is the sum (difference) of
their limits.
e  The limit of the dot product of two vector functions is the dot product of their limits.
e  The limit of the cross product of two vector functions is the cross product of their
limits.
e The limit of the product of a scalar function and a vector function is the product of
their limits.
Limit of a vector function:
Limit of vector function 7(t) at t = t, is the vector Z, such that the values of vector
function get close to Las long as t becomes close enough to t;.

ie., lim 7(t) = L

St
The limit of #(t) = f(t)i + g(t)] + h(t)k exists at t = ¢, if limit of each component
of vector function f(t), g(t) and h(t) exists at t;.
To obtain the limit of 7(t) at t = t,
Let lim #(t) =alim g(t) =bandlim h(t) =c
t-ty t-ty t-ty

then ~ lim 7(t) = lim (F(©O)L+ g(6)f + (k)
—lo —lo
=ai+bj+ck

t -
Example 1. Find the limit of vector function 7(t) = i+ j+—=k whent -0
et—1,
— 0
et —1

et

Solution: Here, 7(t) =

Now, lim #(t) =lim <
t-0 t—-0
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- et - t ~ .
= lim z I+ lim ——
t-0 e t—0 t

(1—O)A+<1_ Vi+t—1 \/1+t+1)A+< 3 )E
= L 1m .
1 t-0 t Vi+t+1 J

j+3k

1 ~
= 1 (=) j + 3k
vi+0+1 J

t
P+ lim ———
l (fl-%t(\/1+t+1)>

&

1
(i ) 43
=041+t +1 /
1 -
=1{+-j+3k
i+
The limit of the Sum (difference) of two vector functions is the sum of their limits
Limit of the sum or difference of two vector functions 7(t) and §(t) is the sum or
difference of the limits of each vector function.
.. . . - + - - . - + . =3
Le., Plrtlo [7(6) £ ()] P_Ert‘o’”(t) * l‘-{rtl,,s(t)

The limit of the dot product of two vector functions is the dot product of their limit

functions:

Limit of the dot product of two vector functions 7(t) and 5(t) is the dot product of
their limits.

ie., %1_1)1’:10 [F(®) - s(t)] = [ll_r)rtl0 r(t)] . [%g?os(t)]

The limit of the cross product of two vector functions is the cross product of their limits:
Limit of the cross product of two vector functions 7(t) and S(t) is the cross product of
the limits of each vector function.

e lim [7(0) x 3(0)] = [mor(t)] X [mlos(t)]
The limit of the product of a scalar function and a vector function is the product of their

limits:
Limit of the product of a scalar function h(t) and a vector function s(t) is the product
of their limits.

e lim [h(6) 5(0)] = (grtlo h(t)) [mo §(t)]

Example 2. If i = t31 — 3j; # = 3t?i — k are vector functions and h(t)= t + 3 is scalar
function then find the following:

0 lim [u(e) - 5(8)] (i) lim [u() - v(t)]
(i) lim [u(e) x 5(t)] (iv)  lim [A() u(t)]

229
y
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Solution:
0 lim [0 - 30] = [13313 z_i(t)] - [13313 a(t)]
- [imct-99] [im e~ )
[(3)%1 -3f1 - [3(3)%1 — k]
= [27t -3f] - [27t — k] = 271 271 -3} + k
=-37+k
) lim [0 -] = [ lim z_i(t)] : [ lim a(t)]
= [ lim (t3i—3j)] : [ lim (3% - 12)]
= [(D3-3j]-[3(% —k| = [i-3/1-[38t—k] ~[i-i=jj=k k=1]
= (1) B)ED+(=3)- (0)G-N+(0) - (- (k-k) = 3
i) lim [i() x B(0)] = [ lim ﬁ(t)] X [ lim ﬁ(t)]
= [ lim (t3i—3j)] x [ lim (3% - 12)]
= [(1)%-37] x [3(1)% — k]
= [t -3f] x 3t — k]

ik )
=[1 -3 0[=[(-3)(-D-0]i-[(D(=1) = 0]]+ [(1)(0) = (=3)(3)] k
3 0 -1
=37+j+9%

) lim [h(6) 8] = [13% h(t)] [1233) u(t)]
— . . 3/\ _ A — . 3 ~ _ . "
=l ¢+ ] [im @r-3p] =3 (m i [y 3}
= —9j
5.2.2  Define continuity of a vector function and demonstrate through examples
A vector function 7#(t) = f(t) i + g(t) j + h(t)k is continuous at t = t, if the
following conditions are satisfied
(1) t = t, belongs to the domain of a vector function 7(t)

(i)  7(t,) =lim 7(t) =L
t-to
It means value of the vector function 7(t) at t = t, is equal to limit of the vector

function when t approaches t,,.

If a vector function is continuous at a point then its all components will be continuous
at that point.
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Example 1. Show that the function G(¢) = e + cost J is continuous at t = 0

Solution: The components of vector function are f (t)=et; g(t) =cost;
Att=0 f(0)=e=1; g(0)=cos0=1
Now,  lim G(®) =lim (f(©) 1+ g(0) )

— . ~ . N . t a . ~
= <lt1_r}}) f(t)> i+ (ltll)% g(t)) j= (ltl_r)r}) e ) i+ (ltl_% cos t) Ji

=e%i+cos0f =1+7
Hence, G 0) = ltm(l) G (t)

So, the vector function G (t) is continuous at t = 0. Hence shown
Example 2. Show that function 7(t) = |t|i + t-l—il j iscontinues att = 0.
Solution: The components of vector function are
N N
f@® = |t|l+t+—1]

Now, 7(0) = |0[f + —

o1/ =/
We find limit of function
- d — . ~ L " —_ A
ltl_% (r(t)) = 11{1_1}0 (|t| P+ ]) =]
ltl_r)r(l) 7(t) =1(0)
Function is continuous at t = 0.

Example 3. Test the continuity of 7#(t) = tLZ +2tj+3katt =1.

Solution: 7(1) =$+2(1)f+312=i+2j+312

>

N - s i A i _ "_-)
gl_rgr(t)—tll_rg(t2+2tj+3k)—l+2 + 3k =7(t)

7(t) is continuous at t = 1.

Exercise 5.1 )

1. Find the domain of the following vector function.
i) 7(t) = 2ti — 3tf + -k ii) #(t) = sinti+costj+tantk
() 7(6) = 20— 3t) + £k (i) 7(0) R
i) 7(t) = 1 = i +Vtj + 5k iv) G(t) = costi— cottj+ cosectk
(i) 7(8) = (1= 01 +VE) + 5k )§® j k
2. Find the limit of vector function 7#(t) = (e3t — 1) 1 + 3-;_‘/? j+ 9;_1 katt=0.




Differentiation of Vector Functions

3. Ifi = t?i — 2j; ¥ = 2ti— 5k are vector functions and h = 3t is scalar function
then find the following:
@ lim [u(®) +v(0)] (i) lim [u(e) - v(0)]
(i) Lim [u(e) X 5(8)] (iv)  lim [A2(t)]
4. Show that function R(t) = sin 2t { + tan ¢ j+ % k is continuous at t = % .
o 2., £ 1.
5. Show that function 7(t) = - i+ —5— j+—; k is continuous at t - co.
t  2t°-57 e
6. For what value of t, following vector functions are continuous
. S n 1 t+2 ~ o o 1 .,1,
1 r(t)=ln(t+3)l+t_1]+ > 4k (i) r(t)=T+11+?]

5.3 Derivative of Vector Function

5.3.1 Define derivative of a vector function of a single variable and elaborate
the result:
If f(£) = f1(O)i + f2(0)] + f2(Dk, where f1(t), f2(t), f3(t) are differentiable
functions of a scalar variable then
df _dfi, dfz. dfs.
ac~ de T acd tae

Consider a vector function f (t) which is a curve,

Af
(fl’fZ, f3)

as the position vector function ]? (t) joining the origin O
of a coordinate system at any point (f, f5, f3), then
f©) = i LO] + f(OF
Where, f;(t), f5(t), f3(t) are single variable
scalar functions. As t changes, the vector function

Fig. 5.2

describes a curve having the following parametric equations.
fi= ), f2=1£0)., 3= f3()
Af®) _ i [EFADfO

Thus I%I—n»o At At—>0 At
Afw _ df
is a vector in the direction of A f If hmo At T dt exists, the limit will be a vector in the

direction of the tangent to the curve f (t) at the point (f3, f>, f3) and is given by

df afi, dfy  dfs.
o a T al Tk
df1 df, dfs

Here ——, ——, and — are the derivative of scalar function as
dt’ dt’ dt
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afy . A[@ A+ AY) = f1(0)

— = lim = lim

dt At-0 At At—>0 At

dfy, . Afot)  fo(t+HAD)—f, ()

4 = jm —f— = lim At

dfs . Afz (1) . fz(t+AD) — f3(0)
and — = lim = lim

dt  At-0 At At-0 At

-

. T d_f Frey — (p2t IS a4 +37
Example: Find It if f(t) = (e** + 1)i+sin(2t)j + t°k.

Solution: f£(£) = (€2t + 1)i+ sin(2t)] + t3k
By differentiating w.r.t t we get

df() d R
%) == [(e + 1)i + sin(20)] + t3k]
—d(2t+1)‘+d i (2t)A+d t3]k
BT ! dt[sm b dt[ ]
df

= 2e2ti+ 2 cos (2t)f + 3t2k

5.4 Vector Differentiation

5.4.1 Prove the following formulae of differentiation

da
[ ) _— =
dt
d ~ -, df dg
° _[ i ]:_fi_‘q
dt dt — dt
d - df do -
‘ dt[q)f]_wdtertf
d > -dg df -
‘ dt[f'g]_ dt+dt 9
d> > - dg ﬁ .
o Sfxgl=Fx—-+—xg
d[f] 1| df -do
° — = = — _—— f—
dt 1o 02 | dt fdt

Where a is a constant vector function, f and g are vector functions, and @ is a scalar

function of t.

In general, the standard rules of differentiation can also be extended to a vector

function:
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=0

Consider, f t)=a is a constant vector function
=a1'l\+a2f+a3k

df (ayi+a,j+ask)—(ay i+ ayj+azk)
— = lim

dt  At-0 At

da —a;

. a - A . ~
E - A%I—r}o [ At ]l At—>0 [ ]] At—>0 [ ] k
= lim [0]{ + lim [0]] + lim [O]k = 0i+ 0] + Ok =0
At—0 At—0 At—0

da
Hence,— = 0
dt

d d
(i) [f+g]—l+d—f

By definition

deo o (IF+A)+@G+ADI- F+§)

a[f+g]—Al%m0 At

[f +Af + + g1 - (f + §)
At

o [FaF+gai-f-5
= 11im At

At—0

d p4 - .
U +d]= lim

<<f+Af> f) <(§+A§)—ﬁ)l=hm(f+Af)—f+hm(§+A§)—ﬁ
At—0

At At At—0 At

;t [7 + 5] = % + Z—f Hence proved.
Similarly, il = g - d—ﬁ
dt dt dt
(iii) [([)f] = d_): + ?% where ¢ is scalar function
dlof] _ . [@+a)(f +4f) - ¢f
dt At—>0 At
_ i [@+ 80 +4F) + &(F + 8F) - ¢(f + Af) — ¢F
B A%r—?o At
i |+ 8D +89) - ¢] + $I(f + AF) - ]
- Allf—>0 At
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(f + Af)[(¢p + Ag) — 2l
At

¢[(f +4f) - f1
At—>0 At—>0 At

[(¢ +A¢) — @]
At

, F+Af)—f
AN PTST N SO 29 5

At—>0

, Ad) — F+0f)—f
zhm(fo)[Iim (6 +29) ¢]]+¢AHO [(f+A]:) f]]
L A
Hence proved. ( At —0 - Af - 0)

d > —

w —G9=7 —(g)+g —(f)

dif-§) . [(F+8f)-@G+ad-F-g

dt At—>0 At

i (f+Af)-(§+A§)+f-(§+A§>—f-(§+A§)—f-§]
At—0 At

. [f-[(5+A§)—§]+(§+A§)-[(f+Af)—f]]

At—0 At

" [(§ +Ag) — g1] (F+a)-7A1] . ... ..
=/ At—»o[ At ]+A1%—>0 At ] AI%I—I?O(Q-I_A‘Q)
_f dg df g proved \
> > dg d >
) E(fxy)= E+ d—);Xg
dfxg) _ . [F+8f)xG+ad)—Fxg
dt  At>0 At
(F+Af)x (G+8G) +fx(G+8G) —fFx(G+8§)—fxg
At—>0 At
. [fx[(§+Ag*)—§]+[(f+Af)—f]x(§+Ag)
= 11im
At—0 At
_ 7 |1+ A9 - 1) [(f +AF) — f] L
=/ fim [ At ]+Al%£“o At ]Xllmo(‘g+Ag)
d

f (zl]; x g Hence proved. (v~ At—0 ~Ag—0)
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ok .
t|o [¢ is scalar function]
(@+A0) ' (F+4f)— ¢~ ]1

Flo71= "
i |[@ AT +A) + ¢ (F + 0F) — 97N (F +Af) - ¢-111

At—>0

i [¢f]

At—0 At

i (7 + 07)[( + Ad) ™ — 1] + $1[(F + AF) - f]]
- At—0 At

_ [(f + 0f)[(¢ + 29) ™1 — ¢ o o~ (f +of) - ]
= A At Aty At

[(¢+A¢) 1 ¢~ 1]] [(f +Af) - f‘
At

-1
+ ¢ Alt—>0

- Im(F+o0)|1

At—>0

X ¢~ 1(1+A"[’) 1 ¢
= Al}r_po(f + Af) lim [ ]

At—0 At

o)+ () - 1-07]

At

1
+ ¢ Alt—>0

[(f + Af) - f]]
At

-1
+ ¢ Alt—>0

= i (F+7)

lim
At—0 At

[(F +47) —f]‘

(Neglecting the terms involving higher powers of A¢)
r 1
ﬁ szl®— Al —¢ f —-f
= Jim (7 + 8f) | pim [¢ | M‘

At—0 At + ('b At—>0 At

1
+ ¢ Alt—>0

a A
- 7 +o7) [, =152 |
- At -0, ~ Af -0, thus

1
=— ¢dt f] proved

a1 (b - Al -]
=Al%r_{10(f+Af) _EAI%QO [ At] ]

[(f +4f) - f]
At

(f+Af) f]

- ? ¢Alt—>0

Example 1. If i = 2ti — 5]; © = t?1 — 2tk are vector functions and @(t)= 3t is scalar
function then find the following:

d - -
M = [0+ ()] () 4 O3]
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d - > d -
iy — [u(0) x v(0)] @ — [ou(d)]
Solution:
0 L0 +30)] = [i(zﬁ _ 57)] ; [i (- zue)]
dt dt dt
= (2D + (2ti — 2k) = (2t + 2)i - 2k

() F[E0-5©] =) - [E5®]+50) - [Fui)]

= (2t1 - 5))- (2t1— 2k) + (t?1—2tk) - (20)  ~[i-i=j-j=k-k=1]
= (4t?) +(2t?) = 6t> [(-j=j-k=k-i1=0]

i) o [0 x 30 = 80 x [S50)] +5(0) x [Si(0)
= (2ti - 5§)x [% (e2i— ZtE)] + (¢21- 2tk) x [%(Zti - 5j)]

= (2ti — 5§) x [2t 1 — 2 k] + (t?1— 2¢k) x [21]

ioj k||t ]k
=12t =5 0|tz 0 -2t
2t 0 =212 o o

= {[(=5)(=2) = 0] — [(20)(=2) = 0]j + [0 — (=5)(2D)] k } +
{lo—0li—[0-(-20)(2))j + [0 - 0] k }

= {[10]i — [—4¢]j + [10t]k } + {—4t]j } = {[10]¢ + [4¢t]] + [10¢]k } — {4¢]}}

=107 + 10tk

d > d - - do
i - t t)| = t)— ult t)—
£ EO] = 0() = i) + ()2
da . . Lo_.d
= (3t) E(Ztl —5)) + (2ti - SJ)E (3t)
= (3t)(21 = 0) + (2t + 5/)(3)
= 6ti + 6ti + 15§
= 12tf + 15]
5.4.2 Apply vector differentiation to calculate velocity and acceleration of a
position vector 7(t) = x(t)i + y(t)j + z(t)k
Consider 7(t) = x(t) i + y(t) j + z(t)k is a position vector joining the origin O of
the coordinate system at any point (x, y, z) as shown in the figure 5.3.
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As t changes, the terminal point 7(t) describe a curve
having parametric equations

x = x(t), y=y(t), z=1z(t)

AF(t)
7 (xa Vs Z)

If lim ar_dr exists then the rate of change = will
At—0 At dt dt

be the velocity ¥. We further differentiate velocity ¥

) , v azr
with respect to time, we have — i.e.,
dt dt?

represents acceleration along the curve.

which

Fig.5.3

Example 1. A particle moves along a curve whose parametric equations are x = e ¢,

y = 2cos3t z = 2sin 3t, wheret is the time.
(a) Determine its velocity and acceleration at any time.
(b) Find the magnitudes of the velocity and acceleration at t = 0.
Solution:
(a) The position vector of the particle is
PO =x@®) i +y(@t)j+z@®)k =eti+2cos3t j+2sin3tk

The velocity is ¥ = % = %[e‘t i+ 2cos3t j+ 2sin3tk]
_ 4 ‘fA+2d 3t “+2d in 3t) k
_dt(e )i dt(cos )] dt(sm )
Y

The acceleration is d = % = % [- et — 6sin3tj + 6 cos3tk]

—e ti—6sin3tj+6cos3tk

_ ‘“6d'3t“+6d 3t] k
= dt[ e ']1 dt[sm 17 dt[cos ]

d=e"'T—18cos3t] — 18sin3tk
(b)  Att=0, thevelocityis ¥ = — e~ (@7 — 6sin3(0)] + 6 cos 3(0) k
¥ =—1+6k
The magnitude of ¥ i.e., |#| = /(=1)2 + (6)? = v/37 units
Att =0, the accelerationis d = e~(®{— 18cos3(0)j — 18sin3(0) k
d=1—18

The magnitude of @ i.e., |d| = /(1)2 + (18)2 = V325 units

Example 2. A particle moves along the curve x = 2t%, y =t? —4t, z=3t—5, wheret

t

is the time. Find the components of its velocity and acceleration at time ¢t = 1 in the direction
of i — 3j + 2k.

Solution:

() The position vector of the particle is

) =x@®)i+y®)j+zOk=2t21+ (> —4t)j+ Bt —5)k
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.., dr d W A ~
The velocity is ¥ = & = — [2¢2 14 (t2—4t)j+ (3t — 5) k|

d 2t2 +d(t2 4t)A+d(3t 5) k
BTG KT VRN

v_4ti+(2t—4)j+312
v
The acceleration is d = @ [4t i+ Q2t—4)j+3 k]

[dt [4t l+—(2t—4)]+§t[ ]12]
a=41+2j
(b) Att =1, thevelocityis ¥ = 4ti+ (2t —4)j+3k
V=41-2]4+3k
Att =1, the accelerationis d =41+ 2]
The component of # along the direction of § — 3] + 2k is
(41-2j+3k).(1-37+2k) @OM+=2)(-3)+B)(2) 16
JOPFCrr@?  VIEoRr

The component of @ along the direction of § — 3] + 2k is
(4i+2).(1-37+2k) @GODO+ @3N+ 0)(@2) -2

JOZ+ 32+ (22 VIi+9+4 Vi
Exercise 5.2 )
1. Find the derivative of the following vector functions.

@) F© =Int? i+ e + (2t2 + Dk
) fO) =(@+Di+In(t+2)]
(i) () =secti+ cost?f + (¢2 + ¢+ Dk

2. If ¥=ti+2t]; y=2ti+3tk are vector functions and @(t)= 3t is scalar
function, then find the following:
. d b - .o d il el
M ¥ -yl i g FO-F©]
Gi) = [0 x50) v = [0io)]
dt dt
3. A particle moves so that its position as a function of time is given by
7(t) = i + 4t%] + t k. Write expressions for its:
(a) velocity (b) acceleration as functions of time.
4. The path of a particle is given for time t > 0 by the parametric equations x = t — 3t

andy = %t:*. Find magnitude of velocity and acceleration of particle at ¢t = 5.
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A particle moves along the curve x = 2t2 and y = 4t. Find the component of velocity
and acceleration at t = 2 in the direction of 27 + J.

Review Exercise 5 )

Choose the correct answer.

The domain of the vector function 7(t) = t3{ + %}? In(t—2)k,teR

(@) {t>2,,teR} (b){t < 2,,t €R}

() {t>0,,teR} (d{t>1,,teR}

Is the Function F(£) = cost i+ sin 2t k at t = T —-w-mmemmeemmee-

(a) is not continuous (b) is continuous  (c) limit does not exist ~ (d) None of these
What value of t, vector function F (t) = % {+sint j is continuous at

(@t+2, t€eR (b)t>2,teR (c) t<2, t€eR (dteRr

If 1 = t21 — e?'} isavector function and h(t)=t%+ 2t — 2 is scalar function
then lim [A(t) U(t)] = -------mmmmm-

(@) —f (b)Jj (c) 2j (d) =2j

If 4=t*-e?y and ¥ =—-2i{—t?k are vector functions then

lim [ (t) - ¥(t)] = ----mmmeeem-

(@) 0 (b) ¢4 (©) 12 —e2t ()2 t2

If £(t) = t21—e2] then f/(t) = wmwermmmeeees

(a) 2ti —2e?t} (b) 2ti — %y (c) 2t1 — 2te?tj (d) None of these

The velocity function of a particle, whose motion is given by
7(t) = %Tti+ 3 cos(t) f at time t = 5 is

1 A n 1 4 1 4 PN
(a) Ei + 3j (b) Ei (o) gi —3j (d) None of these
The magnitude of velocity of a particle at t = m, whose motion is given by
7(t) = 4cos(t) 1 + 4sin(t) ] + -tk

(a) V5 (b) 5 (c) V51 (d) 57
The magnitude of acceleration of a particle at t = g, whose motion is given by

7(6) = 4cos(t) L+ 4sin(0)] + o t2R is:

2 2 2
@ \/1677-'[[ +9 (&) VTG TS (C)Jlsn +9 (d)\/16+9rc

-\

2 T
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(x)

-

5 ~ da
Leta = Zi+3f+5kthenz -

(a) 10 (b)/38 (©0 (d) None of these
Find the limit of vector function 7#(t) = 2t 1+ t3 j + k whent — 2.

Ifii = 51— 2tj; ¥ =1— 3tk are vector functions and k = t + 1 is scalar function
then find the following:

0 lim [u(®) - v(0)] (i) lim [u(e) - v(0)]

(iii) ltl_rg [u(t) x v(t)] (iv) ltl_rg [k u(t)]

Check the continuity of the function G ®O=(t+8)1i+ % j+In(t+8)katt=0.
For what value of ¢, following vector functions are continuous

() =V36—t2+In(t+4)]

Find f '(t) of the following vector functions.

@) F(©) = et + (t3 + 3)f + cosec t? k

i £ =%i+e2t3j+sect3l€

A particle moves along the curve whose parametric equations are x = t3 + 2t,
y =3e%, z =2sin(5t), where x,y and z show variations of the distance covered
by the particle in cm with time in seconds. Find the magnitude of the acceleration of

the particle at t = 0.

The path of a particle is given for time t > 0 by the parametric equations x =t +%

and y = 3t2. Find velocity of particle when time t = 1 and acceleration at t = 2.



Integration
e Weightage = 16% e Periods = 48

Unit

6.1 Introduction

Integration is the reverse process of differentiation. It is used in dealing with problems
in which the derivative of a function, or its rate of change is known and we want to find the
function.

The principles of integration were formulated independently by Isaac Newton and
Gottfried Wilhelm Leibnitz in the 17™ century.

Integration is usually used to find area under a curve and volume of solid of revolution.
6.1.1 Demonstrate the concept of integral as an accumulator

Integral is the outcome of the process of integration and is of two types definite and

indefinite. It is an accumulator which is used to y

find the definite integral of a function f(x), y=fx -
which is continuous on a closed interval [a, b]. In ______——--""'/

this process, the region bounded by the /’/

geometrical curve of function f(x), x-axis and
the vertical lines x = a and x = b is divided into
infinitesimal vertical rectangles each of width Ax
on x-axis and height f(x;) from x-axis, where
i=1,2,3,..,n as shown in figure 6.1. The i
accumulation of the product f(x)Ax is O x=a Ax x=b
approximately equal to the definite integral of Fig. 6.1
f(x) fromx = atox = b.

Definite integral of f(x) from a to b is Accumulation of f(x;)Ax as shown in the Fig. 6.1.

6.1.2 Know integration as inverse process of differentiation
In differentiation we are given an original function and we are required to find its
derivative, while in integration we are required to find the original function whose derivative
is given.
f(x) differentiation f'(x)
Original function derivative / derived function
f'(x) integration f(x)
Derived function original function
Thus, integration is the reverse or inverse process of differentiation.

Integration



Integration

Indefinite integral or Antiderivative
Let f be a continuous function. A function F whose derivative is f is called integral of
f,ie,F'(x) = f(x), V x in the domain of f(x).

As F is an integral or antiderivative or primitive of a function f, then

Jf(x)dx =F(x)+C

where f (x) is called integrand and C is called the constant of integration. The solution
F(x) + C, depends on the arbitrary constant C, so [ f(x)dx has indefinite solution, called
indefinite integral.
6.1.3 Explain Constant of integration

Since, the derivative of a constant is 0, therefore all the functions which differ by
constant have the same derivative.

For example:
f=x* = f'(x)=3x
f)=x*+1=  f'(x)=3x*
f=x3+c > f'(x)=3x>
So, it is not possible to find original function through integration, therefore, we use a
constant C in indefinite integral to represent the family of functions whose derivatives are the
function f (x). This arbitrary constant C is called constant of integration.
Notes: In [ f(x)dx = F(x) + C,

1. [ is the integral sign (elongated S) which is used to represent the process
of integration.

2. f(x) is the integrand; a function which is to be integrated or under the
effect of integral sign.

3. dx, x is the variable of integration that tells integrand is to be integrated
w.r.tx.

4. ( is the integral constant or constant of integration.

5. F(x) + C represents family of integrals or antiderivatives or primitives
whose derivatives are f(x).

6.1.4 Know simple standard integrals which directly follow from standard
differentiation formulae.

The basic integration formulae can be obtained directly from the differentiation
formulae of the functions as given I the following table.
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Differentiation formulae

Integration formulae

d
a(x+c)=1

d n+1
_(x +c> =x"

d {(ax + p)n*1

dx

fdx=x+C
e
fxndx=n+1+C, n+-—1
(ax + b)"*1
b)y'dx =—+C
f(ax+ )tdx At D +C,
n+ -1

d 1
—(n|x| +¢c) ==
dx X

1
f—dx =In|x|+C
X

Trigonometric Functions

d
—(sinx+c) =cosx
dx

fcosxdx=sinx+C

d
—(cosx +c) = —sinx
dx

fsinxdx=—cosx+C

d
a(lnlsecxl +c)=tanx

ftanx dx = In|secx| + C

d
— (In|sinx| + ¢) = cot x
dx

fcotx dx = In|sinx| + C

d
a[lnlsecx +tanx| 4+ c] =secx

fsecx dx =In|secx + tanx| + C

10.

d
a[lnlcosecx —cotx| +c] =cosecx

fcosecx dx = In|cosecx — cotx| + C

11.

d 2
—(tanx + ¢) = sec* x
dx

sec’xdx =tanx + C

12.

d
— (cotx + ¢) = —cosec? x
dx

cosec?x dx = —cotx + C

13.

d
—(secx + ¢) = sec xtanx
dx

secxtanxdx =secx + C

14.

d
P (cosecx + ¢) = —cosec x cotx
X

—_— | — | — | —,

cscxcotxdx = —cosecx + C
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Exponential Functions
d
18. d—(ex +c) =e* efdx=e*+C
x
d /1 1
19. _(_eax+c)=eax e dx = — e 4+
dx \a a
d [ a* a*
20. —|—+c|=a* faxdx=—+C
dx\lna Ina
Some other Integration Formulae
21 f L | +c
' —a2 2a x+a
2 f dx _ 11 |a+x|+C
' Z—x2 2a a—x
dx
- (.2 2
23. fm 1n|x+ x +a|+C
dx
= [2 _ 2
24. fm 1n|x+ X a|+C
1 1 X
25. f a? —x%2dx ==x+a? —x2+—=a*Sin"1=+C
2 2 a
1 1
26. f\/x2+a2dx=§x\/a2+x2+§a21n|x+\/x2+a2|+C
1 1
27. f\/xz—azdx=Ex\/x2—a2—§a21n|x+\/x2—a2|+C




Integration

6.2.1 Recognize the following rules of integration

(i) f % [f(x)]dx = % f f(x)dx = f(x) + C where C is the constant

As we know that integration is an inverse process of differentiation. So, the process of
differentiation and integration neutralizes each other.

ie. f :—x [F(0)]dx = :—x f FOo) dx = Q) +C

i 2 .2
Example: fdx(x +5x+7) dx =x"+5x+7+C

(ii) The integral of the product of a constant and a function is the product of the
constant and the integral of the function.

Let k be a constant and f(x) be a function then,
fkf(x)dx = k]f(x)dx

Example: f 4e" dx = 4 f e“dx

=4e*+c

(iii) The integral of the sum of a finite number of functions is equal to the sum of their integrals.

Let f(x), g(x) and h(x) are three differentiable functions whose integrals exist then.

f [F(0) + g(x) + h(x)] dx = f FOo)dx + f g(x)dx + f h(x)dx

Example:

J(9x8 + 6x° + 5)dx = [9x®dx + [6x5dx + [5dx

=9fx8dx+6fx5dx+5fdx

x° x©
=9(3)+6(€>+5(J€)+C
=x?+x%+5x+C

6.2.2 Use standard differentiation formulae to prove the results for the following
integrals

n+1
@ f[f(x)]"f’(x)dx = % +C,  n=#-1
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Proof: Consider the differentiation

d ([fO)]™? _d (eIt
E{ n+1 +C}_E{ n+1

1 d
— el n+1
n+ 1ldx e +0

1

o1y d
= ——= (+ DIFEI ()

=[f1"f'(x)
By taking indefinite integral on both sides

d n+1
I[E{Ur(lxi]1 +C}] dx = f[f(x)]”f'(x)dx

d
}‘l‘a(c)

n+1
TOT 4 ¢ = [irers coax
n+1
[reorr @=L 4 cnse 1
i [L @) i = m|fw)| + ¢

f(x)

Proof: Consider the differentiation

Llfl+0) =l @I+ ©) (¢l =)
dx dx dx dx x
1 d
= m&f(x) +0
_f®
" @

By taking integrals on both sides

d (@
Ja(lnf(x) +c)dx = 10 dx
(&)
Inf(x)+c= mdx
f'(x)

10 dx=Inf(x)+C

(i) [e®[af(x) +f'(0)]dx

Proof: Consider the differentiation

©




d ax — d ax d
a[e f(x)+C]—a[€ f(x)]‘l‘a(c)

By using product rule of differentiation

ax axd
e + e —

_ d
=f) el

Integration

x)+0

= f(x)(ae™) + e f'(x)

=e®[af(x) + f'(0)]
By taking integrals on both sides

d
[ Sotew G + clax = [ e laf () + £ (o)l

f e [af () + f/(0)]dx = e F(x) + C

Ifa=1

f e [f() + f')]dx = eXf(x) +C

Example: Evaluate

(i) f(lez + 5)8(20x)dx
Solution:
Let  f(x)=10x%>+5
f'(x) =20x
By the rule of integration
10x2 + 5)°
f(le2 +5)8(20x)dx = %
2x+3
. d
(i) fx2+3x—5 x
Solution: Let f(x)=x?>+3x—5f'(x)=2x+3
By the rule of integration
f S —nlx? +3x—5]+C
X2 +3x—5 - ¥ x
(iii) f e* (2x?% + 4x)dx

Let  f(x) =2x2%f'(x) = 4x
By the rule of integration

fe" (2x% + 4x)dx = 2e*x*> + C

+C



Integration
Exercise 6.1 )
1. Evaluate the following indefinite integrals by using standard formulae.
(@) [ 9x5 dx (i) [ 25 dx
2
(iii) f —dx @iv) [ by3dy
W [ (3x —9x + 5)dx i) [(2x75 +3x7%) dx
x>+3x3— 5 +6
(vii) [ (43w —5x )dx (viii) [(cosx + 3sinx) dx
(ix) f(3secx — cosecx) dx (x) f(2tanx — 5secx) dx
(xi) [(9e* =3 cosx — 5sinx) dx (xii) [(sec? x + cosec? x) dx
2. Evaluate the following indefinite integrals by using standard formulae.

() [Bx%+9x + 3)% (6x + 9)dx (i) [ Vax?+ 2bx + ¢ (ax + b)dx
(iify [ —-GXtD)dx (iv) [(x? +4x +3)72(2x + 4)dx

\/3x2 +5x+2

™) f(x = 2)(x — 3)(x — 4)dx (vi) [(2x*—3)%dx
(vii) [(x3—3x2 + 9)% (x? —2x)dx  (viii) [(x? —5)3dx

3
(ix) [(cos x + sinx)Z (cos x — sin x)dx
x) f(tan x +sinx) (sec? x + cos x)dx

3. Evaluate by using standard formulae of integration.
. X sec? x4 cosx
@ fx2+3 dx (i )f tanx+sinx
. 5t +4x3—3x2+42x (e¥+3)dx
(iii) f PO S dx (iv) f—ex+lnx

V) [(5x3 —=3x% + 6x — 9) "1 (5x2 — 2x + 2)dx vi) fmdx

4, Evaluate the following integrals by using standard formulae.

(i) [ e* (sinx + cos x)dx (ii)fe"(sin_lx + ! )dx

x -1 1 . x 2
(iii) [ e (tan x +—1+x2)dx (iv) [ e* (sec? x + tanx)dx

V) [e* (%+lnx) dx

©
y
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5. Evaluate the following integrals by using appropriate formulae.

d
()fx2+9 (u)fjﬁ (i) [ — 2

y2—9

i) [ 2 W) [——— Vi) [ ——=—
4t2 1/9x +16 J16x -
.. dx .
(vii) | — (viii) | ——= (ix) | V9 — 4x? dx
f9‘x2 fx1/4x2—16 J
(x) [ V25 + 9x2 dx (xi) [ —2 > +81 (xii) [ 4};:6

6.3 Integration by substitution
6.3.1 Explain the method of integration by substitution

Sometimes the integrals of the form [ f(g(x))g’(x) dx can be converted in standard
form or easier by substituting g(x) by introducing a new variable.

To understand the integration by substitution method.

Suppose u=g)
By the differentials du = g'(x)dx
Thus,

[ 1e@) g’ = [ radu

Obviously, the integral on the right is much easier to evaluate than that on the left.

6.3.2 Apply method of substitution to evaluate indefinite integrals
Example 1.  Evaluate by substitution method.
f(sz - 3)gx3dx
Splitting x3, we get
J-(sz — 3)gx3dx = J-(sz - 3)%x2(xdx)
Now suppose u=2x2-3 = x%= uT-I-?)

=  du=4xdx
1
= —du=xd
7 du = xdx
By substituting, we get

f(Zx —3)3x3dx = fuZ (u; 3) Gdu)
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Replacing u by 2x2 — 3, we get

—1(22 3)§+3(22 3)%+C
36" 28 ¥

Example 2. Evaluate [ cos? 3x sin3x dx
Solution: Substitute u = cos 3x
= du = —3sin 3x dx

1
—§du = sin3xdx

By substituting

1
J cos*3xsin3xdx = J u* (— §du>

—1u5+c
~ 3\s5

L coss3x 4 ¢
= ——cos® 3x
15
Example 3. Evaluate [ cos? x sin® x dx
Solution: [ cos? xsin® x dx = [ cos? x sin? x sinx dx

= f cos? x (1 — cos? x) sinx dx

Substitute U = CoS X

= du = —sinxdx

fcoszxsin3xdx = —fuz(l —u?)du

=—f(u2—u4)du
L
- 35

= —scosPx+mcosSx+C
= 3COS)C 5COSX




Example 4.

Solution:

Example 5.

Solution:

Example 6.

Solution:

Integration

Evaluate [ sin? 2x cos? 2x dx
By multiplying and dividing by 22.

1
sin? 2x cos? 2x dx = — | (2)? sin? 2x cos? 2x
(2)?
1
= Zf(Z sin 2x cos 2x)? dx
— 1f ; 24 d
=7 | sin®4xdx

_ 1f(1—C058x)d
~3 2 X

1
=§f(1—c058x)dx
_1[ sin8x]+C
) R

1

1
—gx—asm8x+C

Evaluate [ sin 4x cos 2x dx

[ sin4x cos 2x dx = f%[sin(4x + 2x) + sin(4x — 2x) dx]

1
=3 f (sin6x + sin2x) dx  (~ Using trigonometric identities)

_ 1( cosb6x cos Zx)

6 2

1

1
= —ﬁcos6x—zc052x+ C

Evaluate [ tan® x dx

f tan® x dx = [ tan3 x tan? x dx
= f tan3 x (sec? —1)dx
= f (tan® x sec? x — tanx) dx
= j tan3 x sec? x dx — f tan3 x dx

tan* x 5
= — | tanxtan® x dx

4

1
=Ztan4x—jtanx(sec2x—1) dx

1
=Ztan4x—ftanxsec2 dx+ftanxdx




Integration

1, tan? x
=—tan*x — + In|secx| + C
4 2
1o L
= Ztan x — Etan x + In|secx| + C
Example 7. Evaluate [ sec®x dx
Solution: [secbxdx = [ sec* xsec? xdx

= f (sec? x)?sec? x dx

= f(l + tan? x)? sec? x dx

Substitute u =tanx
du = sec? x dx
By substituting

= f(l +u?)?du

= J(l + 2u? + u*)du

2, u
=utsu+—+C

3 5
2 1
=tanx + gtanSx + gtansx +C
Exercise 6.2 )
1. Evaluate the following integrals by substitution method.
5
i [ Sx (i) 3 (a3 _ x3)2dx
Vx2+7
1+2x 3
(i) f (@) [ (2x* + 4x + 5)2 (x + 1)dx
v dx vi x* 4+ 2x+5) Hx + 1)dx
W [ = — i) [ ( ) (x+1)
3 5
wii) [ * (9 + x*)2dx wiii) [ (6 - 9)2 Adx
2
(ix)fx9 (x5 + 3)5dx (%) f(x3 +x2 4+ 5x — 1)71(3x% + 2x + 5)dx
2. Evaluate the following integrals by substitution method.
Inx tanx
@ f ~ (i) f xIn x (i) f In(cos x)
1
(iv) f w dx ) f (14 e?*) 2 e?*dx

y



Integration

5tanx 02x
(Vl)f (vii) f Fre % dx
(viii) [ e(c"sec 2x+1) . (cosec 2x cot 2x)dx
(ix)f3x dx (X)fe(sinx+cosx+3) - (cos x — sinx)dx
3. Evaluate the following integrals by substitution method.
(i) [ cos®2x sin 2x dx (i )fcot\/—d
(iii) f(Z + sin 3x)° cos 3x dx (iv) fsm(ax + b)dx
smx+cosx .
(v )fsmx osr (vi) [ e?* sec?e?*dx
(vii) J-cosec 3xcot3xdx X 1 (vii) f dx
(a+b cosec 3x) (2 cotx+3)sin 2x
. secxdx
(IX) fm (X) fcos(3x - 5) dx
4. Evaluate the following integrals by substitution method.
(i) [ cos? 2y dy (ii) [ sin® (3x + 5)dx
(iii) fcos3 x V/sinx dx (iv) [ sin* x cos®x dx
(v )fj% (vi) [ cos® x sin”x dx
(vii) fsm x cos3x dx (viii) fsin 2x cos4x dx
(ix) f cos 3x cos 5x dx (x) fsin 3xcos7xdx
(xi) [ tan? x dx (xii) [ cot*x dx
(xiii) [ tan’ x dx (xiv) [ sec* 2x dx
(xv) [ tan® 3x sec®3x dx (xvi) [ cosec* 3x dx
(xvii) [ sec*x Vtanx dx (xviii) [ cot 2x cosec*2x dx
cosec* X
(xi )f W (xx)f\/1+cosxdx
6.3.3 Apply method of substitution to evaluate integrals of the following
types:
dx dx
2 2 —
| o [V - [ ==
dx dx
2 2
d —_—
J a2 12 J V@ + o dx J JaZin?
f dx f dx px+q d
ax2+bx+c Jax2+bx+c ax?+bx+c "
f px+q dx
vax?+bx+c




Integration

The above types of integrals can be solved easily by using trigonometric substitutions.

If the integrand contains expression of the form Va2 — x2,vVa? + x2,Vx2 — a2; we

use the following trigonometric substitutions:

S.No. Integrand Substitution
L. Ja—x? x =asin® or x =acos0
2. Ja? + x? x=atan0 or x = acot®
3. x2 — q? x =asecO or x = acosecO

If the integral involves a quadratic expression in the denominator or under a radical,
we first make the expression perfect square by using a® + 2ab + b? = (a + b)?, then use
suitable trigonometric substitution.

dx
Example 1.  Evaluate f >
4-x

. dx dx
@) f4_x2 = fzz_xz
Substituting x =2sinb

= dx = 2cos06do

f dx _f 2cos0do
") 4—x2 ) 4—4sin20

_f 2cos6dob
~ ) 4(1 —sin20)
1 f cos0do
~2) cos26
= 1] 6do
=5 sec
=%ln|sec9+tan6l+C ()
Now,
x = 2sin0 2 X
sin© :g
From the figure 6.2, we have 9
-
secB = 4 — %2
4 —x2 Fig. 6.2
x
tan 0 =
4 — x2

By putting the values in equation (i)




Integration

+C

=]
4 — x2 4rl 2—x

(i) f\/ dx _ f\/gdx

f dx 1 12+4+x

9+x2 24+x2
Substituting x = 3tan0
= dx = 3sec?0do
_ dx [ 3sec?0d6
“Jvorxz ) Vo +otan?e
B 3sec?0do
‘fm
3sec?0do
 3sech
Asx =3tanb =fsec9d6
= In|secB® + tan 6| + C ..(1)

~ tanb = %

From figure 6.3, we have

x+vV9 + x2
3

=In|x++/94+x%|+ (¢; —In3)
=In|x + V9 +x2|+C, where C =¢; —In3

=In{x++v9+x2%2|+C




Integration

(i) f@dx - f‘/r

_52
dx
X

Substituting x = 5secH
= dx = 5secOtan 6 do

f x2 —25 f\/255ec26—25
X 5secB

= f\/ZS(seCZG— 1)tan 6 do

= J 5tan 0 (tan0)do

(5secBtan 6 do)

= f 5tan?6 do

=5 f(secze —-1)de ..(1)
From the Fig. 6.4, as x = 5sec6 = 5(tan 6 — 9) + C

sech = § = 0 = sec”
x? =25 Npomprs
tan @ = —=
From equation (i)
25 1X x

\/x2 25 5( x2— _

- x+C
5

Thus, Fig. 6.4

. dx
(iv) f x2—4x+8
The expression in the denominator is quadratic, so before trigonometric substitution
we make it completely square.
ie, x2—4x+8=x)?-2x)2)+()*+4
=(x-2)*+4
= (x—2)%+2°

dx x
fx2—4x+8: (x = 2)2 + (2)2
Now, substituting x—2=2tan0
= dx = 2sec?0db

f dx _f 2sec?0 do
") x2—4x+8 ) 4tan?0+ 4




_J 2sec?0 do
~ ) 4(tan%0 + 1)
3 f 2sec?0 do
4sec?0
e
Asx—2=2tanB =§9+C
— tan-1 (22
0 = tan ( > )
dx  _Llon(32
Thus fxz 4x+8—2tan ( 5 )+C
(2x+5)dx _  2x+2+3
) fx2+2x+5 J‘x2+2x+5
_f 2x +2 d +J‘ 3 d
) ¥ t2x+5 X2+2x+5
=In|x? +2 +5|+3f dx
T e x2+2x+1+4
@x+5) a2 +2 +m+3f dx
X2+ 2x +50 T (x+ 12+ (2)2
Let us find f m by trigonometric substituting, we have
x+1=2tanb

= dx = 2sec?0 do
. dx 2sec?0 do
"f(x+1)2+22 =J4tan29+4
_ [ 2sec’0de
B f4(tan26 +1)

3 f 2sec?0 do
B 4sec?0

—1Jd6
2

—Z6+

Asx+1=2tanf8 = tanez%1 = eztan_l(%l)
f _1t _1(x+1>+c
Tl arnze2z 20 T2

Integration



Integration

Now, equation (i), becomes

J(2x+5)dx —Injx? + 2 +5|+3t _1<x+1)+c
XZ+2x+5 T 2\

Exercise 6.3 )

Evaluate by using trigonometric substitution.

| x3dx 5 f 6dx
' V9—x2 ' 9—x2
5dx
2 2
3. fx 9 — x“dx 4. f25x2+9
5 dx 6 f dx
) —3 . —_—
(4+x2)2 V16+4x2
dx
3. /0.2 -
0 dx 0 xSdx
. —E . >
(16—x2)2 Vxe=9
dx dx
11. —_ 12. _—
fx2+4x+5 f,/5+4x_xz
dx dx
13. —_— 14.
f\/9x—x2 f(x+1)\/x2+2x—15
s f dx 16 (2x-5)dx
' (x—4)yx2-8x-9 ' V8x—x2
7 (x+3)dx 18 (3x+9)dx
x242x+5 ’ x2+4x+4
(4x+9)dx (2x-5)dx
19. B e e 20. _—
f\/2x2+8x—10 f\/5+4x—x2

6.4 Integration by Parts
6.4.1 Recognize the formula for integration by Parts

The method of integration by parts is used to integrate the product of two functions.
Suppose that f(x) and g(x) are two functions and f'(x) and g'(x) are their derivatives
respectively which exist in the domain of f(x) and g(x).

According to product rule of differentiation

d d d
2 L9l = f) o900 + g0 f(x)

Integrating both sides w.r.t x, we get



Integration

[ tregwidx = [ [0 290 dx + [ g0 1-r ) ax
F@gt = [ [re0 g0 ax+ [ a1 r00] ex

d [ d ]
[ [0 55 9)dx = re0ge - [ |97 £ dx
Suppose u=f(x)
v=gk) = [vdx=g()

J-uvdx=ufvdx—f(u’fvdx) dx

This result is called the formula for integration by parts. It can be stated as integral of
the product of two functions equals first function same into integral of second function minus
integral of product of derivative of 1* function and integral of 2" function.

6.4.2 Apply method of integration by parts to evaluate integrals of the following
types
f\/a2 — x2 dx,f\/az + x% dx andf\/x2 —a2dx
Example 1. Evaluate

(@) [Va? —x%dx
Let I=f az—xzdx=J\/a2—x2(1)dx

Integration by parts
=+a?—x? f(l) dx — f [% (a? - xz)%f(l) dx] dx
=+a?—x2%(x) — fl(a2 - xz)_%(—Zx)(x)dx
= xfaZ — 42 _

== [ o

= fE T [E

_x2

_ 2
[ =xya%—x2%2— f(a * a )dx

Va? — x? \/a2 — x2

[=x/a?—x2— f\/az—xzdx+a f
[=xya%—x%2—1+a%sin” 1( )+Cl

1/a2 — x2



Integration

21=x\/a2—x2+azsin‘1( )+C1

_l o= 1 og1(®

I—Zx a? x2+2a sin (a)+C
1 1 24

f az—xzdx=§x\/a2—x2+§azsm 1(E)+C

Example 2. Evaluate f va? + x? dx.
Solution: Let I = f\/a2 + x2dx

Integration by parts

= JaZ 22 f (1)dx — f [diJT f (D] dx
= xfa + 27— j

QR

e

I=x\/a2+x2—f—dx
va? + x2
2 2 2
x“+a“—a
I=x\/a2+x2—]—dx
va? + x2
2 2
x“+a a
I=x\/a2+x2—f +f dx
va? + x2 va? + x2

I=x\/a2+x2—f\/x2+a2+a21n(x+ x2+a2)+C
21=x\/a2+x2+a21n(x+ x2+a2)+C
I=f a2+x2+a—21n(x+ x2+a2)+C

2 2

Example 3. Evaluate [ VxZ — a? dx.
Solution: Let] = f\/xz —a?dx

Integration by parts

= Ver—a [ax - [ [ Ve = e [(dr] ax
= m(x) - f—z —in — dx
L= x/x?~a? - fm

x“—a“+a
I=x\/x2—a2—fﬁdx




Integration

x?—a? a?
[=xyx?—a?— - dx
Vx2 — g2

Vx2 —q?
I=x\/x2—a2—f xz—azdx—azln(x+ xz—a2)+C
21=x\/x2—a2—a21n(x+ xz—a2)+C

2
I=E\/x2—a2—a7ln(x+ xz—a2)+C

2
6.4.3 Evaluate integrals using integration by parts

Example 1.
(1) f x sin x dx
Solution: Letu =x and v = sinx

Integrating by parts, we have

fxsinxdx=xfsinxdx—f<;—x(x)fsinx)dx
= xf(— cosx) — f(l) (—cosx)dx

= —xcosx +sinx+C

or =sinx —xcosx +C
(i1) f x° In x dx
Solution:
Let u=Inxandv = x3

Integrating by parts, we have

fuvdxzufvdx—j(u’fvdx)dx
d
fx3lnxdx=lnxfx3dx—f<—lnxfx3>dx
dx
—X4l Jl x* J
= Inx M e L

1 1
— 4-1 _ - 3
4x nx 4fx dx

1 . 1/x* N
=g ¥ Ix—2{ | +c
1

=—x*lnx——x*+¢

4 16



Integration

(iii) f x cot 1 x dx
Solution:

Let u=cot™ lx andv ==x

fxcot_lxdx = f(uv)dx

Integrating by parts, we get

du
xcot lxdx =u | vdx — (— vdx) dx
dx
d
=cot™ 'x | xdx — (— cot™lx | x dx) dx
dx

_x? -1 J -1 [x? J
= Scot™lx T2\ 7 )4

_1om +1f1+x2—1
2PN YY) T

1, -1 +1f 1+ x2 1 4
Tt XTI T T 12/

EESP— +1fd 1f dx
BRI Y B ) B e

X

1 1 1
J-xcot‘lxdx = Exz cot™1x + SX Etan‘lx +C

(iv) f e’ sin x dx
Solution: Let = [ e* sinx dx
selecting u=sinx andv = e*

Integration by parts, we have

fuvdx=ufvdx—f(u’fvdx)dx
d
I=sinxfexdx—f(—sinxfexdx)dx
dx

[=e*sinx — f e* cosx dx
Re-integrating by parts, we get

[ =e*sinx — (ex cosx — f e* (—sinx) dx)

= I=exsinx—excosx—fexsinxdx



(vii) f cot x cosec” x In(cot x) dx (viii)

(ix) f cosec x cot x In(cosec x) dx (x)

(x) [ sec’xdx (xii)
3. Integrate by parts the following:

6)] f 3x cos(3x) dx (ii)

e x .
(ii1) f ot x dx @iv)
5x .

) f sin?2x dx V)

(viiy [ e sin2xdx (viii)

() [ cos(inx)dx x)
4. Integrate by parts the following:

i) [ sint3xdx (ii)

Gi) [ tan~t (2x)dx

Integration
[+1=e*(sinx —cosx)+ C;
= 21 = e*(sinx — cosx) + C;
1 C
= fexsinxdx=Eex(sinx—cosx)+C, whereC=?1
Exercise 6.4 )
1. Integrate by parts the following:
(i) f x* e*dx (ii) f x> e*dx (iii) f x cos x dx
(iv) f In x dx v) fxz sinx dx (vi) f x cosec” x dx
i) [ xsec? x dx i) [ (nx)? dx
2. Integrate by parts the following:
i [+ Dne+ 1) dx ) [ xinxdx
Gi) [ xInxdx i) [ x*inx?dx
v) fs'n x cos x In(sin x) dx (vi) f tan x In(tan x) dx
i i i
v v cos?x

sec” x tan x In(sec x) dx

x2

f cos \/; dx

f e ¥ cos 2x dx

f e™ sin bx dx

f x* tan"tx dx

-1
fxcos x dx



Integration

v) f3x2 sin_1(3x) dx (vi) fo sec ! x dx
(vii) f 6x cosec (2x)dx (viii) f x* cot” ! x dx
5. Integrate by parts the following:
(leV9——x2dx ﬁD.fV16—F4x2dx @ﬁlfvxZ-Zde

6.5 Integration using partial fractions

6.5.1 Use partial fraction to find f ?dx, where f(x) and g(x) are

polynomial functions such that g(x) # 0.

Example 1.  Evaluate by using partial fraction
2x—5
(1) f 7 _trie dx
2x—5
Solution: f m dx
By factorization x22—xS_x i e = (x_zzx)(—xS_B)
2x-5 _ A B )
Let -2)(x—3) = 2 + 3 ...(1)
2x-5 _ A(x-3)+B(x-2)
- -2)@-3)  (@-2)x-3)
= 2x—-5=A(x—-3)+B(x—-2) ...(>11)
As (ii) is an identity, so putting x = 3, we get
B=1
Similarly, putting x = 2 in (ii), we get
A=1
Identity (i), becomes
2x—5 1 1

= +
(x—-2)(x—3) x—-2 x-3
Integrating on both sides w.r.t x, we get

f 2-5 _f 1 +f iy
x2-5x+6 = x—2 x x—3 X

=lInlx - 2|+ In|x -3|+ C;
=In|x — 2| + In|x — 3| + In|C| where C; = In|C]|
=In|C (x — 2)(x — 3)|




Integration

(ii) f cosxdx
sinx(2+sinx)

Solution: To express the integrand in polynomial.
Suppose u = sinx

du = cosx dx

cos x dx du .

fsinx(2+sinx)=fu(2+u) M

Let
1 A B

u(2+u)za+2+u
1=A2+u)+Bu

A 1 and B L
= = — - — —
2 2

1 1 1
u2+uw) 2u 202+uw
By putting in equation (i)

.[ cosx dx _f 1 1 d
sinx (2 +sinx) {Zu 2(2+u)} u

1 1
= Elnlul - ElnIZ + u| + In|C]|

1 1
—In|uz —1n|2+ui +1n|C|
=In |C Vu

V2 +u
mle Vsinx
= |]n —
V2 +sinx
5x2+1)dx
@iy [ G H1dx
(x—1)(x+2)2
Solution: Partial fraction
5x% +1 A B C

G-—Dx+2? x—1 x+2 7 +27
5x2+1=A(x+2)?+B(x—1Dx+2)+C(x—1)

19 1
51 andC— -7

5x2+1 2 19 1
r—Dx+22 30—1)  20x+2) 7(x+2)?

On solving, we get A= % ,B=




Integration

Thus,
(5x2 + 1)dx 2( dx 19 dx 1 dx
(x—D(x +2)? =§jm+%jx+z_7f(x+2)2
2 19
= §ln|x— 1] +%ln|x+2| +m+c
x+1
@iv) fm dx
. x+1 A  Bx+C )
Solution: Let m = ; + 212 ...(1)
x+1  A(x%+2)+x(Bx+C)
or x(x2+42) x(x2+2)
= x+1=AKx?+2)+x(Bx+0C) ...(i1)
As (ii) is an identity, so putting x = 0, we get
1
4=3
3
B—C=—E
1
B+C= >
By solving, we get
B = —% and c=1

Now, identity (i), becomes

1 1
x+1 7 —x+1

—— + =
x(x?+2) «x x%+2
Integrating both sides w.r.t x, we get

fx+1d_1f1d 1fxd+f1d
x(x2 +2) YT X)) e 2™ x2+2%

1 1 1 X
==In|x| — Zlnlx2 +2|+—=tan"'—+C

) V2 V2

Exercise 6.5 )

Evaluate the following integrates by using partial fraction.
(5x—2)dx (7x-25)dx

L (x=3)(x+7) 2 (x—3)(x—4)

1)




Integration

dx dx
. — o -
5 f (x2+2x+3)dx . f 5dx
’ x3—x ' x2-2x-15
; f (2x+7)dx ¢ (5x+6)dx
' (x=1)(x=5)(x+3) ' (x+3)(x-2)2
7x%2-2x+5)dx 2x+1)dx
, o [oRmme g e
(x—6)(x—3) (x=3)(x%+1)
. f sec? xdx 0 f cosec? xdx
) (1+tanx)(2+tanx) ' cot x(2+cot x)
3x+7)dx 7x—4)dx
(2x-1)(x—-4) (x—=3)(x%+2)
(2x?+5x+1) +5x+1) (x3+3x+1)dx
15. 16.
f xX2+5x+6 dx f x2+4+5x—14

6.6 Definite integrals

6.6.1

Define definite integral as the limit of a sum.

Suppose that f(x) is a continuous function on the interval [a, b], divide the interval

[a, b] into # infinitesimal sub intervals as

A=Xg <X SX <X, e
If Ax be the width of each subinterval, then
Axi = X

an_1an=b

—x;_qfori=1,2,3,.... ,nasAx; > 0andn - o
Select a point c; on each interval such that
Xi1SC =X
The limit of the sum
= Tlli_r)go{f(x1)Ax1 + f(2)Bxg + f(x3)Axz + -+ + f (o) Axy }

By using summation notation it can be written a
n
= lim f(ci)Axi
n—-oo
i=1
This summation of f (x) on infinitesimal sub intervals is defined as the definite integral

of f(x) from a to b denoted by
b

[ r@ax = m Y Flam
i=1

Where a and b are called lower and upper limits of the integral respectively.



Integration

6.2.2 Describe fundamental theorem of integral calculus and recognize the
following basic properties:

o faf(x)dx=0

b b
[ reax=[ s ay

b a
!f(x)dxz —bff(x) dx

ff(x)dx=ff(x)dx+ff(x)dx, a<c<b

ff(x)dx= ij(x)dx when f(—x) = f(x)
0

0 when f(—x)=—-f(x)
Fundamental theorem of integral calculus:
If f(x) is a continuous function on [a, b] and F(x) is an antiderivative of f(x)

ie., :—xF(x) = f(x) then

b
[ reax=F® - F@

is called fundamental theorem of calculus.
3
) 2
Example: fo (x* +5)dx.

3
Solution: Let f(x) = x% + 5 then its antiderivative F (x) = % + 5x

Now, by using fundamental theorem of calculus

3
J(x2+5)dx=F(3)—F(0)
0

) (0)?
= - +5(3) ————5(0)
=9+15

=24



Integration

Basic properties of definite integrals

0 j f)dx =0
¢ b b
(i) f f(x) dx = f fO) dy

b a
(i) ff(x) dx = —ff(x) dx
c b

(iv) ff(x)dx—ff(x)dx+ff(x)dx a<c<b

) ff(x) dx _{ zoff(x)dx when f(—x) = f(x)
) when f(—x) = —f(x)

a
Q) [ reodx=0
Proof: By the fundamental theorem of integral calculus

[rwar=r@-r@

ff(x)dx =0

b b
(i) j ) dx = j fO)dy

Proof: By the fundamental theorem of integral calculus

f £G) dx = F(b) — F(a)

and

[roray=re - F@



Integration

Hence

b b
[rwax=[royay

b a
(iii) ff(x) dx = — f f(x)dx
a b
Proof: By the fundamental theorem of integral calculus

b
] fG) dx = F(b) - F(a)

b
f () dx = —{F(a) — F(b))

Thus,

b a
l ) dx = — J £x) dx

b c b
(iv) ff(x)dx:ff(x)dx+jf(x)dx, a<c<b

Proof: By the fundamental theorem of integral calculus

c b
Jf(x)dx+jf(x)dx=F(c)—F(a)+F(b)—F(c) \

=F(b)—F(a)

b
- [ reax

Thus,

ff(x)dx=ff(x)dx+ff(x)dx

V) ff(x) dx = {2off(x) dx , when f(=x) = f(x)
- 0 ) when f(—x) = —f(x)

)



6.6.3

a
Solution: As the upper and lower limits are equal, by using property of f a f(x)dx = 0.

Integration

Proof: By using the property (iv), we have

a 0 a
ff(x)dx= ff(x)dx+ff(x)dx, where —a <0<a (D)
-a -a 0

Suppose x=-t = dx = —dt
When x=—-a =t=a
When x=0 =t=0

By substituting in (i), we get

jlf(x) dx = ff(—t) (—dt) +jlf(x)dx
“a a 0

f fx)dx =— JO f(=t)dt + f f(x)dx

By using property (i_{), we gt aa :
j f(x)dx = f f(=x) dx + j f(x)dx ... (i)
“a 0 0

When f(=x) = f(x)

From equation (ii)

j-lf(x)dx=ff(x)dx+ff(x)dx
-a 0 0

j-lf(x)dx = fo(x)dx
“a 0

When f(=x) = —f(x)

From equation (ii), we have
a

ff(x)dx=—ff(x)dx+ff(x)dx
-a 0 0

jlf(x)dx=0

Extend techniques of integration using properties to evaluate definite
integrals

2
Example 1. Evaluate f 5x*dx.
2
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-\

Hence

2
f5x4dx=0
2

2 2
Example 2. Shown thatf x* dx = f y2 dy.

1 1
Solution:

Thus,
; 7
3 _
j y°dx 3
1
Hence
2 2

fxzdx=jy2dy

1

n ! 0
Example 3. Verify thatf2 cosxdx = — fn cos x dx.
0 —
2

Solution:
T
2
n
fcosxdx = [sinx]2
0
. 1-[ . 0
= sin— — sin
2
=1
0
Now —f o+ cosxdx = —[sinx]2
2 (smo —sn])
= —(sin0 —sin—
2
=1
Hence
T
2 0
fcosxdx = — f cos x dx | verified.
0 L3
2
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1 4 0
Example 4. Given thatj;) f(x)dx = 5and fl f(x) dx = 3, then evaluate L f(x) dx.

Solution:
0 4 . e
As L f(x) dx = —j:) f(x) dx (By using property iii)

1 4
— U f(x)dx +f f(x) dx] (By using property iv)
0 1
=—(5+3)

0
ff(x)dx = -8
4

1
Example 5. Evaluate f , |x| dx
Solution: By property (iv), we have

[x] =4+x,x>0
flxldx+J|x|dx le —xx<0
f( x)dx+fxdx

I 2 T

=—§[0 4] + = [1—0]

—
B
Sy

Il

palls
2 2
T
Example 6. Evaluate f zn cos x dx
2
Solution: Here f(x) = cosx
f(=x) = cos(—x)
f(—x) = cosx
f(=x) =f(x)

By using property f_aa f)dx=2{ Oa f(x)dx

2 2
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SR

= 2[sin x]
. T[ .

= 2(sm§— smO)

=2(1-0)

=2

1
Example 7. Evaluate f_ 1 sin* x dx

Solution: Here f(x)=sin"1x
f(=x) = sin™(=x)
f(—x) = —sin"x
f(=x) = —f(x)

f is an odd function.
Furthermore, limits are additive inverses of each other.
By property (v), we have
1
J sin"lxdx =0
-1
2V3  dx
xXVx

Solution: Let x =3sec® = dx =3secOtan0 db

Example 8. Evaluate f by using trigonometric substitution.

When x=-2V3 = -2V3=3secf6 = sec6=—%=>e=5?1T
When x = -6 = —6=3secH = sec6=—2=>6:2?1T

51'[
_2\[—
3secOtan® db

f x\/xzi j3sec6 (3sec)? —

tan 0 do
(sec2 06-—-1)

J_ (+ Va2 =1xl)

s_n
In
3
st
6
2m
3
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5T

6

_ f tan© do
B 3|tan 0|
T

3

Asee[21T 5“] = tan6 <0 = |tanB|=—tan®

3’6
st

6
_ f tan© do
~ J 3(-tan®)

2T

Example 9. Evaluate J;)‘} x sin x dx.

Solution: Integrating by parts
. 7
z dx
xsinxdx=[xfsinxdx] —f(—fsinxdx)
o dx

v
xsinx dx = [—xcosx]g + J. cosx dx

i
4
0
i
4
0
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Exercise 6.6 )
1. Evaluate the following definite integrals.
2 2
(i) ﬁ) (4x® + 3x* +5) dx (ii) f_ 1(x2 +1)%dx
2 3 3 1)?
iii f 0++/0) do iv f( +—)d
i ] ( ) w J v+ 5) a
4 dx
v =
0 V2+x+vx
2. Evaluate the following definite integrals or by formula.
) 4 P 3 . 5 xdx
@) f1 x(o +9)2 dx (i1) fz 7x2+42
3 (2x+3)dx 2 -1
Giy - J, J;Tﬁ (iv) f L (2 + 2x) 72 (3x% + 2)dx
T 2
= 36 Sinvx
) j;z cos® x dx (vi) 526 N
4
Y
- 2
(vii) j;;* v/tan x sec® x dx (viii) fO e 2 dx
T Lt
(ix) E cos® 3x sin” 3x dx x) ﬁ)g tan’x sec* x dx
3. Compute the following definite integrals by using basic properties.
5
2 2
@) fz Gt + 2x+3)2 (22% + 1) dx
.. 50 9 7 5 3
(i) f_50(10x —8x" + 6x° — 4x” + 2x) dx
T
2 .9 6 . T 8
(iii) f—n sin” x cos” x dx (iv) f—n sec” xtan x dx
2
E T
) f_%r sin® x cos® x dx (vi) f_Zn tan® x dx
2 4
2
(vii) f_z (x4 + 2x2) dx
4 G thtd<x) L then evaluate [*—1—d
. iven that — = 3 then evaluate 3 dx
\J14x2)  (1402)7 * (L+x2)2
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_ d 2+x?
Given that I [F(x)] = ToxZ’ evaluate F(\/§) —F(1).IfF(1) = m, find F(x).
6. Given that f_sz f(x)dx =4 and f53 f(x)dx =7 then evaluate by using suitable
properties.
: -2 .. 3 5
W f, @ @ [Srody i) [rody
) 2 5 ) 3
@) [ fwad W [rwa o [Provdy
7. Evaluate the following integrals by using trigonometric substitutions.
. J‘Z dx . fl dx
0 Jo = O

2v/3 x3d 3
(iii) f3 fxz_; (iv) j;r x* V3 — xPdx

8. Compute the definite integrals by using integration by parts.
. 9 4x . 4 2
(1) f g xe dx (i1) f 1 X In x dx
T
2 . . 1
(1ii) f 7 xsin2x dx (iv) f 0 tan " xdx
6

6.6.4 Represent definite integral as the area under the curve

Let y = f(x) is the equation of the curve as shown in the figure 6.5. Suppose
x = a and x = b be two vertical lines on x-axis. To determine the area under the curve and
above the x-axis between x = a and x = b, we Y
divide the region into » small rectangular strips y
each of with Ax. ___ 1l
The area of a small rectangular strip of A

width Ax

=)

AA = f(x)Ax
The total area A bounded by the curve,
above x-axis will be equal to the sum of the areas
of each rectangular strip from x = a tox = b.
A=f)be+ )M+ fO)Ax+ "0 x=a Ax x=b
+ f(xn)Ax Fig. 6.5
If Ax >0 and n—>o by using

summation notation.
n

A = lim f(x)Ax where i =1,2,3,..,n
n—0o
i=1

By definition of definite integral it can be written as
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b
A= ff(x)dx

b
or Azfydx

a

Thus, the definite integral represents the area under the curve.

Notes: 1. Ify = f(x) = 0, then area A is above the x-axis.
2. Ify = f(x) <0, then area A is below the x-axis.

6.6.5 Apply definite integrals to calculate area under the curve

Example 1.  Find the area, above the x-axis under the following curves between the given

ordinates:
(i) y=x?>+1, x=2,x=4
Solution: By using formula
b
A= f ydx
a
4

3 4
A= —+x]
2
1
A=§(64—8)+(4—2)
A—56+2
E
A—62
E
(i1) y=cos3x,x=0,x=%
Solution: By using formula
b
A=fydx
a

Vs
6
A=fc053xdx
0
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3

3

A= [sin Bx] 6 y
0

A =%[Sin3(g)—sin0] y =cos 3x

1 T
A=§(sin5—sin0) 5 g )
1 X €
A==(1-0) O
3
A_l
=3 | |
(i) x*+y®’=16,x=1,x=3 Fig. 6.7
Solution: y
x2+y?=16
y? =16 — x?

y =416 —x2

We need area above the x-axis, so we take positive branch of the relation y = +V16 — x?
ie., y =vV16 — x? y

By using formula

b
o[ dl \

a3 x X
- i

1
A= %[x\/16 — xZ]: + E (16) sin™* (2)]3 y

1

Fig. 6.8

A=%[3\/16—9—\/16—1]

+8 [sin‘1 (%) —sin™! G)]
A= %[3\/7 —V15] + 8(0.848 — 0.252)

A=203+4.76
A = 6.8 approx.
6.6.6 Use MAPLE command int to evaluate definite and indefinite integrals.
The format of int command in MAPLE is as under:
> Int(f,x=a..b)
where,
f is the function whose definite integral is required



Integration

x =a..b is the definite integral with lower limit ‘a’ and upper limit ‘b’
In order to compute the integral of a function under definite interval, following examples are

given:

>int(x3+1,x=1..2)

>int(x3+1,x=1..3)

> int(e3**1, x)

> int(e3**1,x =0..2)

> int (sin(x),x =0..—

19
4 1
> int(sin(x),x =0..m)
22 2
> int(x® +x% 4+ 3x +4x,x =1..2) >int(cos(x),x=——__
175 2 2
Py 2
12
> int(In(x + 1),x =0..1)
le3x+1 > int( 1 ,x)
3 iz
—le+1e7 > int(e°S*sinx, x)
3 3

Find the area, above the x-axis under the following curves, between the given ordinates.

1.

T

m T

—1+21n(2)

arcsin(x)

(cosx — 1)e°S*sin

cos?

Exercise 6.7 )

y=3x%+2 x=1,x=2
1 1 3
4—x2
y:]nx x=1, x=3
; T _T
y = xsinx x=3,x=5
1
YT o952 x=-V3,x=V3
y=4x3+3x?+2x+1 x=0,x=2
_ 2 _r T
y = 3sec’x X=¢ , X=3
y = 6sin?x x=0,x=%
y = 5e>* x=-2,x=
y = cos*x x=0,x=%
__4 _T T
Y= in? *Te XT3

sin” x




13. — y_=1 x=-1,x=1
4 9

14, y?2=2x+5 x=1,x=
2 _ tand L =T

15. ye =tan*x X=¢, X=7

Integration

16.  Write MAPLE Command to find integration of the following functions:

(i) flx)=e* (i)  f(x) =sinx
(iii)  f(x) =cos2x (iv) (v) f(x)=In(1+x)

Review Exercise 6 )

1. Choose the correct option.
(i) ffn(x)f’(x)dx, wheren # —1, is
AANC)) D)
O o= *¢
o fn+1(x)
) nf™x)+c (d) — tc
(ii) ff"(x)f’(x)dx,wheren = —1,is
f""'l(x) .
(2) 1 +c () In|f*(x)| + ¢

©Inlf() +c @nfr ) +c

(iii) f x"dx, wheren = —1is

(a) adiat +c b)ynx" 1 +¢
n+1
-1
(c) 1 c (dInx+c
(iv) f sinx cosx dx =
(a)sinx +c¢ (b) cosx + ¢

1
(C)Zcos2x+c (d)—%c052x+c

v) fxz Ine* dx =
x? 0
(a) 2 +c (b) = +c

(c)In e*’ +¢ (d)Inx*+¢

W f@=1
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(vi)

(vii)

(viii)

(ix)

(xi)

(xii)

3
fe“‘x dx =

(a) e’ +¢
x4
(© T +c
f(l +tan? x) dx =
(a)tanx + ¢

tan? x
(© > +c

2e*
1+e* dx =

(a)In(1+e*)+c

(1 +e¥)%+c

ex+31nx

dx =

J

x3
1 x+3Inx
(a) 3e +c
(C) ex+31nx +c

) ln(ex . esmx) dx =

1
(@) Zrsmz ¢
x2
(c); —cosx +c¢
1

f xVx2-1 dx =

cosec™lx

(@) In(cosec 1 x)"t + ¢

(c) cosec™lx + ¢

W
()3+c

(dInx3+c

(b) sin?x + ¢

(d)Insecx + ¢

(b)In(1+e*)? +¢
ex
(d) ? +c

(b)ye*+c¢
(d)3Inx+c
(®)Insinx + ¢
(d) xInsinx + ¢

N\

(b) (cosec™1x)? + ¢
(d) In(cosec™x) + ¢

b
If F(x) is an antiderivative of f(x) then f fx)dx =
a

() F(a) — F(b)
(©) f(b) = f(a)

(b) F(b) — F(a)
fb)
@D F@
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+50
(xii) f (% + x) dx
-50
(2) 0 (b) 1000 (©)2000 () 3000

U
2
(xiv) j sin® x cos!! x dx

T

(a) 1 ()3 (©)0 (d) 2 ¢ sin”x cos'! x dx

™
2
(xv) f sin1% x cos x dx
_n
2

(@0 (b1 (c)3 (d)2 f07 sin® x cos!! x dx
(xvi)  Area bounded by the curve y = In e* fromx=—1tox =1is
(a) g (b) 1 (c)In2 (d)In3
b
(xvii) f F(x) dx =
a i a
(a) = f, F () dx ®) J, f(x) dx
© = Jy fG) dx @0
2 1
(xviii) fz (x3 + 3x% — Sx_z) dx =
(@) 0 (b) 12 — 10v2
(c) 24 — 20V2 (d) 20v2

2
(xix) f 2(x5 — X+ x)5 (5x4 —3x* + 1)dx =

1
(@73 (26)° (6)0

(26)°
6

(c) 2(26)° (d)
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(xx) f 2+x
1 X
tan~1Z b)=sec”' =+
(a) tan 2 ( )asec o c
1 _x x
— — d =12
(c)atan a+c (d) sin ate
2. Evaluate the following integrals.
- SxP=3x+] gy i _dx
@ xz(x +1) (@) f sinx cosx
3x (lnx)7
c dx . d
iii iv EEE—
[ s w5
Scos xdx
i x sec? x dx
©) f 6+sin x—sin’x ) f

X
(vii) f __ a9 (viii) f . \/; dx

cot® —tan®

3+ 3tan?x
. d -1
(ix) f 1+ 9tan’s X (x) f cot 2xdx

(xi) f L— \/\/: (xii) f sin’xy/cosx dx
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Plane Analytic Geometry: Straight Line

Analytic geometry utilizes the concepts of algebra to locate the position of a point on
the plane using an ordered pair of numbers. It can be understood as a combination of geometry
and algebra. In analytic geometry different algebraic equations are used to describe the

dimension and position of different geometric figures.

7.1 Division of a Line Segment

7.1.1 Recall distance formula to calculate distance between two points given in

Cartesian plane

We know that, the distance between two points
P, (x4,y1) and P, (x5, y,) can be found by
d = |PPy| =/ (x — %)% + (y2 — y1)2,
known as distance formula (Fig. 7.1).
Example: Find the distance between two points P(1,7)
and Q(—2, 3).

Solution: The distance between the given points P and Q *e
having coordinates (1,7) and (—2,3), by using the

y
A @
9
o
Py (x1,y1)
) - ;x
y’
Fig 7.1

distance formula;
d=[PQl=(-2-1)?+3-7)?

=37+ (47
=v9+16

= 5 units
7.1.2 Recall Mid-point formula

In previous class, we have learnt the mid-point formula to find the mid-point of a line
segment when its end points are given. Let A(x;,y;) and B(x,, y,) are the end points of a line

segment then the mid-point C(x,y) of AB is found by
X +x +
C(xy) =< 1 TX2 V1 J’Z)

2 2
As shown in the figure 7.2.
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[ 4  J
A(x1,¥1) Cly) = <x1 +x 1+ }’2> B(x3,¥1)
' 2 72

Fig. 7.2
Mid-point C(x,y) divides the AB into two equal parts.
For example, the mid-point of line segment AB whose endpoints are (—1,3) and
(5,—3) will be

2 2 ):(2,0)

7.1.3 Find coordinates of a point that divides the line segment in given ratio
(internally and externally)

(—1+5 3+ (-3)

Let AB is the line segment and A, B and C are the collinear points then C will divide
the line segment AB internally or externally in the ratio of m and n.
Let us find the coordinates of division point for both cases.
Internal division
Let A(xq,y1) and B(x,,y,) are two points in the xy-plane. Let C(x,y) be the point
which divides line segment AB internally in the ratio k,:k.. In Fig. 7.3 AP, CN and BR are
drawn perpendiculars to x-axis. AS and CT are drawn parallel to x-axis.
msCAS = msBCT (corresponding angles)
m£CSA = msBTC = 90° y
By similarity criterion of triangle B(xs, )
Similarly, k,
k,=y—y1=x—x1 Clx, »)

kz Vo —y Xy — X k]

Take,

ACAS~ABCT Fig 7.3

[AC| _I4S| _[csl &,

- === . (3
[CB| _ [cT| BT & M

Now,
|AS| = [PN| = |[ON| - |OP]| =x - x,
ICT| = INR| = [OR| - [ON| = x; — x
|CS| = ICN| = ISN| = y =y,




|BT| = |BR| = |RT| = y, -y

From equation (i), Similarly,
&z}’—%:x—?ﬁ &=y—y1=x—x1
ky y2=y X3—x ky y2—y x-—x
k,  x—x -
Take, — = L Take, = = 4
ky  xp-x ke y-y
kixy + koxq ky, + k.yp
= = = y=—"
ki +k, ki+ k,

So, the coordinates of the point C(x,y) which divides the line segment joining points

kixo+k,x1 kiys +sz1)
k+k ' k+k

A(x1,y1) and B(x,,y,) internally in the ratio %, : k, are (

that is known as section formula.

External Division:

[4D|
[BD]
perpendiculars from A(xy,y;), B(x,,y,) and D(x, y), along coordinate axes, which meet at

S(x,y,) and R(x, y,). Therefore, there exist two similar right triangles ADR and BDS, then by
similar triangles as shown in Fig. 7.4.

Let D(x,y) divides AB externally in the ratio , : k,, where k,: k,= Now draw

Now, o e
ki |AD]| B |AR| X—x
k. 1BD| IBS| x-x,
kh_x—x
k, Xx—x,
kixy — koxq
= T =k
Similarly,
L _I4D| DRl y-w |
k:  |BD| [DS|  y-—¥, y
ky-n Fig 7.4
1 V2 kY1
A A -

Hence, coordinate of D which divides externally in the ratio &, : k, are
(kaZ —kxy ky; — sz’l)
kl - kz ’ kz - kz
Where k, — k,# 0.
Note: When point P divides the line segment AB internally, the given ratio &, : k, will
be positive and for external division the ratio will be negative.

Plane Analytic Geometry: Straight Line
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Example 1. Find the coordinates of the point, which divides the line segment joining the points
(3,2) and (4, —5) internally in the ratio 3: 2.

Solution: Here (x1,y;) = (3,2) and (x,y,) = (4,—5). Alsom:n = 3: 2.

By using the section formula;

Point of division is

kixy +koxy kiyy +kiyq
=< btk h+h)

3x4+2x3 3x-5+2x3
( 3+2 3+2 )

18 —11
B (?T)
Example 2. Find the point of division of the line segment joining (1, —2) to (—3, 4) externally
in the ratio 3: 5.
Solution: Here (x1,y1) = (1,-2) and (x3,y,) = (—=3,4). Alsom:n = 3:2
kixy —k:xy kiy; —k:y,
P@”=(m—h’ h—h)
_ ((3)(—3) —-5(=2) 3(4) - 5(—2)>

3-5 ' 3-5
=(7,-11)
Example 3.1f A(2,4), B(4,5),C(p, q) and D((1, 3) are the vertices of parallelogram then find
the values of p and q.

Solution: We know that the diagonals of a parallelogram bisect each other. Let O be the point
at which diagonals intersect. Coordinates of the midpoints (x, y) of both line segments AC and
BD will be same. Thus, using midpoint formula;

Point of division D (1,3) C(p.9)
Mid-point of BD = mid-point of AC
4+15+3 X1+ Xy Y1+ Yo
(2'2)=(2 T2 )
(E §) - (ﬂ ﬂ)
2'2 2 72
C.0)= (2459 e s
2’ 2 72

Thus,
2+p

2
=3

T NG

-
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=q=4
Let us recall the definitions of some important terms which will help us to show many

useful results.

Point of Concurrency: A point where three or more lines or rays intersect with each

other is known as the point of concurrency.

Perpendicular bisector: A line segment which bisects another line segment at 90° is

called perpendicular bisector.

Angle Bisector: An angle bisector is a straight-line drawn from the vertex of a triangle

to its opposite side in such a way, that it divides the angle into two equal or congruent angles.

Median: Line segment joining a vertex to the mid-point of the side opposite to that

vertex is called the median of a triangle.

Altitude: The altitude of a triangle is the perpendicular line segment drawn from the

vertex to the opposite side of the triangle.

As four different types of line segments can be drawn to a triangle, therefore there will
be four different points of concurrency in a triangle. Such concurrent points are referred to as
different centers according to the lines meeting at that point. The four different points of
concurrency in a triangle are:

Circumcentre: The point where three perpendicular bisectors of the triangle meet is
called circumcentre of the triangle.

Incentre: The point where three angle bisectors of the triangle meet is called incenter
of the triangle.

Centroid: The point where three medians of the triangle meet is called centroid of the
triangle.

Orthocentre: The point where three altitudes of the triangle meet is called orthocentre
of the triangle.
7.1.4 Show that the medians and angle bisectors of a triangle are concurrent

Show that the Medians of a Triangle are concurrent
Proof: Let ABC is a triangle (Fig. 7.6) with medians AF, BE, and CD respectively where F is
the midpoint of line segment BC, D of AB and E of AC respectively.

The midpoint of side BC is

FoX2 +x3'J’2 + 3
2 2

The midpoint of side AB is
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N

D= <x1+x2 }’1+Y2>
2 2
The midpoint of side AC is
E= <x1 + X3 Y1 +J’3>
2 2

In triangle ABC, say P is the point of intersection.
The coordinates of point P that divides the AF in the ratio B(x2, y2) Ja C(xs, 13)
2:1 are as under: Fig 7.6

Let (x1,y1) = (1,¥1) and
+ —
(x5, 7;) = (xz T3 , 2—}’3) because F is midpoint of BC.

2 2
X, + X +
by = (Dx, + ) (F2572) Wy + @) (2252)
(xy) = 142 ’ 142
X1 +x;+x +y, +
P(x,y)=( 1 32 3’)’1 3;2 }’3)

Again, the coordinates of point P(x, y) that divides the BE in the ratio 2: 1 are as under:

X1 +X3 y1+y3

Let (x1,y1) = (x2,y,) and (x5,y,) = ( 5 5 ) because E is midpoint of AC.

Thus,
X, +x +
, (D + @) (252) Oy + @) (22525)
(oy) = 1+2 ’ 1+2
P(x,y) = (xl + X, +x3’y1 + 2 +}’3)
3 3
Similarly, the coordinates of point P(x,y) that divides the CD in the ratio 2: 1 are as
under:
+
Let (x1,y1) = (x3,y3) and (x3,¥,) = (xlT-i_xz,lTyz) because D is midpoint of
AB.
Thus,

(Dxs + ) (B522) Wy, + (2 (2522)
1+2 ' 142

P(x,y) =

p= <x1+x2 t+x3 y1tY)2 +)’3)
3 ’ 3
Hence, the medians of the triangle are concurrent. It is called centroid of the triangle.
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Example: Find the point of concurrency of medians of triangle ABC where coordinates of A,
B and C are (4,10),(8,2) and (-8, 4).
Solution: Here, (x1,y;) = (4,10), (x5, y,) = (8,2) and (x3,y3) = (—8,4)
The point of concurrency of the points (4,10), (8,2) and (—8,4) is
(X1t Xt X3 Y1t Y, Y3
B ( 3 ’ 3 )
4+8-8 10+2+4 4 16
=< 3 3 >=<§’?)
Show that angle bisectors of triangle are concurrent
Let A(x1,y1),B(x3,¥,) and C(x3,y3) be the A(xy, J’l
vertices of any AABC. Let a, b and ¢ be the measures of
the sides BC,AC and AB respectively as shown in the

figure 7.7
Let AD be the angle bisector of ZA which divides \
BC at D internally in the ratio of the sides containing the
angle. B(XZ: yz) D C(X2, ¥3)
|IBD| ¢ . Fig 7.7
ie., ﬁ = ; ...(1)

bx,+cx; by,+cy
DGx.y) =< 129+c > lZJ-I-C 3)

Also angle bisector of 2B divides AD at I in |AB|: |BD|
—_— = ...(ii)

From (i), we have
IBD| ¢
IDC| ~ b

By componendo property

BD| ¢

|[BD|+ [DC| c+b
BD| ¢
ﬁ “c+b
- ac

|BD| = b+c

From (ii), we have
ABl ¢ ¢ b+c
D] [BDI 2~
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i.e., I divides |AD |internally in the ratio (b + ¢): a

axq +(b+c)-<bx2+zx3> ay, +(b+c)-<by2+cy3)

I _ b+ b+c
(y) = a+(b+c) ’ a+(b+c)

_ (axq+bxy+cxz ay;+by,+cys i
= 16ey) = ( atb+c ' atb+c (1)
Similarly,

ax; +cx3 ay; +c¢
E(x,y)=( 1 3 V1 )’3)
a+c a+c
Point I divides BE internally in the ratio (a + ¢): b
+ +

B bx2+(a+c)-(axcll+§x3> by2+(a+c)-(ay(1l+iy3>

160y) = b+(a+c) ’ b+(a+c)

_ (axq+bxy+cxsy ay +by,+cy; .
= ICey) = ( at+b+c ' at+btc ---(ii)
Again,

ax, + bx, ay, + by2>
F ) = )
22 ( a+b ' a+b
Point I divides CF internally in the ratio (a + b): c
axq+bx ayq+by
1 ~ cx3+(a+b)-< 1 2) cy3+(a+b)-< 1 2)
() = c+(a+b) ’ c+(a+b)

ax,+bx,+cx, ay,+by,+cy
= I(x,y)=( 1a+b?|-c 3, 1a+b?|-c 3) ...(iii)
From equation (i), (ii) and (iii), the coordinates of point I on each angle bisector are
found to be same. This means all angle bisectors passes through I. Thus, angle bisectors of a
triangle are concurrent.

Exercise 7.1 )

1. Find the distance between the following pairs of points:
(1) A(—1,3) and B(5,-5) (i) C(—1,0) and D(0,—1)
(i)  E(1,—-1)and F(2,7) (iv)  G(-1,—4)and H(5,—4)
2. Find the point on the y-axis which is 52 units away from (5, 2).

Find the point on the x-axis which is V41 units away form (-7, 5).

4, If ABC is triangle whose vertices are A(—3,3), B(2,6) and C(3,0). Give the most
specific name for AABC.
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Ifthe point P(2, 1) lies on the line segment joining the points A(4, 2) and B(8, 4), then
show that [ 4P| = 7 |4B.

6. Find the coordinates of the midpoint of following points:
(1) M(—4,2) and N(—4,-2) (ii) P(—1,—4) and Q(5,—4)
(i)  S(1,-2)and T(2,—4) @iv)  X(6,2)and Y(-2,-7)
7. Find the point which divides the line segment joining (4,-1) and (4, 3) in the ratio

3:1 internally.

8. The points P(—2,2),Q(2,—1) and R(—1,4) are the mid-points of the sides of the
triangle. Find the vertices.

9. Z(4,5) and X(7,-1) are two given points and the point Y divides the line-segment
ZX externally in the ratio 4: 3. Find the coordinates of Y.

10. If a point P(k,7) divides the line segment joining A(8,9) and B(1, 2) in a ratio &,: k,
then find ratio k,: k,. Also find the value of £.

11. A(2,7) and B(- 4, - 8) are coordinates of the line segment AB. There are two points
that trisect the segment AB. Find the points of trisection.

12. The vertices P, Q and R of a triangle are (2, 1), (5,2) and (3, 4) respectively. Find the
coordinates of the circum-centre and also the radius of the circum-circle of the triangle.

13. AB is divided into 20 equal parts by Py, P;, Ps,... Py, ... Po. If A and B are (2,3) and
(10,11) respectively, find the coordinates of P; 3.

14. If A, B and C are three collinear point and the coordinates of A and B are (3, 4) and
(7,7) respectively. Find the coordinates of C if |AC| = 10 units.

15. Find the coordinates of the incentre of triangle whose angular points are respectively;
(1) L(2,8),M(8,2)and N(9,9)  (ii) P(—36,7),Q(20,7) and R(0,—8)

16. The line segment joining P(—8,10) and Q(6, —4) is cut by x and y axes at A and B
respectively. Find the ratios in which A and B divide PQ.

17. Find the coordinates of the centroid of a triangle whose angular points are
(1) A(1,3),(2,7) and 5, 6)
(i) P(—2,5)Q (=7,1) and R(—8,—4).

18. A straight line passes through the points (7,9) and (—1, 1). Find a point in the line
whose ordinate is 4.

7.2  Slope (Gradient) of a Straight line

Slope or gradient of a line is a number that describes both the direction and the
steepness of the line. The concept of slope has many applications in the real world.

In construction, the pitch of a roof, the slant of the plumbing pipes and the steepness
of the stairs are few applications of slope.
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7.2.1 Define the slope of a line

To understand the definition of the slope, first we understand the inclination of a line.

Inclination of a line: K
Inclination of a line is the smallest positive angle !
between the line and the positive direction of x-axis. In Fig.
7.8, 0 is the inclination of [, where 0is 0 < 6 < .
Note: The inclination of x-axis is taken as 0. X'e / 0 »X
Slope of a line:
Slope of a line is the tangent of its inclination. It is
denoted by m.
ie, m=tan0 ;;"
Fig 7.8

7.2.2 Derive the formula to find the slope of a line passing through two points

Let [ is a line passing through two points A(xy,y;) and B(x,,y,) as shown in the
figure 7.9.

Here 0 is the inclination of the line and
m is the slope of the line,

ie, m=tanb ..()
The changes in abscissa and ordinates
are x, — x; and y, — y; respectively. ,

X<
Consider the right triangle ABC
[BC| _ vy P
tan 0 = ﬁ = Xy ...(11)
By comparing equations (i) and (ii)
We get, v
y
mol2T N Ly Fig 7.9

X, —x;  Ax
The formula states that the slope of a line is equal to the rise over run.
Example 1. Find the slope of a line whose coordinates are (1,5) and (4, 7).
Solution: Here (x1,y,) = (3,7) and (x,,y,) = (5, 8).
We get using Slope formula m = %
8-7 1

Sme5372



Plane Analytic Geometry: Straight Line

Example 2. Find the value of b, if the slope of a line passing through the points (—2,b) and

(3,4)is 5.
Solution: Here, (x1,¥1) = (=2,b) and (x3,¥,) = (3,4).
Using Slope formula=m = Yoy
*27™*
4—-b
>S5
4—-b
N
= 25=4-b
= b=-21

Thus, the value of b is —21.
7.2.3 Find the condition that two straight lines with given slopes may be:

e parallel to each other,

e perpendicular to each other.

Find the condition that two straight lines with given slopes may be:
e  Parallel to each other

Let [; and [, are two straight lines with slopes m, and m, respectively as shown in the
figure 7.10. K

Since both lines are parallel to each other, therefore
they have same inclination as 6 is in our case. h .
Now, slope of first line

my; = tan0 ...() ) 0 40 o
Slope of second line // -
m, = tan0 -..(i1)

From (i) and (if)
my=m, s

= L]l iff my =m, y

Hence two straight lines are parallel to each other iff Fig 7.10
they have same slopes.

e  Perpendicular to each other
Let [; and [, are two straight lines perpendicular to each other with slopes m; and m,
respectively. If 8 is the inclination of [; then 90° 4+ 8 will be the inclination of [, as shown in
the figure 7.11.
Now,
my; = tan0 ...(1)
m, = tan(90° + 0)
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N

m, = —cotH
-1
or M2 = tano \
_ 1 . 12
= tan 6 :m—z ...(11)
From equation (ii) and (iii), X<
we get
-1
m; =—
15,
v
= mm, = -1 ¥
Ed ll 1 lz iffm1m2 =-1 Fig 711
Hence two non-vertical straight lines are perpendicular to each other iff product of their
slopes is —1.

Example 1. If a line [; passes through two given points (1, 3) and (3, 7) and [, passes through
(2,9) and (3,11) . Check whether both lines are parallel or not.

Solution: Line [; passes through two given points (1, 3) and (3, 7).

The slope of [; = m, =§=%= 2
Line [, passes through two points (2,9) and (3,11).
11-9 2

The slope of I, = m, =35 =1" 2
Since, my; =m,
Therefore, both lines are parallel to each other.

Example 2. If a line [, passes through two given points (0,1) and (1, —1), a line [, passes
through (2, 2) and (4, 3) . Check whether the following lines are perpendicular or not.

Solution:
. -1-1
The slope of line [; =m; = =0 = -2
The slope of line [, = m, = % = %

Since mym, = (—2) (%) =-1

Therefore, both lines are perpendicular to each other.

Exercise 7.2 )

1. Find the slope of the line passing through given pair of points.
1 A(3,7) and B(2,9) (i) C(5—2)and D(3,6)
(i)  E(5,3) and F(-2,3) (iv)  G(0,0)and H(a, b)



7.3
7.3.1

e Line parallel to y-axis at a distance a from it,

perpendicular to y-axis.
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Find the slope of the perpendicular line when the given line passes through the
following pair of points.
(1) A(2,1) and B(4,5) (ii) C(—1,0)and D(3,5)
(i)  E2,1DandF(-3,1) (iv) G(-1,2)and H(—1,-5)
In each of the following the slope of the line is given. What is the slope of a line
(a) parallel (b) perpendicular, to it?
2 -7
1) 3 (ii) Py (i) =1 (iv) 4
Are the lines [; and [, passing through the given pairs of points parallel, perpendicular
or neither?
(1) 11: (1,2),(3,1) and [,:(0,—1),(2,0)
(i) 1:(0,3),(3,1) and [,:(—1,4),(-7,-5)
@iy  1;:(2,-1),(5,=7) and 1,:(0,0),(-1,2)
@iv)  1;:(1,0),(2,0) and I,:(5,-5),(—10,-5)
The line through (6, —4) and (—3, 2) is parallel to the line through (2, 1) and (0, y).
Find y.
The line through (2, 5) and (—3, —2) is perpendicular to the line through (4, —1) and
(x,3). Find x.
Using slopes prove that (—1,4),(—3,—6) and (3,—2) are the vertices of right
triangle.
Using slopes, find the fourth vertex of a parallelogram if (0,—1), (4, —3) and (12, 3) are
its three consecutive vertices.

Equation of a Straight Line Parallel to Co-ordinate Axes
Find the equation of a straight line parallel to

e y-axis at a distance a from it, y /

e Xx-axis at a distance b from it. a
N|-=======---- *P(x, )

»
|
[
|

Let [ be a line parallel to y-axis at a distance ‘a’ from

it and cutting the axis of x at A, such that |0A| = a, as shown e Ala, 0)
in the figure 7.12. 0 > x

Let P(x,y) be any point on [, draw PN

Then |NP|=|0A|=a
Le., X =a. y Fie 7.1
which is the equation of line parallel to y-axis. 80

If a is positive then line [ is to the right of y-axis and if a is negative then line [ is to

the left of y-axis.
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e Line parallel to x-axis at a distance b from it
Let [ be a line parallel to x-axis is at a distance b from it and cutting the axis of y at B
so that |OB| = b, as shown in the figure 7.13.
Let P(x,y) be any point on . Draw PM perpendicular to x-axis.
Then, |MP|=|0B|=b A
ie, y=b
which is equation of line parallel to x-axis.

-

BO.o) Py,

A
4

If b is positive then line is above the x-axis and if b
is negative then line is below the x-axis.
Corollary:

)
&

Since the axis of x is parallel to itself and at a X<

Z.------

0O
distance zero from it, the equation of the x-axis is y = 0.

v

Since the axis of y is parallel to itself and at a
distance 0 from it, the equation of the y-axis is x = 0. Fig 7.13
Example 1. Find the equation of straight line parallel to the

axis of x at a distance.

(1) 3 unit above it  (ii) 5 unit below it
Solution:

1 Since the line is parallel to x-axis and 3 unit above it, its equation y = 3.

(i1) Since the line is parallel to x-axis and 5 unit below it, its equation is y = —5.
Example 2. Find the equation of straight line parallel to the axis of y and a distance of

(1) 2 units to its right (i1) 7 units to its left
Solution:
(i) Since the line is parallel to the y-axis and 2 units to its right is x = 2.
(i1) Since the line is parallel to the x-axis and 7 units to its left is x = —7.

7.4 Standard Forms of Equations of a Straight Line

7.4.1 Define intercepts of a straight line. Derive equation of a straight line in
e slope-intercept form ‘)i

e point-slope form I

e two-point forms

e twointercepts form

e symmetric form X'e > X

) A(a,0)
e normal form
e Xx-intercept of a straight line
When a straight line cuts the x-axis at a point
A

A(a, 0), then a is called x-intercept of the line, as shown in
the figure 7.14. Y

Fig 7.14



y-intercept of a straight line

A
When a straight line cuts the y-axis at a point
B(0, b) then b is called y-intercept of the line, as shown in B(0, b)

Solution: Here the line cuts the x-axis at (3,0) then x-
intergept of the line is 3. Similarly, the line cuts the y-axis at
(0, —8), then y-intercept of the line is —8. v
Slope intercept form of straight line y
Let the line [ intersects the y-axis at P and 0 is its
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the figure 7.15. \
Example: If a line cuts the coordinates axes at (3,0) and x' X
(0, —8) respectively. Find the x and y-intercept of the line. \

Fig 7.15

inclination and P (0, ¢) and Q(x,y) be any two points on the line AB as shown in Fig. 7.16.
Then the slope of the line as discussed in section 7.2 (i) is given by

m = Y2—0 y A
X2 — X1
Here, ) O.7)
_y—b &
T x—0 'y
mx=y—»b
y=mx-+b < 0 >
S . . . . ;/O [9) "
which is the required equation of the straight line

with slope and intercept form, where m is the slope of B

’

the line and c is the y-intercept. Y Fig 7.16
Example: Find the equation of a straight line whose

slope is 3 which intersects the y-axis at (0, 5).
Solution: We have, m = 3andb = 5

The equation of a line in slope-intercept formis: y = mx + c.
So, the required equationis:y = 3x + 5

Notes:

1.

If the slope or gradient i.e., m = 0 and y-intercept i.e., b # 0, then equation is
y=mx+ b=y =0x +b =y = b, which represents the equation
of a line parallel to x-axis.

When y-intercept i.e =0 but slope i.e m #0 then equation is
y=mx+ b= y=mx +0 = y =mx which represents the equation of a line that
passes through the origin.

When slope and y-intercept both are zero (i.e., m = 0andb = 0) then equation is
y=mx+b=y = 0x+ 0=y = 0, which represents the equation of
X-axis.

Point-slope form
Consider a straight line [ in the cartesian plane with slope m and a fixed point Q (x4, y1)

that lies on the line. Let P(x, y) be another point on the line (Fig. 7.17).
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Since the two points lie on the same line with slope

m then; [
y=n SN )
m=
xTh O(x1, y1)
= -y =mlx—-x) >
It is called point-slope form of equation of straight 0 \
line that contains a fixed point Q (x4, y;) and slope m. Fig 7.17

Corollary: If the line passes through the origin, i.e., if x; = 0 and y; = 0, then the
equation of line is y = mx.

Example: Find the equation of straight line with slope —2 and passing through (2,6).

Solution: Here m = —2, (x1,y,) = (2,6). Using the point-slope formula we get;

r—-6)=-2(x-2)
y—6=-2x+ 4

y+2x—-10=0

which is required equation of straight line. K
e Two-point form, 4 4 (v, 1)

Let A(x4,y1) and B(x;,y,) be the two given points P, 7)
on line [;. Let P(x,y) be any any point on the line [. ’

From the (Fig. 7.18), we can say that the t@e points  —5 \ > X
A,Emd B are collinear. It shows that the slope of AP = slope B, y2§
of AB. Fig 7.18

Y=Y1_Y2—n
X=X, Xp—X
This is the equation of a line in two-point form.
x y 1
Corollary 1: The above equation can also be written in the form |x; y; 1| =
X2 Y2 1

Corollary 2: Another way of writing the two-point form is;

(Y2 — 1)
(2 = x1)
Corollary 3: If the line passes through one point and origin, i.e. if x, = 0,y, = 0 then

the equation of the line is;
y x

y—»n=

non
Example 1. Find the equation of a line passing through the points (—1,2) and (3, 5).
Solution: Let the given points be: (x1,y1) = (—1,2) and (x,,y,) = (3,5). Then using;
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(2 —y1)

y—y1=(x2_x1)(x—x1)
We get
_(-2)
—2—m(x+1)

3x —4y +11 =0
This is the required equation of line passing through two points, (=1, 2) and (3, 5)
Example 2. Find the equation of the line passing through the points (1, —3) and (5,7).
Solution: Using the Corollary (1), the required equation is;

x y 1
1 -3 1[=0
5 7 1

After simplifying the determinant, we get;
-3-7)x-QA-=-5y+ (7 +15 =0
-10x + 4y + 22 = 0
or 5x-2y—-11=0
e Two intercepts form
The intercepts form of the equation of the line can be derived from the two-point form
of line. Let [ is a line which passes through two points (a, 0) and (0, b) where a and b are the

x and y intercepts of [ respectively as shown in Fig. 7.19.
Thus, by two-point form of equation

-y _ 2 —y1)
(x—x1) (2—x1)

We will get; y
-0 _(-0) 1
(x—a) (0-a) 0.b
N AN
y = 7 xX—a ‘
—b
b<_bx+1> ‘ (@0)
y= - a,
a > X
— O a
b a Fig 7.19
Xy
= -+=-=1
a b

which is the required equation of straight line in two intercepts form. Where a and b are x
and y intercept respectively.
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X
Corollary 1: The equation 2 + % = 1 may be written in the form Ix + my =1,

where [ = % andm = % and [, m are reciprocals of the intercepts on the axes.

Corollary 2: The equation of the straight-line which has equal intercept (say a) is
xX+y=a.

1 1
Example 1. Find the equation of the straight line which makes intercepts 5 and — on the axes

respectively.
Solution: Here a = %and b= % Thus, the required equation is;
x Yy
5 7
ie., S5x+7x=1

or 5x+7y—-1=0
e Symmetric form

Let 8 is the inclination of a straight-line [ passing through the point P(x, y). Consider
another point Q (x4, y;). Now using the slope formula;

m=tan0 = Y~ n
X=X
sin@
As we know that tan 6 = 050" then the above formula becomes;
sin @ -
tanB = = y=n
cos x—x
sing _y—y

cos x—xg

x—x1=y—}’1
cos 6 sinf

This is called the symmetric form of an equation of a straight line with inclination 6
and passing through (x4, y;).

Example 7. Find the symmetric form equation of a straight line with inclination 45° and
passing through the point (2, \/E)
Solution: Here an inclination is ® = 45° and point (x;,y;) = (2,v2). Using the equation of
line in its symmetric form;
X% _Yy=n

cos 6 sin@

y
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Substitute the above values in the formula to get the symmetric form equation of a
straight line;

x—2 _y—\/i
cos45°  sin 45°
x—2_y—\/§

% @
V2 V2
= y—x+2-v2=0
¢ Normal form or perpendicular form
Let P(x,y) be any point on the straight-line [. The line intersects the coordinate axes
at points A and B respectively. The |0A| and |0B| become y
its x-intercept and y-intercept respectively as shown in the ; *
Fig. 7.20. N\
Now using intercepts form of equation of straight
line, we have

y .
W + ﬁ =1 (l)

Let p be the length of the normal drawn from the
origin to the line, which subtends an angle a with the positive
direction of x-axis. If D is foot of perpendicular drawn from
O then consider the triangle ODA as given in Fig. 7.20. Using
the trigonometric ratios; we get;

|0D|
—— =cosa
|0A]
p
= — = Cos«u
|0A|
A4 = _P w [OD] =
= |oA=_L (+ [0D] = p)
Similarly, ODB is a right-angle triangle, then;
|OD| (90° — o)
—— = CO0S —a
|0B|
p .
= ——, =Sslnha
|0B|
=  |0B|=-E
sina
Now substituting the values of [0A| and |0B| in equation (i) we get;
X y
= 1

cosa Sina
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xcosa ysina
=4 + =1
p p

= xcosa+ysina=p

where p is always kept positive and o is measured in counter-clockwise direction
(0 < a<2m).

This equation is called normal or perpendicular form of equation of line.

Example 8. Find the equation of the straight line which is at a of distance 9 units from the
origin and the perpendicular from the origin to the line makes an angle 30 with the positive
direction of x-axis.

Solution: Here p = 9 and a = 30°, Using the Normal form of equation of straight line,

we have
xc0s30°+ysin30°=9
V3 1
x(?)”(z)—g
SENE
xV3+y=18

which is the required equation of line.
(i) Show that a linear equation in two variables represents a straight line.

A linear equation in two variables x and y is the equation of the form

ax + by +c =0 ...(1)

where a, b and ¢ are real numbers (constants). Also, a and b are not both zero.
Theorem: Every linear equation in two variables represents a straight line.

Linear equation into two variables is ax + by + ¢ = 0, both a and b are not 0.
Proof: Case-I whenb = 0.

In this case a # 0. Thus, the equation (i) reduces to

ax+c=0
—c

X =— .G

; (iD)

which is the equation of straight line and parallel to y-axis.
Case-11 when a = 0.
In this case b # 0. Thus, the equation (i) reduces to

by+c=0
—c

= ... (i)

which is the equation of straight line and parallel to x-axis.
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Case-111 When a # 0 and b # 0. In this the equation (i) reduces to
ax+by+c=0

_—a +—c
Y=
y=mx+c . (iv)

where m = —Ta and ¢’ = _TC Thus (iv) is also equation of straight line in slope
intercept form. Hence in all cases a linear equation in two variables represents a straight line.
(ili)  Reduce the general form of the equation of a straight line to the other standard forms.
e Reduce the general equation ax + by + ¢ = 0 into slope intercept form
The general equation of straight line is
ax + by +c =0 ...()
Now adding —ax — ¢ on both sides of equation (i) we get;
ax + by +c—ax—c =—ax—c
by = —ax—c

—-a —c
y=(5)x+(%)
-a -
which is the slope intercept form of line, where 7 is the slope and 7 is the

y-intercept from the line.

e Reduce the general equation ax + by + ¢ = 0 into intercept form.
The general equation of straight line is

ax + by +c =0 ...(1)
Ifa # 0,b # 0,c # 0 then from the equation (i) we get,

ax +by =—c

ax by —c . :

—t—=—=— (Dividing both sides by — ¢)

c ¢ c

x Y

cte=-1

a b

X

= + Y -1

) &)
a b
. . . . . . _C . .
which is the required intercept form of equation of line, where s the x-intercept

—c
and m is the y-intercept.

e Reduce the general equation ax + by + ¢ = 0 into Normal form.
The general equation of straight line is

ax + by +c =0
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Let the normal equation of line is
xcosa + ysina —p =0 where p > 0 ... (i)
By comparing equation (i) and (ii) as both the equations are identical, we get;
cosa _sina _ —p

a b ¢ k
Thus cos a = ak and sina = bk, p = —ck.
Squaring and adding we get;
cosa? + sina? = a?k? + b2k?
= a’k®+b%k? =1
= k=% 1
a2+b?
Since p is always positive therefore select k as positive. Thus, the equation (ii)
becomes;
a b c

\/a2+b2x+\/a2+b2y:_\/ﬁ - (i)
which is the required normal form of equation of line.
| Exercise73 )
I. Find the equations of the straight lines parallel to the coordinate axes and passing
through the point (3, —4).
2. Find the equations of the straight lines parallel to the coordinate axes and passing
through the point (5, 2).
3. Write the equation of the straight lines parallel to x-axis which is at a distance of 5
units from above the x-axis.
4. Find the equation of a line parallel to y-axis which is at a distance of 6 units on its left.
5. Find the equations of the straight line determined by each of the following set of

conditions.
(1) through (5, —2) with the slope 4

-2
(i1) through (—1, —4) with the slope 3

(iii)  through (5, 2) with slope%

(iv)  through (0, b) with the slope m.

v) through the points (7,—3) and (—4,1)
(vi)  through the points (5, —5) and (—3,1)
(vii)  through (at?,2at;) and (at2,2at,)



10.

11.

12.

13.

7.5

(viil)  y-intercept = 3; slope = 2

(ix)  y-intercept = —2; slope =

-2
3
(x) y-intercept = —5; slope = %
(xi)  y-intercept = 0; slope = 0
(xii)  x-intercept = 4; y-intercept = 3
(xiil)  x-intercept = —2; y-intercept = 5
(xiv)  x-intercept = —5; y-intercept = —1
(xv)  the perpendicular from the origin to the line, p = 3 units and it makes an
angle a = 60° with x-axis.
(vi) p=3,a=150°
Reduce the equation 3x + 4y — 12 = 0 to the
(1) slope-intercept form (i1) two-intercept form
(i)  Normal or Perpendicular form
Find the equations of the sides of the triangle whose vertices are (1,4), (2, —3) and
(—-1,-2).
Find the equation of the perpendicular bisector of the segment joining (—1,2) and
(9,12).
The x-intercept of a line is the reciprocal of its y-intercept and line passes through
(2,—1). Find its equation.
Find the equation of the line which passes through (—2,—4) and the sum of its
intercepts equal to 3.

Find the equation of the line which passes through (5, 6) and the y-intercept is twice
that of the x-intercept.

3
Find an equation of the line through (11, —5) and parallel to a line having slope p

Find an equation of the line through (—4, —6) and perpendicular to the line having

Distance of a Point from a Line

We know that using the distance formula we can find the distance between the two points

that could be a distance between two objects, a distance between two houses, etc. Similarly, the
distance from a point can be measured from a line as well. Thus, the perpendicular distance of a
point from a line is the shortest distance between the point and the line.

Plane Analytic Geometry: Straight Line
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7.5.1 Recognize a point with respect to position of a line

As we know that a line divides a plane into two regions such that every point of the
plane not on the line lies in one of the regions. Thus, if a line is not parallel to y-axis, every
point of the plane not on the line is either above the line or below the line.
Theorem 1: Let / denote the line ax + by + ¢ = 0 with b > 0.

If P(x4,y,) is a point above the line /, then ax; + by, + ¢ > 0.

If P(xy,y,) is a point below the line /, then A
ax, +by; +c <O0.
Proof: Through P; draw a line [’ parallel to y-axis, intersecting
the line / at a point M (Fig. 7.21).
Now the abscissa of the M is same as the abscissa of x%
Py, viz, x4. Let us denote the ordinate of M by y,, so that M
is the point (x4, ). M(x1, y2)
If P; is a point lies above the line then y; > y,. Since 4 /
b > 0 we have by; > by,. Adding ax, + c to both sides of
this inequality we have

Fig 7.21

axy + by, +c>ax; +by, +c
Since M (x4,y,) lies on the line /, ax; + by, + ¢ = 0.
Thus, ax; +by;+c >0
If P; (x4, 1) is a point lies below the line then y; < y, and in a similar way we can

show that
ax; +by; +¢c <0

The following is the converse of the theorem 1.
Theorem 2: Let / denote the line ax + by + ¢ = 0O withb > 0.
(1) If x4 and y; are real numbers such that ax; + by; + ¢ > 0 then the point
P; (x4, y1) lies above the line /.
(i) If x; and y; are real numbers such that ax; + by; + ¢ < 0 then the point
P; (x4, y1) lies below the line /.

Note: The above two theorems should be used after the equation of the given line

has been put in the general form; i.e., ax; + by; + ¢ =0 with b > 0

In case b = 0 the line would be parallel to y-axis then the question of a point below
or above does not arise.
Example: Find whether each of the points (=8, —3), (10, —5), (=35, 9) is above or below the
line2x — 3y + 4 = 0.
Solution: First of all, we write the equation of straight line in the form in which coefficient of
y is positive. Thus,
—2x+3y—4=0



Plane Analytic Geometry: Straight Line

For the point (=8, —3), we have,
-2(-8)+3(-3)—-4=3>0

Hence (—8, —3) lies above the given line. Again, for the point (10, —5), we have,

-2(10) + 3(=5) -4 =-39< 0

Hence (10, —5) lies below the given line. Again, for the point (=35, 9), we have,
-2(-35) +309) —-4=93>0

Hence (=35, 9) lies above the given line.

7.5.2 Find the perpendicular distance from a point to the given straight line.
Consider a line l: ax + by + ¢ = 0 and a point P(x;,y;) not on [.

To find perpendicular distance of P from [. K
Through P, draw a line I perpendicular to [ cutting [ at Q. l\ 7
(Fig. 7.22)
P
Slope of [ = —% = slope of ' = g (e1.1)
Q
Equation of ' isy — y; = b (x—xq1) ,
a X< \> X
= bx —ay +ay; —bx; =0 0 /
To find Q, we solve equation of [ and I, we get !
x _ y _ 1 Yy
b(ay, —bx;) +ac  bc —a(=bx; +ay;) —a?—b? Fig 7.22
x 1 y 1
= = and =
aby; — b%?x; +ac  —a? — b? bc + abx; —a?y; —a? —b?
aby, — b%x; + ac bc + abx; — a®y,
= = 2_p2 = ¥= 2 _ 2
—a*—b —a*—b
So,
_ b*xy —aby; —ac _ a’y, —abx; — bc
B a? + b? y= a’? + b?
2
b“x;—aby,—ac a’y,—abx,;—b
Thus, the coordinates of Q are( il yzl acana le C)
a’+b a’+b

By using distance formula,

_ b2x, —aby, — ac z a?y, —abx, — bc 2
d=|QI=J< e —x1)+( o —y1>

a? + b2 a? + b2

(@? + b2)? (@? + b?)?

3 \/(ale + aby, + ac)? (abxy + b?y; + bc)?
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_|a(axy + by, +¢)*  b%(ax; + by, + ¢)?
B (a? + b?)? (a? + b?)?

(ax; + by, + ¢)?(a? + b?)
(a2 + b?%)?
Q= ax; +by; +¢
Va2 + b2
d is always +ve
_|axq+by +c|
\}a2+b2

In case b = 0, the same formula holds.

Example: Find the distance of the point (—3,5) from the line 4x — 3y — 26 = 0.
Solution: Given equation of a line is: 4x — 3y — 26 = 0 and the point (x;,y;) = (=3,5)

d

Comparing these with the general forms,
a=4, b=-3, c=-26
We know that the perpendicular distance (d) of a line ax + by + ¢ = 0 from a point
(x1,y4) is given by
fax, + by, +c
=]

After substituting the values, we will get;

d=

L@ + 3 - 26
J@? 1 (32
53
d=

7.5.3 Find the distance between two parallel lines B
Yy L, y=mxta
A

The distance between two parallel lines is equal to the 4 f L y=mx+c
perpendicular distance between the two lines. We know that the
slopes of two parallel lines are the same; therefore, the equation of
two parallel lines can be given as:

y =mx + ¢ (1)
y=mx + ¢ .(11) d >

The point A (—%,0) is the intersection point of the

C
Al——,0
second line and the x-axis (Fig. 7.23). The perpendicular distance ( m ) Fig 7.23
from A to [; will be the required perpendicular distance between
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two parallel lines. The distance between the point A and the line y = mx + ¢, can be given
by using the formula:

ax1 + by, +c
m
( m) -G
Ja+ m2
|C1 — Gl
CVi+m?
Thus, we can conclude that the perpendicular distance between two parallel lines is given by:
d= lc; — ¢l
V1 +m?

Example: Find the distance between two parallel lines 3x + 4y = 9and 6x + 8y = 15.
Solution: Given equations of lines are:

3x+4y=9 ..()
6x + 8y =15
15 .
or 3x+4y =5 ...(ii)

Now, by comparing with the general equations of straight lines we get;
a=3b =4, =—-9andc, = —— —15

2
Thus, the required distance will be;

-
— JB2 + @72

d_3
"5

That is the required distance between two lines.

Exercise 7.4 )

Determine whether each of the specified points is above or below the given straight
line:

(1) 3x+11y—44=0,(10,1),(—4,6) and (5, 3)

(it) 10x — 12y + 17 = 0,(—20,-15),(5,5) and (100, 84)

(i)  29x — 17y + 31 = 0,(0,2),(—3,-3) and (20,30)

In each of the following, find the perpendicular distance from the point to the line;

(1) 15x -8y —-5=10,(2,1)

(i) 3x—4y+5=0,(4,-3)
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(i) 3x+4y+10=0,(3,—-2)
ivy 2x—-7y+1=0,(74)
) 5x + 12y — 16 = 0,(3,-1)

3. Find the distance between the parallel lines;
(1) 5 — 12y + 10 = 0,5x — 12y — 16 = 0
(i1) x+y—-2=02x+2y-1=20
(i) 4x —3y+12=04x -3y —12 =0

7.6  Angle Between Lines

7.6.1 Find the angle between two coplanar intersecting straight lines

Let the equations of the straight lines l; and [, are y = myx + ¢; and
Yy = myx + c, respectively intersect at a point P and make angles 6, and 0, respectively
with the positive direction of x-axis as shown in Fig. 7.24.

Let £APC = 0 is positive angle from [; to [,.
Clearly, the slope of the line [; and [, are m, and m, respectively.

Then, m; = tan6; and m, =tan6,

Now, from the elementary geometry y h
A
8, =0+86; = 0 =0, 6 o 4
B
_ _ tanB,—tan0, P
Now, tan@ = tan(62 - 61) = W 8
Thus, substituting the values of tan 8, and tan 8, for
m, and m, respectively, we have; /
. m, —my 01 )92 >
tan6—1+m1m2 x4 0 jC >

It should be noted that the value of tan® in this
equation will be positive if 0 is acute and negative if 6 is

obtuse.
e The angle between two lines having equations ly: a;x + b;y + ¢ = 0and [,: a,x +
— 0 B = pan-1%2b1~%1by
b,y +c, =0is 6 = tan a,a,7b by

i1
e Ifthe lines l; and [, are perpendicular, then 8 = 90° or E . Thus, we have,

m; —my
1 + mlmz = —tane
my—my
= 1+mm, = tan90°
mo—m
= 1 + m1m2 = 2 1

(o)
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1+mm, =0
= mym, = —1ora,a, + b;b, =0
This is the condition for two lines to be perpendicular.
e If'the lines [; and [, are parallel, then 8 = 0° or  radian. Thus, we have,
a;b; —a.b, =0

o If two linear equations have the same x and y coefficients, the lines represented by
them are parallel.

o If the coefficients of the later of the two linear equations are those of the former
reversed in order and with the sign of one coefficient changed, the lines represented by
them are perpendicular.

For example, line ax + by + ¢ = 0 is respectively parallel toax + by + ¢; =0
and perpendicular to ax — by + ¢, = 0.
Example 1.If A(=2,1), B (2,3) and C (-2, —4) are three points, find the acute angle between
the straight lines AB and BC.
Solution: Let the slope of the line AB and BC are m; and m, respectively.

3-1 1 _—4-3_7
Then, my = m = z and m, = —_2_2 =1z
Let 6 be the angle between AB and BC. Then,
m,—m 2
1+mym, 3

0 =tan"! (%) is the required acute angle.

Example 2. Find the acute angle between the lines 7x — 4y = 0 and 3x — 11y + 5 = 0.
Solution:
Method 1: First we need to find the slope of both the lines.

7
Thus, 7x — 4y = 0 the slope of the line is "

3
Again, 3x — 11y + 5 = 0, the slope of the line is T
mp—m
1+m1m2
3

1+ (1) (7)
v Oisacute . 6 = 45°.

Method 2: The given two equations of the lines are 7x —4y = 0 and 3x — 11y +5 = 0.

Using the formula, we have; tan 6 =

0 = tan” = tan"1(1)
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Here we have a; = 7,b; = —4,a, = 3 and b, = —11.
The angle between the two lines can be calculated using the formula

_ 3¢9 -((-1D)
B+ H1D
~12+77 65

T 21+44 65
tanf=1 = 0=45°
7.6.2 Find the equation of family of lines passing through the point of
intersection of two given lines.

A family of lines is a set of lines having one or two factors in common with each other.
Straight lines can belong to two types of families: one where the slope is the same and one

where the y-intercept is the same. {
h

Consider the two straight lines;

ax+by+c =0 ...()

a,x+b,y+c; =0 (1) g
For any nonzero constant k, the equation of the form

ayx+by+c +k(ax+byy+c,)=0 ...(1ii)

being linear in x and y is an equation of a straight line. Y L +kh

If (x4, y,) is the point of intersection of line (i) and (ii) ’ Fig 7.25
then it must satisfy the both equation (i) and (ii);

a1x;+by; +¢;,=0 ...(1v)

ayx1+byy, +c; =0 (V)

Next, we check whether the point (x4, y;) lies on (iii) or not. For this, we replace x by
x4 and y by y; in equation (iii), we will get,

ayx1 + biy; + ¢4 + k(azxy + by, +¢,) =0 ...(vi)
Using equation (iv) and (v) in Equation (vi), we will get;
0+k(0)=0

This shows that equation (vi) is true for all k and for x = x4, ¥y = y;. Thus, the point
(x1,v1) lies on (vi) for all k. Equation (vi) represents the equation of the line through the point
of intersection of lines (i) and (ii). Since k is any real number, equation (vi) shows that there
will be an infinite number of lines (Family of Lines) through the point of intersection of lines
(1) and (iii).
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Example: Find the equation of a line through the point (1,3) and the point of intersection of
lines 2x —3y+4=0and4x+y—1=0.
Solution: The family of the equation of a straight line through the point of intersection of lines
2x — 3y + 4 =0and4x + y — 1 = Oisgivenas
2x =3y +4+k(dx+y—-1) =0 ()
Since the required line passes through the point (1,3), this point must satisfies the
equation (i) i.e.
2)-33)+4+k(@()+3-1)=0-3+6k=0
k=12
Substituting the value of k in the required equation of a straight line, we have
2x =3y +4+ 124x+y—-1) =0
8x — 5y + 7 = 0 is the required equation of straight line.
7.6.3 Calculate angles of the triangle when the slopes of the sides are given

The angles of triangle will be calculated using the formula as discussed in section 7.6(i)
my; — My
tanf = ————
1+mym,
where m, and m, are the slopes of two lines.

Example: Find the angles of the given triangle, the slopes of the sides AB, BC and AC are
—3,2 and § respectively.
Solution:
Let m, is the slope of AB i.e., m; = —3, m, is the slope of BC i.e., m, = 2 and mj is
the slope of AC i.e., m3 = %

Assume 8, is the positive angle from AB to AC, 8, is the positive angle from BC to
AB and 05 is the positive angle from AC to BC.

Now,
_my—mg
tan, = 1+mym;
1

-3-(3)
tan0, = — 1~

1+-3)(3)
tan@; = — (undefined)
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Similarly,
_ My —m
tan 62 - 1+ mim,
=3)-(2)
tanf, = ———
R T E)16))
tan@, = —
an@, = -
62 = 4‘50
and

These interior angles of the triangles are 90°,45° and 45°.

63 = 1800 - 91 - 92
0; = 180° — 90° — 45°

93 = 4‘50

Exercise 7.5 )

What is the angle between two lines when they intersect at origin and one of the line
passes through (2, 3) and the other line passes through (=3, 6)?

Find the angle between the following two lines. [;: 4x — 3y = 8 and l;: 2x + 5y = 4.
Find the acute angle between l;: y =3x 4+ 1andl,:y = —4x + 3.

Find the angle between two lines, one of which is the x-axis and the other line is
x—y+4=0,is?

Find the angle between the lines 2x — 3y + 7 = Oand 7x + 4y — 9 = 0.
Find the equation of line through point (3, 2) and making angle 45° with the line
x— 2y = 3.

Determine the measure of the acute angle between the straight-linex —y +4 = 0
and the straight line passing through the points (3, — 2) and (-2, 4).

Find the equation of family of lines that pass through the point of intersection of
2x + 3y — 8 = 0andx — y + 1 = 0. Also find the point of intersection.

Find the equation of a line through the intersection of the lines;

1 2x + 3y + 1 = 0,3x — 4y =5 and passing through the point (2, 1).

(i1) x — 4y =3,x + 2y = 9 and passing through the origin.

(i) 3x + 2y = 8,5x — 11y + 1 = 0 and parallel to 6x + 13y = 25.

(iv) 2x =3y + 4 = 0,3x + 3y —5 = 0 and parallel to y-axis.

) 5x — 6y = 1,3x + 2y + 5 = 0 and perpendicular to 5y — 3x = 11.
(vi) 3x —4y +1=05x+y —1 =0 and cutting off equal intercepts




from the axes.
(vi))  43x + 29y + 43 = 0,23x + 8y + 6 = 0 and having y-intercept —2.
(viii) 2x + 7y — 8 = 0,3x + 2y + 5 = 0 and making an angle of 45° with
the line 2x + 3y — 7 = 0.
10. Find the angles of the triangle with the given vertices (1, 2), (3,4) and (2,5).
11. What are the angles of the triangle with vertices A(3,2), B(4,5) and C(—1,—1)?

12. Find the angles of triangle where the slopes of its sides, are 3, %, -2.

7.7 Concurrency of Straight Lines

7.7.1 Find the condition of concurrency of three straight lines

Three or more distinct lines are said to be concurrent, if they pass through the same
point. The point of intersection of any two lines, which lie on the third line is called the point
of concurrence.

Let the equations of the three concurrent straight lines be;

a;x + by +c=0 ..(D)

ax + by + ¢, =0 ...(11)

azx + b3y + c3=10 ...(ii1)
Suppose the equations (i) and (ii) of two intersecting lines intersect at P(xy, y;). Then (xq,y;)
will satisfy both the equations (i) and (ii). Therefore, I

A
alxl + b1y1 + Cl = O and

a2x1 + b2y1 + C2 = 0
Solving the above two equations, we get,
X1 Y1 1 L«

bic; —byc;  cia; —cay  ajhy —azhy

(x1, 1)

Therefore,
_ bz —bycq

x =
! a;b, — ayby v

C1ay — Cyal Fig 7.27
= aib; —azby

where a;b, —a,b; #0

Therefore, the required co-ordinates of the point of intersection of the lines (i) and (ii)
are;

(b1cz —bycq C1ap — Cza1)
ayb, — azb,’ a;b, — azby
where a;b, —a,b; #0

Plane Analytic Geometry: Straight Line
A
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Since the straight lines (i), (ii) and (iii) are concurrent, hence (x;,y;) must satisfy the
equation (iii).
Therefore,

agxl + b3y1 + C3 = O

bic; — bycq <C1az - Cza1>
= 4z z1 4z 21 =0
3 (albz - azbl) 3 aib, —a,bq T
= az(bicy — bycy) + b3(cra; — czaq) + c3(a1by, — azhy) = 0
a; by ¢
=4 a, bz G| = 0
as bs ¢

This is the required condition of concurrence of three straight lines.

The above condition is not sufficient to ensure that the three given lines are concurrent.
However, it can be shown that, if the above determinant vanishes, then the lines are concurrent.

Example 1. Show that the lines 2x —3y+5=0, 3x+4y—7=0and 9x—5y + 8 =0
are concurrent.
Solution: The given lines are 2x — 3y +5=0, 3x +4y—7=0and9x — 5y + 8 =0

2 -3 5
We have, 3 4 —7‘ =0
9 -5 8

=2(32-35)—-(-3)(24 +63) + 5(-15-36)
= 2(—=3) + 3(87) + 5(=51)
=0

Therefore, the given three straight lines are concurrent.

Example 2. For what value of ‘a’ the lines 2x + y — 1 = 0,ax + 2y — 2 = 0 and
2x — 3y — 5 = 0 are concurrent.

Solution: The given linesare 2x + y — 1 = 0,ax + 2y — 2 = Oand2x —3y—-5=0,

We have;
2 1 -1

We have, a 2 =2 ‘ =0
2 -3 -5

=2(-10-6)—1(-5a+4)—1(-3a—-4)=0
=-32+5a—-4+3a+4=0
a=4
7.7.2 Find the equation of median, altitude and right bisector of a triangle the
equations of altitudes of triangle:
Consider AABC be a triangle as shown in Fig. 7.28.
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The equation of the altitude through vertex A (Fig. 4
7.28) can be calculated using the following steps;
¢ Find the slope of BC.
o Since AD and BC are perpendicular to each otherso 1. E
using the coordinates of point B and C we will get;
slope of AD X slope of BC = —1.

— -1
slope of AD = W _]
e  Using the slope intercept form of equation of a line. B D C

The equation of altitude of AD is y = mx + ¢;, Fig 7.28

where m is the slope of AD. For finding c; we will use the coordinates of point A.
e Thus, using the slope of equation of AD, i.e. m, and y intercept c; we will get, the
equation of altitude of AD, as follows; y = mx + ¢;
Similarly, we can find the equations of altitudes through the vertices B and C.
Example 1. A(3,2) B(6,—2) and C(—7, 3) are the vertices of AABC. Find the equations of
the altitudes through A
Solution: Given that Here we have A(xy,y,) = A(3,2), B(x2,¥,) = B(6,—2) and C(x3, y3) = C(=7,3).
For equation of the altitude through A (Fig. 7.29);

we have; slope of BC = Y21
Xo—Xq
BF 3+2
slope of BC = ﬁ AG.2)
A _ 5
slope of BC = rEl
and slope of AD (where D is the point on the BC) will be;
slope of AD = :_;
=5 11?? B (6,-2) C(-7,3)
slope of AD == Fig 7.29

Now the equation of altitude of AD
y=mx+c

or y= %x +c
For finding c; we will use the coordinates of point A, i.e.,

13
2 =?(3) +C1
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Thus, the equation of the altitude through the point A is

or 13x =5y —-29=0
e Equation of medians of triangle
The equation of the median through vertex A (Fig. 7.30) A
can be calculated using the following steps;
e Using midpoint formula, find the midpoint of BC,
which gives the coordinates of point D. F E
e Find the slope of median AD using the points A and
D.
e Using point slope form equation y —y; = m(x —
x,), find the equation of the median AD.

D C

i . . B
Similarly, we can find the equations of medians through Fig 7.30

the vertices B and C.
Example 2. Find the equations of median of AABC with vertices A(1,2) B(—2,5) and
C(=7,4) through A.

Solution: Here we have (xq,y;) = A(1,2),(x5,¥,) = B(=2,5) and (x3,y3) = C(-7,4).

Let D and F be the midpoints of the sides BC,
Now, for the equation of Median AD:

— +

Midpoint of BC = (@ , }’12_)’2)
_((=2)+(=7) 5+4
Bl 2 T2

(22

Now, find the slope of AD, i.e.,

()’2‘3’1)

m=

X2 — X1
9
-9
T—l

5
11
Now, equation of median AD is as follows:

y—y1 =m(x —x)

)
y
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y—2= —%(x -1
11y —22=-5x+5

or 5x +11y—-27=0
e Equation of the right bisector

or

The equation of the right bisector through BC (Fig. 7.31) can be calculated using the
following steps;

e Find the slope of BC. B
e Take its negative reciprocal as it is making a
perpendicular line.
o Find the midpoint of BC.
e Use y =mx +c formula for finding the
equation of line using the steps 2 and 3.
Similarly, we can find the equations of right bisectors 4 I ¢
through the vertices AC and AB. Fig 7.31

Example 3. Find the equation of right bisector of AABC with vertices A(1,2) B(10,—6) and
C(—7,2) through A.
Solution: Here we have A (xq,y,) = A(1,2),B(x,,y,) = B(10,—6) andC (x3,y3) = C(—7,2).

Now, for the equation of right bisector through BC, we have;
Y2
X27X1
2—-(-6)
-7-10
8
-17

slope of BC =

17 C (10, -6)
Then its negative reciprocal is e

Now, find the midpoint of segment BC; /

Midpoint of BC = (xlzﬂ) yl‘;yz) 0

B ((—7) +10 2+ (—6))

A (_17 2) B (_7a 2)
Fig 7.32
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Now, equation of right bisector haring slope m =17/8 and point (% ,—2) 1s:
y=mx+b

=2

-83
16
17 83
YT8" 16
or 34x — 16y —83 =0
7.7.3 Show that
e three right bisectors,
o three medians,
o three altitudes, of a triangle are concurrent.
e three right bisectors of the triangle are concurrent
Let A(—a,0), B(a,0) and C(0, b) are the vertices of triangle as shown in Fig. 7.33.

or b=

Here [;, y-axis and [, are the right bisectors of sides BC, AB and AC respectively.
First, we find the equation of each right bisectors.

Equation of right bisector through AB
Equation of right bisectors through AB is

x=0 o ...(1)
e Equation of right bisector through BC

Slope of BC = %b

a \
Slope of [; = 3 C (0, b)
BC =

Mid-point of BC (%g) i

Equation of [; is
a
y= (E) x+c
c o T TS AT B (@, 0)
2 \b/\2
2 g
b"—a? y
2b Fig 7.33

Equation of right bisector through BC is
2

- e+ (25

Similarly, equation of right bisector through AC

&
<

—1 C1=
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2
a b“—a?
y= (_E)x+<2—b) ...(iii)
By solving equation (i) and (ii)
2_2

We get, x=Oandy:b2_a

Similarly, by solving equation (i) and (iii)

b%—a?
We get, x=0andy = b

2_.2
Sincex =0andy = Z—ba satisfy this equation (iii).
. b2—a?) . . . . .
Since |0, —p |18 the intersecting point of three bisectors.
Therefore, right bisectors of triangle are concurrent.

e Three medians of a triangle are concurrent

Consider AABC be a triangle as shown in Fig. 7.34 y
with A(—2a,0),B(2a,0) and C(0,2b) are its vertices. C (0, 2b)
The equations of the median through vertex A, B and
C (Fig. 7.34) will be calculated as follows: E D
Midpoint of AB = F = (0, 0) )
- X< » X
Midpoint of BC = D = (a, b) A (-22,0) |F B (2a,0)
Midpoint of AC = E = (—a, b)
The equation of median AD by using two-point form b
. Fig 7.34
of equation.
b—0 y-0
a+2a x+2a
= bx + 2ab = ay + 2ay
= bx —3ay +2ab =0 ...(1)
Similarly, equation of median BE is
bx —3ay — 2ab =0 ...(ii)
and equation of median CF is
x=0 ...(ii1)
Now the determinant of coefficient of equation (i), (ii) and (iii)
b —-3a 2ab
b —-3a -2ab|=0
1 0 0

Hence the medians of the triangle are concurrent.



Plane Analytic Geometry: Straight Line

o Three altitudes of a triangle are concurrent.

Consider AABC be a triangle as shown in Fig. 7.35 with A(a, 0), B(b,0) and C(0, ¢).
Let the base AB of triangle be taken as axis of x and a line through C perpendicular to base AB
is taken as the axis of y. The point of intersection is G.

The equations of the altitudes through vertex A, B and C (Fig. 7.35) will be calculated
as follows:
Now, the equation of altitude through C is as follows;
x=0 (1)
Now, we will find the slope of BC and CA of the triangle, respectively,

Yo—V1
X27X1

c—0
“0-b
Slope of BC = —

Slope of BC =

[l

and Slope of CA = —%

So, the slope of the respective lines perpendicular

b a
to them are —and —.
c c

Now, the equation of altitude from A is as follows;

y =y =m(x—x)

b
y=0=-(x-a
or bx—cy—ab=0 ...(11)
Now, the equation of altitude from B is as follows;
y =y =mlx—x)
a
y-0==2 (x—b)
or ax—cy—ab =10 ...(i1)

Now, the determinant of the coefficients of equations (i), (ii) and (iii) is

1 0 0
b —c -ab
a —c -—-ab

which is zero. Hence the altitudes of a triangle are concurrent.




7.8
7.8.1

the elementary geometry, the area of triangle ABC, i.c.; A;

where
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Exercise 7.6 )

If A(2,5),B(3,7) and C(0, 8) are the vertices of a triangle then find the
(1) Equation of median through A
(ii) Equation of altitude through B
(iii) Equation of right bisector of side AC
Show that the following lines are concurrent. Also find their point of concurrency.
(1) X —y =06,4y + 22 = 3xandb6x + 5y + 8 =0
y

i) Z+2=1%+%=1ad
(i1) sty =L, = andy = x.

(i) S5Sx+y+11=0,x+7y+9 =0and2x +y +5 = 0.

If A(—1,5),B(2,3) and C(7,6) the vertices of triangle, then show right bisectors,
medians and altitudes the triangle is concurrent.

Area of a Triangular Region

Find the area of a triangular region whose vertices are given

Consider AABC be a triangle as shown in Fig. 7.36 with the coordinates of triangle in

anticlockwise direction, i.e.; A(x1,y1), B(x3,¥,) and C(x3,y3).

Let AD be perpendicular to BC (Fig. 7.36). By using A A

1
A= 3 X (base) x (Altitude)

C(x3,¥3).

C(x3,y3)
1 D
= E X |BC| X |AD| e B(x2,2) .
_ ‘O »
BC =/(x; — x3)2 + (¥ — y3)? v
Also, the equation of the line / of which BC is a Y Fig 7.36
segment can be found, as it passes through B(x,,y,) and
So, the equation of / is;
_ =3’3_}’2(x_x )
Y=y X5 — X, 2

or (V2 —y3)x 4+ (X3 —x2)y + X2¥3 — X3y, = 0
Now |AD| = The perpendicular distance of A(x;,y;) from the line / is;
_ ((y2 = y3) X1 + (x3 = X2)y1 + X2¥3 — X3Y;
V(2 = x3)% + (72 — y3)?
Thus, area of triangle ABC is;
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1
A= 3 X (base) x (Altitude)

1
= E{()’z —y3) %1+ (x3 —x)y1 + (X2y3 — x3¥2)}

11%r N 1
= 7 X, yo 1
x3 y3 1

Using the properties of determinant this result can also be written as;
A= X2 =X1 V2 —J’1|
X3 —X1 Y3~ N
Corollary 1: If A, B and C are three collinear points, then the area of triangle ABC = 0,
i.e., the condition for collinearity of three points A(xy,y;), B(x2,y) and C(x3,y3) is;

1% N 1 X y 1
A=§x2 y2 1 =0= |xz y; 1l =0
x3 y3 1 x3 Y3 1

Corollary 2: The area of polygon whose vertices (x1,y1),(x5,3,), (x3,¥5), ... (6, %)
taken in order in anticlockwise direction is;

1
= E{(xﬂ’z —xy1) + (Y3 —x3¥2) + ..+ (Y1 — X1V0)}
Area of a quadrilateral can thus be written as

Area=l|x1_x3 Y1=Ys
21X = X4 Yo — Va4

Example: Find the area of the triangle whose vertices are

(1) (2,9),(=2,1) and (6, 3) (i) (3,8),(7,2) and (—1,1)
Solution (i): The area of triangle with the vertices (2,9), (—2,1) and (6, 3) is given by;
2 91
A=-1-2 1 1
2 6 31
1
= 5{2(1 -3)-9(-2-6)+1(—-6—-06)}
L 56)
=5 (

= 28 square units.
Solution (ii): The area of triangle with the vertices (3, 8), (7, 2) and (—1, 1) is given by;

113 8 1
A=E 7 2 1
-1 1 1

1

= E{3(2 -1)-8(7+1)+1(7+ 2)}
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—1 52
_E(_ )

= 26 square units.
(Neglecting the negative sign as area never be negative)

Exercise 7.7 )

1. Find the area of the triangle whose vertices are:
1) (11,-12),(6,2) and (-5, 10) (i) (3,1),(—2,5) and (—4,-5)
(iii)  (=5,—-2),(4,—6)and (1,7)
(iv) (=a,b + ¢),(a,b — c¢)and (a,—c)
) (acos®,,bsinB,),(acosB,,bsinb,) and (acosB;,bsinb;)
2. Find the area of a quadrilateral whose consecutive vertices are;
1) (3,—-3),(7,5),(1,2) and (—3,4)
(i1) (2,3),(—1,2),(—3,2) and (3,-3)

3. Prove, by the method of the area of a triangle, that the following points are collinear;
(1) (2,3),(5,0),and (4,1) (i) (2,1),(4,—-1),and (1,2)
(i)  (=1,-1),(5,7) and (8,11)

4. Find the area of triangle formed by the lines;

1) y =0y =2xandy = 6x + 5
(i1) y—x=0y+x=0andx —c =0.
(i) y=2x+ 3,2y +3x =3andx +y + 2 = 0.

7.9 Homogenous Equation

7.9.1 Recognize homogeneous linear and quadratic equations in two variables
When a straight line passes through the origin, then its equation will become
ax + by = 0 and is known as homogeneous linear equation in two variables.
Similarly, in general quadratic equation in two variables
ax? + by? 4+ 2hxy + 2gx + 2fy +¢c =0
if g = f = ¢ = 0 then it becomes homogeneous quadratic equation in two variables,
we write as ax? + 2hxy + by? = 0
7.9.2 Investigate that the 2nd degree homogeneous equation in two variables x
and y represents a pair of straight lines through the origin and find acute
angle between them.

Let I; and [, are two straight lines passing through the origin and y = m,x and
y = m,x are the equations of [; and [, respectively, as shown in the figure 7.37.
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Now, take any point P on the line [;. The path it travels
on these two lines is its locus. To find the equation of the locus “@5‘
we multiply equation of /; and [,

ie., (y—mx)(y —myx) =0

= mimyx? —(my +my)xy +y>=0 X< >

This is the equation of pair of straight lines passing through the
origin, which is homogeneous second order quadratic equation.

Theorem 1: A homogeneous equation of degree two inx and y,

v

ie., ax? + 2hxy + by? = 0 represents a pair of %
lines through the origin if h?-ab > 0. Fig. 7.37

Proof: Let the second-degree homogeneous equation in x and y be ax? + 2hxy + by? =0
where a, h, b are real numbers and not all zero.

Casel: Leta = Oandb = 0,buth # 0.
hxy = 0ash #0,xy =0
xy =0 = x=00ry =0

Separate equations are x = 0and y = 0 which are the equations of the coordinate axes.

ax? + 2hxy + by? = 0 represents a pair of lines through origin when a = 0 and
b = 0.
Case Il: Leta = 0, given equation becomes 2hxy + by? =0

y(2hx + by) =0givesusy = 0and 2hx + by = 0.

The two factors are linear in x and y and do not contain constant terms.

Hence ax? + 2hxy + by? = 0 represents a pair of lines through origin for a = 0. The
same thing can be proved by taking b = 0.

Case III: Leta # 0 Now, ax? + 2hxy + by? = 0, multiply both sides of equation by a;
a’x? + 2ahxy + aby? = 0
a’x? + 2(ax)(hy) + aby? =0

= a?x? + 2(ax)(hy) + h®y? + (aby? — h?y?) =0
= (ax + hy)? —y2(h* —ab) = 0

2
= (ax + hy)? — (y (h% - ab)) =0

(ax+hy—yw/ h? —ab )(ax+hy+yw/ h? —ab )=0

The two factors are linear in x and do not contain constant term. and lines will be real
if and only if h2- ab > 0. It is a pair of lines. Their separate equations

are (ax + hy-y,/h?-ab = 0and (ax + hy + yy h?—ab ) =0




which are separately satisfied by the origin. Hence ax? + 2hxy + by? = 0 represents
a pair of lines through origin, for a # 0.

Where their slopes are

—h +VhZ—ab
ml=T
—h—VhZ—ab
my=———

Combining the cases (1), (II) and (III) we get that every second-degree homogeneous
equation in x and y in general represents a pair of lines through origin.

Theorem 2: If m; and m, are the slopes of the two lines represented by

ax? + 2hxy + by? = 0 show that m; + m, = _TZh and mym, = %.

Deduce that lines are perpendicular if @ + b = 0 and lines are coincident if
h? = ab.
Proof: m; and m, are the slopes of the two lines represented by ax? + 2hxy + by? =0,
Equation of first line is y = myx, i.e, myx —y =0 and equation of second line is
y = myx,ie., myx —y = 0. Combined equation is:
(myx —y)(myx —y) =0
myx(myx —y) —y(max —y) =0
or mymyx? — (my + my)xy +y%2 =0
Also ax? 4+ 2hxy + by? = 0 is combined equation of the two lines. The equation
ax? + 2hxy + by? = 0 and m;m,x? — (m; + m,)xy + y? = 0 are identical.
Hence their corresponding coefficients are proportional.

a 2h b
mm, —(my+my) 1
Now
a b
mym, 1
a
mym; = b
Now
2h b
—(my +my) 1
—2h
mp+my = 5

Case — I: Lines are perpendicular if m;ym, = —1

Plane Analytic Geometry: Straight Line
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a=-b
a+b=0
Case — II: Lines are coincident if m; = m,
my—my; =0
(my —my)* =0
If (my + my)?2 —4mym, =0
Then substituting the values we will get;
—2h\? a
() -5
4h?  a
BT
h?—ab=0 = h?

0

Notes: 1. If h*~ab > 0 then ax’+ 2hxy + by’= 0 represents two real and distinct lines.
2. If B~ ab < 0 then ax’ + 2hxy + by’= 0 represents two imaginary lines.
3. If W= ab =0 then ax’+ 2hxy + by’= 0 represents coincident lines.

Angle between the lines ax2 +2hxy+by2=0
We know that angle 8 between two lines 1; and I, having slopes m;and m;is given by

o o m—my
tan0 = 1+ mym, ,
—2h a_
oty V) 4 (5)
= tanb = 1 =
+m1m2 1+ %
[ 2 [ 2
V(W) —ab 0 = tan'l(z (h) —ab )
a+b a+b

which is the angle between the two lines expressed as ax? + 2hxy + by? = 0.

Example: Find the equations of the pair of lines represented jointly by the given equation.
State nature of lines and also find the acute angle between lines 5x + 13xy — 6y% = 0.
Solution: Factorizing the given equation, we get;
5x2+13xy—6y2=0= (x + 3y)(5x — 2y) = 0

So, the given equations represent the lines x + 3y = 0and 5x — 2y = 0.

Now compare the given equation with ax? + 2hxy + by? = 0,s0,a = 5,2h = 13
andb = —6.

Putting the values in the expression h?— ab= <12—3)2— 5(-6)= % >0

Hence the lines are real and distinct.
Now, the acute angle between the lines is given by
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2
7) —5(-6) Y
5-6 6

0 =tan"1(17) = | 0 =86.63°

tan0 =

U Baerise7s )

Find the equations of the pair of lines represented jointly by each of the following

equations. State nature of lines and also trace the pair of lines;

@) x2=5xy+6y2=0 (i) 4x?—-xy—5y2=0

() 9x2-6xy+y2=0 (i)  10x2—3xy—y?=

(v)  7x?-3xy+5y?2=0

Find the combined equation of the pair of lines through the origin which are
perpendicular to the lines represented by

@) 2x2—-5xy+y2=0 (i) 6x2—13xy+6y2=0
Trace the pair of lines given by the following equations;

(i) x? —3xy+2y%= () x*2—6xy+9y?2=0
(i) 6x2—xy—y* =0 (vi) 8x%-3xy—y?=

Find the angle between the lines represented by;

@) x2=5xy+6y2=0 ()  3x%+ 7xy +2y°=0
(i)  x%+ 2xy —3y2 =0 iv) x2+xy—-2y2=0

The gradient of one of the lines of ax? + 2hxy + by? = 0 is twice that of the other.
Show that 8h% = 9ab.

Review Exercise 7 )

Select correct option.
(1) The slope of the line that passes through (—3,—4) and (7, 6) is
(@0 (b) undefined (c)—1 (d1

1
(i1) A line with a slope of > and a y-intercept 7 is
(a) 2y=x—-7 (b)y=%x+7

(c)y=%x—7 (dx—-2y=14
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(iif)

(iv)

™)

(vi)

(vii)

(viii)

(ix)

x)

Two lines are said to be parallel if and only if their slopes are

(a) Equal (b) Unequal
(c) Does not exit (d) negative reciprocals of each other
Two lines l; and [, are said to be perpendicular if and only if
1

(@) mymp = —1 (bymym, =1 (c)my =—my (d)ymy = m,
The slope of a line that is perpendicular to a vertical line is
(a0 (b)1 (c) 90° (d) undefined

The slope of the line which makes an angle 45° with the line 3x —y = =5 is

1 1

2 b) = -, -2 d) -2

@) ) ©3 @
The point on the line 2x — 3y = 5 is equidistant from (1, 2) and (3, 4) is

(@) (=2,2) (b) (4,1) (©) (1,-1) (d) (4,6)

In a plane three or more points are said to be collinear if
(a) they lie on a circle (b) they form a closed loop together
(c) they lie on a straight line (d) they do not make any defined shape

If the line coincides with x-axis then its equation is

@y =b (b) =b )y =0 (d)
The general equation of line also known as standard equation of line is,
(@ax +by+c=0 b))y =ax + ¢
x Yy
©y =3 =mx —x) @=+y=1

If the distance between the points (5, — 2) and (1, a) is 5, find the values of a.

M(3,8) is the midpoint of the line AB. A has the coordinates (—2,3), find the
coordinates of B.

The diameter of a circle has endpoints: (2, —3) and (—6,5). Find the coordinates of
the center of this circle?

Find the coordinates of the points which divides the join of P(—1,7) and Q(4, —3) in
the ratio 2 : 3.

Find the points of trisection of the line segment AB, where A(—6,11) and B(10, —3).
Two vertices of a triangle are (1,4) and (3, 1). If the centroid of the triangle is the
origin, find the third vertex.

Find the slope of the line which is perpendicular to the given line whose equation is
-2y = —8x + 9.

If a straight line intercepts the x-axis at (6,0) and intercepts the y-axis at (0, 5), write
the equation ofthe straight line in two intercept form.
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Determine the slope (gradient) and y-intercept of each line.
(a)y = 12x — 6 (b)y =5 — 2x
(c)4x —y +13 =0 (d)y = 4x
11. Find the x and y-intercept of the equation 4x + 8y + 2 = 0.
12. What is the value of k so that the line through (3, k) and (2, 7) is parallel to the line
through (—1,4) and (0, 6)?
13. Tell whether the following pair of lines is parallel, perpendicular or neither?
(@ay =2x + 7andy = 7x — 2 (b)x = landx = 5.
(¢)x = =3,andy = -3
14. For what value of k will the three lines y = 3x — 1, 2y = x + 3 and 3y = kx + 4 be
concurrent.

15. Find the value of a and b for which the lines given by ax — 2y — 1 = 0 and
6x —4y — b =0

(1) are parallel (ii) are perpendicular
(iii) coincided (iv) have no common point.
16. Find the equation of the line passing through the intersection of the lines

x+ 2y =5 =0and3x — 2y + 1 = Oand
(i) parallel to the line4x + 3y — 5 =0
(i1) perpendicular to the line 2x — 3y + 7 = 0.
17. Find the distance of the point from the line
(i)15x — 8y — 5 =0, (2,1) (i)2x — 7y + 1 = 0,(7,4)



Circle

Circle

e Weightage = 5% e Periods = 12

Unit

8.1 Conics

Introduction to conics

According to the Greek mathematicians, conics or conic sections are the curves that
can be obtained as intersections of a cone and a plane, the most important of which are circles,
ellipses, parabolas and hyperbolas.

With the advent of analytic geometry and calculus, conics got great importance in the
physical sciences. In 1609 Johannes Kepler presented his landmark discovery that the path of
each planet about the sun is an ellipse. Galileo and Newton showed that objects under the
gravitational forces can also move along paths that are parabolas and hyperbolas.

Nowadays, properties of conics are used in the construction of telescopes, radar
antennas, medical equipment, navigational systems and in the determination of satellite orbits.

8.1.1 Define conics and demonstrate members of its family, i.e., circle, parabola,

ellipse and hyperbola
As discussed earlier, the Greek mathematicians studied conics and i
defined them as sections of a right circular cone by planes. P DA

In analytic geometry, a conic is the path or locus of a point moving so
that the ratio of its distance from a fixed point to the distance from a fixed line

is constant. VR Vertex
A double right circular cone or simply a cone is the surface in three-

dimensional space which is generated by all the lines through a fixed point,

called “vertex” and the circumference of a circle as shown in Fig. 8.1. Q

All such lines are called generators. The line through the centre of the (Right‘gircular
circle and perpendicular to its plane is called “axis” of the cone. It also passes cone)
through vertex of the cone. Fig. 8.1

In Fig. 8.1, a double right circular cone or simply a cone is shown which has two parts
called nappes. F(j is the axis and AB is a generator of the cone, whereas V is the vertex.

A circle is a conic or curve which is obtained by cutting a cone with a plane that is
perpendicular to the axis and does not contain the vertex as shown in Fig. 8.2.

An ellipse is a conic or curve which is obtained if the intersecting plane is slightly tilted
and cuts only one nappe of the cone as shown in Fig. 8.3.
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A parabola is a conic or curve which is obtained if the cutting plane is parallel to a
generator of the cone but intersects its one nappe only as shown in Fig. 8.4.

-

a a |
Circle Ellipse Parabola Hyperbola
Fig. 8.2 Fig. 8.3 Fig. 8.4 Fig. 8.5

If the plane intersects both nappes but does not contain the vertex, the resulting
intersection is a hyperbola as shown in Fig. 8.5.

If the cutting plane passes through the vertex then it is possible to obtain a point, a line
or a pair of lines. These are called degenerate conics as shown in Fig. 8.6.

. . . . o »
(A point) (A pair ‘iif;:;;fseﬁmg (A single line)
Fig. 8.6

8.2 Circle and its standard form of Equation

We know that curves in plane are described by their equations. Likewise, circle has its
own equation which has different forms. First, we will discuss standard form of the equation
of circle.

8.2.1 Define circle and derive its equation in standard form

ie, (x—h?+(@y-k?=r1r2

We are already familiar with the concept of circle and its related terms. Let us recall
the definition of circle.

A circle is a set of the points in plane which are equidistant from a given fixed point.
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The fixed point is called the centre of the circle and the constant distance of each point of circle
from the centre is called radius of the circle.

e Standard form of equation of circle:
Let C(h, k) be the centre and r the radius of a circle as shown in the figure 8.7.

If P(x,y) is any point on the circle then using 4 y-axis
distance formula. P(x, y)

We have ICP| = /(x — R)2 + (y — k)2

or r=/(x—h)2+(y — k)2 (- 1cPl=7)
squaring both sides
we get (x —h)?*+ (y—k)* =r? L) o axis
Equation (i) represents the circle with centre (h, k)

and radius r. This equation is called standard form of equation

of circle or standard equation of circle. Fig. 8.7
If (h, k) = 0 then equation (i) becomes
x2+y?=r? ...(ii)

Equation (ii) represents the circle with centre at origin and radius r
Example 1. Find equation of the circle whose centre is at (—3, 5) and radius v/2 units.
Solution:

Here (h, k) =(-3,5)

and = /2 units

Using standard form of equation of circle.

We get (x+3)2+(y-57?%= (\/5)2
= x?+6x+9+y?—10y+25=2
=x2+y?+6x—10y+32=0
Example 2.  If P(3,4) is the point of a circle with centre at origin. Find the radius of the circle.
Solution: Let » be the radius of the circle. We know that equation of circle with centre at
origin and radius 7 is
x%+y?=r? .. (0)
 P(3,4) lies on this circle
-~ equation (i) becomes
32 +42 =72
=7r?2=25
= r = 5 units.
So, the radius of the circle is 5 units.
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8.3 General Form of an Equation of a Circle

General form of an equation of a circle is infact the simplified form of standard
equation of circle. Here, we will recognize its equation and find its centre and radius.

8.3.1 Recognize general equation of a circle x*> + y*> + 2gx + 2fy + ¢ = 0 and
find its centre and radius
Let us consider the standard equation of circle with centre (h, k) and radius
(x—h?+(@y-k)?=r?
On simplification, we get
x2+y?—2hx —2ky+h?+k?*—-1r2=0
using h=-gk=—fandh>+k?—-1r2=c

we get x2+y?+2gx+2fy+c=0 (1)

This equation is called the general form of the equation of circle or simply general
equation where

g.f,cERand g2+ f2—-c=>0

In order to find centre and radius of the circle of equation (i)

We convert equation (i) in standard form.

From equation (i), we get

x2+29x+ gD+ 2+ 2fy+fH—-g*—f?>+c=0

= x+9)2+@+)*=g*+f*-c .. (ii)

Comparing equation (ii) with standard equation of circle

We get centre = (—g, —f) and radius = W

If we compare general equation of second degree i.e.,

ax? + by? + 2hxy + 2gx + 2fy+c =0 ...(iii)

with general equation of circle represented by equation (i), we notice that equation (iii)
represents a circleif h =0anda =b = 1.

Incase a = b = k and h = 0, equation (iii) becomes

kx? + ky? + 2gx + 2fy+c=0 ..(iv)

which is also equation of circle, equation (iv) will take form of equation (i) if we
divide both sides by k.
Example 1. Find centre and radius of the circle x? + y2 + 14x — 6y — 6 = 0.
Solution: Comparing given equation of circle with general equation, we get

> 29 =14,2f = —6andc = -6

ie, g=7 f=-3andc=-6
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We know that
Centre = (—g,—f) = (=7,3)

radius = W
=V49+9+6
= /64 = 8 units.
Thus, centre of circle is (—7, 3) and radius 8 units.
Example 2. Find the value of k, if radius of the circle 3x? + 3y2 —18x + 12y + k=0 is
S units.

and

Solution: We have
3x24+3y?—18x+ 12y + k=0
Dividing both sides, by 3
so, we get
x2+y2—6x+4y+§=0
Comparing with the general equation of circle

2g=—6,2f=4andc=§

w| =

we get g=-3,f=2andc=
We know that

r= @ TP

S0, 5= /9+4—]§c (> r = 5 units)

k
= 25—13—§

k
= —-12 = §
or k=-36

so, the value of k is —36.

Exercise 8.1 )

1. Describe the condition under which a plane cuts right circular cone to produce.
(i) circle (ii) parabola (iii) ellipse
(iv) hyperbola (v) a degenerate conic

2. Find the equation of the circle if:
(i) Centre is at origin and radius 5v2 units.

(ii) Centre is (—5, 7) and radius 6 units.



8.4

(@)

Circle

(iii)  (2,—3) and (—4, 7) are the ends of its diameter.

(iv)  Centre is at origin and contains a point (5, 6).

V) Centre is at (2, 3) and contains the point (5, 7).

(vi)  Centreis at (p, q) and radius of W units.

Find the centre and radius of each of the following circles. Also draw the circles.

@) x2+y2-25=0

() (x+3)2+(y—-5)2=49

(i) x*+y?—-6x+8y+10=0

(iv) x2+y?-8x+9=0

(v) 5x2+5y2+20x—15y+10=0

Find the value of £ if the radius of the following circle is 10 units.
2x2+2y?—8x+4y+3k=0

Find the equation of the circle passing through (—3,—4) and is concentric with the
circle whose equation is x2 + y? — 6x + 8y — 24 = 0. Also identify the outer circle.

Show that the equation x = a cos 6 and y = a sin 6 represent a circle with centre at
origin and radius equal to a

Prove that the equation of a circle

(1) through the origin has no constant term.
(i1) with centre on x-axis has no term in y.
(iii) with centre on y-axis has no term in x.

(iv)  with centre at origin has no term in x and y both.

Equation of Circle determined by a given condition

In this section, we will find the equation of circle which is determined by the

following conditions.

8.4.1 Find the equation of a circle passing through:

e three non-collinear points,

e two points and having its centre on a given line,

e two points and equation of tangent at one of these points is known,
e two points and touching a given line.

Equation of circle passing through three non-collinear points

We know that one and only one circle can pass through three non-collinear points. So

a unique circle can be determined if three non-collinear points are given. The method of finding
equation of circle under this condition is explained in the following example.
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Example: Find the equation of circle through the points (3, 0), (0, —2), (-3, 4).

Solution: Let the equation of given circle be
x2+y2+2gx+2fy+c=0 ...(Q)
(3,0) lines on it
94+6g+c=0 ... (i)
As (0,—2) and (—3, 4) also lie on it. So, we have
4—-4f+c=0 ... (iii)
25—-6g+8f+c=0 ... (iv)
Subtracting equation (iii) from equation (ii)
we get 5+6g+4f =0 (V)
Subtracting equation (iii) from equation (iv)
we get 21—-6g+12f =0 ...(vi)
Solving equation (v) and (vi) simultaneously,
we get f=—%andg=%
From equation (iii), we get ¢ = — %

By using these values of g, f and ¢ in equation (i)
We get x2+y2+%—%—%=

or 4x2 +4y? +2x— 13y —42=0

This is the required equation of the circle.
(b) Equation of a circle passing through two points and having its centre on a given line.

We know that infinitely many circles can be drawn from two points but particular circle
or circles can be obtained under certain condition. In the following example we find the
equation of a circle passing through two points with the condition that its centre lies on a given
line.

Example: Find the equation of a circle passing through two points (1,4) and (3, 2) and having
its centre on the line 2x +y — 1 = 0.

Solution: Let equation of the circle be

x2+y?2+2g9x+2fy+c=0 ..(1)
The circle passes through the points (1,4) and (3, 2).
we have
17+2g+8f +c=0 ...(1i)
and 13+6g+4f+c=0 ...(1i1)

As centre (—g, —f) of the circle lies on the line



We get

We get

known.

we get

2x+y—1=0

Circle

A L4
So,wehave —2g—f—-1=0

or 2g+f+1=0 ...(1v) (3,2)
Subtracting equation (iii) from equation (ii)

4—-49+4f=0 < >

1-g+f=0 (V)

or

Solving equation (iv) and (v) simultaneously,

By using

=

g=0and f =-1

g = 0and f = —1, equation (ii) becomes Fig. 8.8
17-8+c=0
c=-9

By using these values of g, f and ¢ in equation (i)

Example: Find the equation of circle passing through A(3, 0)

ie.,

we get x2+y2—2y-9=0

(c) Equation of circle passing through two points and equation of tangent at one of
these points is known
In the following example, the method of finding Ay-axis

equation of circle is explained when the circle passes through

two points and equation of tangent at one of these points is BG.S

9.

and B(5,5), whereas the line x —y = 0 is tangent to the gaxis
circle at B. AGON__S
Solution: Let the general equation of circle with centre
v
C(—=g,—f) be Fig. 8.9
x2+y?+2gx+2fy+c=0 ..(Q)
The circle passes through (5, 5) and (3, 0)
we have 50+10g +10f +c =10 ...(il)
and 9+6g+c=0 ...(iii)

Subtracting equation (iii) from equation (ii)

41+4g+10f =0 ...(1v)
radial segment BC and the given tangent are perpendicular

product of their slopes is —1

— =-1 (where slope of BC = Ehv and slope of tangent = 1)

5+g S+g
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= f+g+10=0
Solving equation (iv) and equation (v) simultaneously,

we get g=—5—69andf=—%
. 59. P
By using g = — ¢ inequation (i)

we get c=50
By subtracting values of g, f and ¢ in equation (i), we get
x24y2 2% Y i50=0
or 3x2+3y2—59x —y+ 150 =0
(d) Equation of circle passing through two points and touching a given line.
In this case the given tangent does not pass through any of the two given points of the
circle. The method is explained in the following example.
Example 1. Find the equation of circle passing through two points (1,0) and (0,1) and
touches the line x + y = 0.

y-axis
Solution: Since line touches the circle S at origin (0, 0) 1
c=0 é«
Let x? +y2 4+ 2gx + 2fy = 0 be the desire Z
equation of a circle. PA
Since points (1,0) and (0, 1) are the points in the eaxis
circle. A0
1+0+2g40=0 > g=—2
1
and O0+1+2f+0=0 = f=—§ Fig. 8.10

Thus, required equation of a circle is

1 1
x2+y2+2<—5)x+2(——>y=0

= x2+y?—x—-y=0

Example 2. Find the equation of circle containing the points (—2, 1) and (—4, 3) and touching
y-axis.

Solution: Let equation of circle be

x2+y?+2g9x+2fy+c=0 ...(0)
circle passes through (—2,1) and (—4, 3)
we have

5-4g+2f+c=0 ...(i1)
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and 25-8g+6f+c=0 ...(1i1)
circle touches y-axis.
radius of circle = modulus of abscissa of centre
ie., W =|—g]|
squaring both sides
we get c=f?
Multiplying equation (ii) by 2
and using ¢ = f? in the resultant equation and equation (iii)

we get 10 —8g+4f +2f2=0 ..(iv)
25—-8g+6f+f2=0 (V)

Subtracting equation (v) from equation (iv)

we get —15-2f+f?=0

or f2-2f-15=0
= (fF-5(+3)=0
= f=5and f =-3
So, c=25andc=9
If f =5 and ¢ = 25 then equation (ii)

becomes 5—-4g+10+25=0
= 4g =40
or g =10

If f = —3 and ¢ = 9 then equation (ii) becomes
5-49g—-6+9=0
= 49 =8
= g=2
Now, if f = 5,c = 25 and g = 10 then equation (i), becomes
x2+y2+20x+10y+25=0
andif f=-3,c=9 andg=2
then equation (i) becomes
x24+y2+4x—6y+9=0

Exercise 8.2 )

1. Find the equation of the circle through the given points.
(i)  (0,3),(2,-1),(1,0) iv)  (7,-3),(=7,5),(11,5)

(V) (1! 1): (2, _1), (3, _2)
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8.5

of tangency and normality of a line to a circle along with their
equations. But, first let us revise the concepts of secant,
tangent and normal.

point is tangent to the curve and the point is called point of
tangency or point of contact.

point of tangency is called normal to the curve whereas,
secant is the line which intersects a curve at a minimum of
two distinct points as shown in Fig. 8.11.

Find the equation of circle through the points (1, 2), (2, 3) and having centre on
(1) x-axis (i1) y-axis.

Find the equation of circle through the points (3,1), (2,2) and having centre on the

linex+y—-3=0.

Find the equation of the circle through the points (0, —1) and (3,0) and the line

3x +y — 9 = 0 is tangent to it at (3, 0).

Find the equation of the circle through origin with x-intercept 2 and is tangent to the

liney—1=0.

Find the equation of a circle containing the points (1,2), (2, 3) and having centre on

x—y+1=0.

Find the equation of the circum-circle of the triangle with vertices (1, —2), (=5, 2) and

(3,4).

Find the equation of circle containing the points (1, —2) and (3, —4) and touching x-axis.

Find the equation of circle containing the points (6, 0) and touching the line x = y at

(4,4).

Show that the equation of circle with centre (—g, —f) and,;

@) touching x-axis is of the form x2 + y2 + 2gx + 2fy + g? = 0

(i) touching y-axis is of the form x2 + y% + 2gx + 2fy + f2 =0

Find the equation of circle passing through origin and having intercepts 6 and 8.

Find the equation of the circle which passes through the two points (b, 0) and (—b, 0)
and whose radius is a unit.

Find the equation of the circle which passes through the point (5,0) and (0, —5) and
whose radius is 5 unit.

Tangent and Normal

In this section, we will discuss about the conditions

In geometry, a line which touches a curve at a single

Any line which is perpendicular to the tangent at the Tangent




Circle

In case of circle, secant intersects the circle at exactly two
points. In the figure 8.12 line / is secant to the circle through two P
points P and Q. If P gets closer to Q and ultimately becomes
coincident with Q, the secant / becomes tangent to the circle at
point Q. In circle, normal always passes through the centre of the
circle.

Fig. 8.12
8.5.1 Find the condition when a line intersects the circle

We are aware of the fact that a line can cut or touch a circle and sometimes, it neither
cuts nor touches the circle at a point. In this section we will discuss these conditions in detail.

Consider a line y = mx + ¢ and the circle x + y2 = r2.

Solving both equations simultaneously,

we get
x2 + (mx +¢)? =r?
= x4+ m?x?+2mcx + c? =1?
= A+mHx?+2mex+c?—-1r2=0 ..(0)

Since roots of equation (i) represent abscissas of the points of intersection A and B of
the given circle and line as shown in the figure 8.13.

Therefore, nature of roots of the quadratic equation (i) will B
represent the nature of parallel lines I, [, and 5, each of the slope
m, with respect to the given circle.

Here discriminant of equation (i) is: R
A= (2mc)? — 4(1 + m?)(c? — r?) I
or A= 4m?c? — 4c? + 41% — 4m?c? + 4m?r?
= A= 4{r*(1 + m?) — c?} Fig. 8.13

We know that the roots of equation (i) will be real and unequal if A> 0.

ie, r*(1+m?»-c?2>0

=  r’(1+m?) >c? ...(ii)

This is the condition when points of intersection are real and distinct. This value of

c?corresponds to [; which intersects the circle at two real and distinct points. Condition (ii) is
the condition when line intersects the circle i.e., condition of secancy.

We know that
the roots of equation (i) will be real and equal.
If A=0

ie, 712(1+m?»)—-c?=0
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= [r?(1+m?)=c? ...(iii)

This is the condition when points of intersection are real and coincident. This value of
c? corresponds to [, which touches the given circle at a single point.

Hence condition (iii) is the condition of tangency of the line. We also know that the
roots of equation (i) will be non-real if A< 0.

ie, 1*(1+m?)—-c?*<0

= | r?(1+m?) <c? ...(iv)

This is the condition when points of intersection are imaginary. This value of c?
corresponds to [; which neither cuts nor touches the given circle. Hence condition (iv) is the
condition when the line is neither secant nor tangent.

8.5.2 Find the condition when a line touches the circle

As discussed in section 8.5.1 a line y = mx + ¢ will be tangent to the circle
x2+y2 =7r2if 2 =r?2(1+m?).

In general, a line / will be tangent to any given circle if distance of the line from centre
is always equal to the radius of the circle. So, in order to find the
condition of tangency of line to the given circle, we equate the distance
of the line from the centre of the circle and radius of the given circle.
(Fig. 8.14)

Alternatively, we take discriminant of the quadratic equation
as zero which is obtained by solving equations of given circle and line
simultaneously as we did in section 8.5.1. Fig. 8.14
Condition of tangency of a line Ix + my + n = 0 to the circle x> + y* = r2.

centre of the circle x2 + y? = r? is origin. (Fig. 8.15)

distance of line: Ix + my +n = 0 from centre is:

L A
N AP
Now, given line will be tangent to the given circle. L
if d = radius of circle %
d X

- "

=7 B R
. . ) O g
Squaring both sides

n2
_:r
12 + m?

= [n?2=7r%1%+m?)

2

&
<

Fig. 8.15

This is the condition when line lx + my + n = 0 will touch the circle x? + y? = 12,




Alternative Method
We have, equation of line
Ix+my+n=20 (1)
and equation of circle.
x2+yr=r? ...(ii)

Solving (i) and (ii), simultaneously, we get

—lx —m\?
o

m
= m2?x? + 12x% + 2nlx + n? = m?r?
= > +mP)x? + 2nlx +n?> —m?r?2 =0 ..(iii)

Given line will be tangent to the given circle

if Discriminant of equation (iii) vanishes

ie, An?2—4(*+m>)(n?-m?r?) =0

= 4An?l? —4n?1? + 4Pm%r? — dmPn? + dmtr? =0
=  dm?(Pr?-n?+m?*r?) =0

=  Zrf-n?+m?r?2=0 (Letm # 0)

= n?2=r%%+m?)

This is the condition of tangency of given line Ix + my +n = 0 to the given circle

x?2+y?=r2

Example 1. Find the condition of tangency and secancy of the line y = mx + k with the circle
x2+y2+2gx+2fy+c=0.

Solution: We have the line mx — y + k = 0 and the circle &

x2+y%+2gx+2fy+c=0 with centre (—g,—f) and radius &‘?’Q% ?

Given line will be tangent to the circle, if distance of line from the

centre of circle is equal to the radius of the circle, i.e., d = r as shown in
-mg+f+k
or —_—
VmZ+1

Fig. 8.16.
=g +f-c
squaring both sides

(f+k-mg)?=(g°+f*—)(m? + 1)
This is the required condition of tangency.

We know that given line will be secant to the circle if, distance Fig. 8.17

Circle
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of line from the centre is less than the radius of the circle as shown in Fig. 8.17.
-mg+f+k

1e., d<r
or —<\/g2+f2—c
Vm2Z+1

This is the required condition of secancy.

Example 2. Find the value of  when the line x = 2y + 4 should be:
(1) a tangent to the circle x2 + y? = 12
(i)  asecant to the circle x? + y% = r?2
Solution: (i) value of » when line is tangent
We have, line:x =2y + 4 ..()
and  circle: x% + y? = r? ...(ii)
solving equations (i) and (ii)

we get Qy+4)?+y?=r?

= 592+ 16y +16—12=0 ...(ii)
Given line will be tangent to the circle,

if A=0

e, (16)2—4(5)(16 -1 =0
=  256-320+20r2=0
= 20r® =64

= r=+%

Gl

(i1) Value of r when given line is secant
From equation (iii)
A=256—20(16 —1?)

= 20r? — 64
We know that given line will be secant to the circle,
if A>0
ie, 20r’—64>0
2 16
= re > 5

16 16
= T>T or r<—?

8.5.3 Find the equation of a tangent to a circle in slope form:

Let m be the slope of a line which is tangent to the circle x2 + y? = 12 then the
equation of tangent will be

y=mx+c ...(1)
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where c is the y-intercept of the tangent.
According to the condition of tangency

c2=r’(1+m?

= c=1rVl1+m?
By using value of ¢ in equation (i)
we get y=mxtrvl+m? .
o - - ) ) 5. Circle: x* +)*=1r?
This is the equation of tangent to the circle x* + y“ = r* in Fig. 8.18
slope form.

Example: Find the equation of tangent to x? + y2 = 25 with the slope 2.
Solution:
Here, slope of tangent = m = 2

and radius=r=>5

We know that the equation of tangent to the given circle will be

y=mxt rm

By using values of m and

we get y=2x+5V5

So, there will be two tangents to the given circle with slope 2 which are
y=2x+5V5andy = 2x — 5V5

8.5.4 Find the equations of a tangent and a normal to a circle at a point

Equation of tangent and normal to a circle at a given point
Let the line / be the tangent to the circle
x%+y%+2gx + 2fy + ¢ = 0 at the given point (x;,y;) as shown in the figure 8.19.
tangent to the circle is perpendicular to the radial segment at the point of

contactie.,l L CP

1
" slope of CP

1

nitf
Xx1tg

x1tg
ntf
By point-slope form the equation of tangent will be

y—y1 =m(x —xq1)

slope of tangent = m =
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. X+
e, y-ym= —ﬁ(x—xl)

= -y +H+E-x)x+9) =0

or  yy+fy—yi—fytax+gx—xi-gx=0

= xxtyy 9Ot x) + G +y) =%+ 7+ 20% + 2fy; ()
(x1,¥1) lies on the given circle
x2+y2+2gx, 4+ 2fy,+c=0

=  x2+y?+2gx +2fy; = —c

So, equation (i) becomes

xx1 +yy +gx+x)+fy+y)+c=0 ...(iii)

This is the equation of tangent to the circle x? + y2 + 2gx + 2fy + ¢ = 0 at (xq,y,).

In case centre of circle is at originthen g = f = 0
So, equation (iii) becomes
XX, +yy; +c=0 ...(1v)
We know that
radius of circle = r = W
ie., c=g*+f?—r?
= ¢ =12 (: g=f=0)
So, equation (iv) becomes
xx;+yy; —r2=0
ie, xx tyy, =r? (V)
This is the equation of tangent to the circle x2 + y2 = r? at the point (x1,y;).
We know that normal is perpendicular to the tangent at the point of contact.

So,  slope of normal = m' = _%

=}’1+f
X1+g

Now, by point-slope form, the equation of normal will be
y=yr=m'(x—x)

. yitf .
ie, y—y = xi+g (x—xq) ...(vi)

This is the equation of normal to the circle x% + y? + 2gx + 2fy + ¢ = 0 at (x4, y,).

In case centre is at origin then g = f = 0.

=)

So, equation (vi) becomes
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y
y—hn =—1(x—x1)
X1

= XY = X1Y1 = XY1 — X1)1

= x1y—xy; =0

This is the equation of normal to the circle x2 + y? = r? at a given point (x;,¥,).
e Equation of a tangent and a normal to a circle at a given point using derivative.

We know that derivative (%) at a point (x;,y;) of a curve y = f(x) is the slope of

the tangent to the curve at that point.
Thus, the equation of tangent to any circle at the point (x4, y;) is
y=y1=mlx—x)
d
where m = d—z at (x4,v1)
Since normal is perpendicular to the tangent at the point (x4, y;)

Therefore, equation of the normal to any circle will be

Yy=—mn-= —%(x—xl)
Example 1. Find the tangents and normals to the following circles without using derivatives.
(i) x2+y?=25at(3,4)
() x>+ y?+6x+4y=132at(6,6)
Solution: (i) x%+y* =25at (3,4)
Here (x1,y1) = (3,4)
and r=5
Now, equation of tangent to the given circle will be
Xxy +yy, =12
ie, 3x+4y=25
Also, the equation of normal to the given circle will be
X1y —xy; =0
e, 3y—4x=0

(ii) x2+y%+6x+4y=132at(6,6)
Given circleis x? +y?+6x+ 4y —132=0
Comparing with general equation of circle
we get 2g=6 = g=3;
2f =4 = f=2
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and c=-—132
We also have (xq,y1) = (6,6)
Now, equation of tangent to the given circle will be
xx3+yy1 +gx+x)+fy+y)+c=0
Using values, we get
6x+6y+3(x+6)+2(y+6)—132=0
Also, the equation of normal to the given circle will be

_ =y1+f(x—x)
Y1 X, +g 1
. 6+2
1.€., y—6=6—+3(x—6)

= y-6=2(x—6)
= 9y — 54 = 8x — 48
= 9% —9y=6=0
Example 2. Find the equation of tangent and normal to x2 + y2 = 100 at (6, 8).
Solution: We have circle,
x2 +y2 =100

Differentiating w.r.t x

2x+2y%=
dy x
dx y

So, slope of tangent to the given circle at (6,8) = (% o8
6
-8
— 3 —
= 7 =m

We also have (xq,y;) = (6,8)
By point-slope form the equation of tangent will be
y =y =mx —x,)
ie., y—8=—>(x—6)
= 4y — 32 =—-3x+ 18
= 3x +4y—-50=0
> Normal is perpendicular to the tangent at (6, 8)
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By point-slope form the equation of normal will be
y=yi=m'(x—x)
ie., y—8=%(x—6)
= 3y—24=4x—-24
= 4x—-3y=0

8.5.5 Find the length of tangent to a circle from a given external point
Let P(x,y) be the point of contact of the tangent from the external point E (x4, y;) to
the circle x2 + y2 + 2gx + 2fy + ¢ = 0 whose centre is C(—g,—f). EP is called tangent
segment and its length is called length of tangent. E(,y) Py
EP LCP
CEP is a right angled triangle as shown in the
figure 8.20.
In ACEP, by Pythagoras theorem
ICE|> = |CP|* + |EP|?
ie, (x+9?2+ @ +/f)?*=r?+|EP|?
= [EPP=x{+2gx1+g* +yi +2fy1 +f* = (g*+f* - )

(+ r=J@T)
So, |EP| =/x?+y?+2gx; +2fy, +¢ ..(0)
So, the length of tangent from (x4, y;) to the circle in general form is
VX2 +y? +2gx, + 2fy, +c
Example: Find the length of tangent from (—2, 3) to the circle x2 + y2 —5x — 2y + 1 = 0.
Solution: Given circle is x? + y2 = 5x — 2y + 1 =0

Fig. 8.20

Here 2g=-5,

2f = -2,

c=1and (x;,y;) = (-2,3)
Now,

length of tangent = \/ x2 4y +2gx +2fy; +c¢
=/(=2)2+(3)2-5(-2) - 2(3) + 1
=V4+9+10-6+1

= /18 units.
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8.5.6 Prove that two tangents drawn to a circle from an external point are equal
in length

Let PA and PB be two tangents to the given circle
x2+y%+2gx+2fy + c = 0 with centre C(—g,—f)from an external point P(x;,y;) as
shown in the figure 8.21.

We know that a tangent to the circle is
perpendicular to its radial segment at the point of contact.

So, we have two right triangles PAC and PBC with P (x1, y1)

right angles at A and B respectively. C
In right APAC, by using Pythagoras theorem
ICP|? = |AC|* + |AP|? B
= (a+g9?+0n+f)?=r’+|4P)? Fig. 8.21
|API? = x{ + 2g%, + 9> +yi + 29y, + f* =17
|API? =xf +yf + 200 +2fm+ 9> +f2—g* - f+c
( r= m)
= |AP|? = x? + y? + 2gx; + 2fy; + ¢
= |AP|? = x? + y? + 2gx; + 2fy; + ¢

U

U

So,  |AP| = /x?+y%+2gx, +2fy, +c ...(1)
Similarly, in right APBC
[PB| = /x? + y? + 2gx, + 2fy, + ¢ ...(i1)

From (i) and (ii), we get
|AP| = |PB|

Hence two tangents drawn to a circle from an external point are equal in length.

Exercise 8.3 )

1. Check whether the following lines are tangent, secant or neither to the circle x? + y? = 25.
(1) y=x+3
(i) y=+3x+10
(i)  y=2x+15
2. Find the condition of tangency and secancy of the line y = 2x + k with the circle
x%2 +y%+10x + 20y + ¢ = 0.
Find the equation of tangent to x? + y? = 36 with the slope /3.
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Find the equation of tangent and normal:

(1) at (1, —4) to the circle x2 + y? = 17

(i)  at (4,1) to the circle x2 + y? —4x + 2y = 3

5. Find the length of tangent:

(i) from (6, 1) to the circle x* + y% = 4

(i)  from (2,5) to the circle x? + y? + 8x — 5y = 7.

6. Find the condition that the line y =mx +c¢ may be tangent to the circle
(x—h?+ @ -k)?=r2
7. Show that circles x? + y? — 6x — 6y + 10 = 0 and x2 + y? = 2 touch each other and

find the point of contact.

8. Find the equation of tangent (s) to the circle x? + y? = 25.
(1) at the point whose abscissa is 3.
(i1) at the point whose ordinate is —4.

(iii)  which is parallel to 3x + 4y +1 =0
(iv)  which is perpendicular to 3x + 4y +1 =10

9. Find the equations of tangents to x? + y2 — 6x — 2y + 9 = 0 through origin. Find
also their respective points of contact.

10. Show that the line ax + by + al + bm = 0 is normal to the circle
x? 4+ y2 4 2lx + 2my + ¢ = 0 for all values of a and b.

11. Find (i) the product of abscissa (ii) the product of ordinates of the points, where the
line y = mx meets the circle x2 + y? + 2gx + 2fy + ¢ = 0.

12. Prove that the line ¥ = x + k+/2 touches the circle x> + y? = k? and find its point of
contact.

13. Find the condition that the line 3x + 4y = ¢ may touch the circle x? + y? = 8x.

14, Find whether the line x + y = 2 4 +/2 touches the circle x? + y? —2x — 2y — 1 = 0.

15.  Prove that the two circles x? + y% + 2gx + ¢ = 0 and x2 + y? + 2fy 4+ ¢ = 0 touch
1 1 1
each other, if f_2 + g_z = Z

8.6 Properties of Circle

In this section we will prove some theorem of Euclidean geometry analytically which
are related to the circle.

Prove analytically the following properties of a circle.
e Perpendicular from the centre of a circle on a chord bisects the chord.

Let AB be a chord of circle x? + y? + 2gx + 2fy + ¢ = 0 with centre C(—g, —f).
where the end points of the chord are A(xq,y;) and B(x,,y,) as shown in the Fig. 8.22.
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Furthermore CD is perpendicular from centre CD to the chord
AB.
A(x4,v1) and B(x,,y,) lie on the circle

B (x2, y2)
we have d

x?+yE+2gx +2fy +c=0 ) A G N
Fig. 8.
and  x2+y2+42gx,+2fy,+c=0 ...(ii) '8
Subtracting equation (ii) from equation (i), we get
Cef —x3) + O —¥3) + 2900 —x2) + 2f (y1 —¥2) = 0
= | 2901 —x2) +2f (O —¥2) = —xf + x5 —yi + 3 ... (i)

Now, slope of CD = — =T
2™

_(x17xp)
V1i=Y2
Now, equation of CD, by point-slope form will be
y+f=mlx+g)

- _(x1—xp)
ie, y+f= —3’1_3’2 (x+9)

= =)+ =-0n-x)x+9)
= Y1 —y2) + f(r1 —y2) = =0 — x2)x — g(xg — x3)
= g1 = x3) + f(y1 —y2) = —(x1 — x2)x — y(y1 — ¥2)
Using equation (iii), we get
2x(xy —x3) + 2y(y1 — y2) = x{ — x5 +y7 — 3 (i)
This is the equation of perpendicular CD from centre of circle to the chord AB.

or m=

- +
Now, midpoint of AB = ("12&’3’1 23’2)

By substituting midpoint in equation (iv), we get

X1+ Yi+Y2
2( 5 )(xl—xz)+2< 5 )(yl—yz)=xf—x%+yf—yzz
=  xf-xi+yi-yi=xf-x3+yf-yi

Midpoint of AB satisfies equation of perpendicular CD

CD bisects the chord AB.
e Perpendicular bisector of any chord of a circle passes through the centre of the circle.
Let AB be a chord of circle x% + y? + 2gx + 2fy + ¢ = 0 with centre C(—g, —f).
Let / be the perpendicular bisector of AB which cuts AB at midpoint D whereas the
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coordinates of A and B are (x4, y;) and (x5, y,) respectively as
shown in Fig. 8.23.

X1+, y1+y2)

Here midpoint D = ( 5

a5 _ Y2V /B (2, 32
and slope of AB = o= A (o, ; W' (2, y2)

[ is perpendicular on AB
petp Fig. 8.23

slope of | = — M
Vo—=V1
Now, equation of / will be
{y _ (y1 + }’2)} __Gp—x) {x _ (x1 + xz)} 0
2 V2=V 2

We know that
|AC| = |BC|

=  Ju+9 P+ +)2=JC+9)?+ (2 +f)?
Squaring both sides

i+ 92+ D+ =0+ 92+ 2+ f)?

= xXf +2gx1 +yf +2fys = x5 +29%;, + y5 + 2fy,
= xXf = x5 +2900 —x3) = ~(f —y3) — 2f(y1 — ¥2)
= (g —x) (X1 + 22 +29) = —(y1 — y2) 1 +y2 + 2f)
— _ (xp—x1) _ (y1+y,+2f)

Vo—=V1 - x1+x2+2g
Using this in equation (i), we get

9y — v — =()’1+3’2+2f)
y=r—x X1+ x5 + 29

= Qy—y1=y) 1 +x2+29) — (1 +y2 + 2f)(2x —x; —x3) =0 ...(ii)
This is equation of perpendicular bisector of chord AB.

(2x —x1 — x3)

Now, we substitute centre (—g, —f) in equation (ii), we get
(2f=y1=y)0q +x2+29) — (1 +¥2 + 2f) (=29 —x1 —x2) = 0
= —@f+y1+y)0 +x,+29) + (1 +y2 +2f)(2g + 21 +x2) =0
= 0=0
centre C(—g, —f) satisfies equation (ii)

Perpendicular bisector of the chord AB passes through the centre.
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e Line joining the centre of a circle to the mid-point of a chord is perpendicular to the
chord.
Let / be the line joining the centre C(—g, —f) of the circle x% + y% + 2gx + 2fy +
¢ = 0 to the mid-point of chord. AB whose end points are A(x;,y,) and B(x,,y,) as shown in
the figure 8.24.

X1 +x2 yl +y2)

Mid-point D = ( > >

|AC| = |BC|
VO + 92+ 1+ )2 =0 + 92 + (72 + f)?
Squaring both sides

1+ 92+ + 2=+ 9+ G+ )?

= x{+2g9% +y] +2fy; = x5 +29%, +y5 + 2fy,
= xf—x5+29(x; —x) =~ —y5) —2f (1 — ¥2)
= (x1 —x) (g + 2 +29) = —(y1 = ¥2) 1 + 2 + 2f)
(x1+x0+29) Yo=Y .
ﬁ — = cee
y1+y2+2f xZ—xl (1)
Now, slope of chord AB = Yan
X27%1
X1+ x,+ 2
=— M (Using equation (i))
y1i+y, +2f

and slope of [ = slope of CD.
Y1 ‘;3’2 +f

_x1+x2
R

=}’1+J’z+2f
x1+x2+2g

Now, (slope of /) x (slope of AB)
_nty +2+f {_(xl + X +29)}
X1+ x2+29 1 +y2 +2f)
=-1
product of slopes of / and chord AB is —1.

The line ! through the centre of circle and the mid-point of chord is
perpendicular to the chord.
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e Congruent chords of a circle are equidistant from its centre and its converse

Let AB and CD be two congruent chords of a circle
x? +y?%+2gx +2fy + ¢ = 0 with centre 0(—g, —f) whereas
the end of chords are A(x;,y;), B(x4,¥5), C(x3,y3) and D (x4, y4)
as shown in the figure 8.25.

Let OP is perpendicular distance from centre to chord AB
then P is mid-point of chord AB according to property 1.

Also let 0Q is perpendicular distance of centre to chord
CD then Q is mid-point of chord CD according to property 1.

According to the condition
|AB| = [CD|

e, 02 —x)%+ (2 — 1) = (s — 23)% + (v4 — ¥3)?

Squaring both sides
(2 = x1)% + (72 = y1)* = (s — x3)* + (4 — ¥3)° -.(1)
In right angled AAOP

0P| = |A0|? — [AP)?
G 2 _
=7 —(EIABI) (- [04]=7)

1
=r?- Z{(xz -x1)%+ (v —y)%

2_ (3, —x: )2 = (y,—y:)2
. 0| = 42— =x) (7~ ...(i)

2
In right angled ACOQ

0Q12 = > - CQI?

nNl2 2 1 =5 2
= |0QI*=r?—(3ICDI)

—— 1
= 10Q|* =12 _Z{(x‘* —x3)% + (Vs — ¥3)*}
= [0QF =12~ 1 {(x — x)? + (v, — 1)) (using equation (i)

- 4r2—(x,—x 2+ —y)?
L gt 4077 i

From (ii) and (iii), we get
|oP| = |0Q|

Hence chords are equidistant from the centre.
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e Converse of Theorem 4a

If the perpendicular distances from the centre of a circle to its two chords are
equal, then the chords are congruent.

Let AB and CD be two chords of a circle x% + y? + 2gx + 2fy + ¢ = 0 with centre
0(—g,—f) where the ends of chords are A(xy,y;),B(x3,¥2),C(x3,y3) and D(x4,y,) as
shown in the Fig. 8.26.

Let OP is perpendicular distance of centre to the chord
AB, So P is the mid-point of chord AB.

X1txp ﬂ)
2 2
Also let 0Q is perpendicular distance of centre to the
chord €D, So Q is mid-point of chord CD.
X3txy y3_+3’4)
2 2
According to the condition

So, mid-point P = (

So, mid-point Q = (

|0P| = [0Q|

oo O] ¢ QP2 e) = (B 0) ¢ ()
Squaring both sides

(1 +2x,+29)° i+, +1)° (s +x,+29)°  (y3 +ya +2f)?
+ = +
4 4 4 4
In right angled AAOP

|AP|? = |AO|* - |OP|?
(gt x+29)* (yst+ya+2f)?
4 4

_ 42— (x1+x,+29)* — (V2 +y,+2f)°
|AP|=J (x1tx; 521) (Y3+y4+2f) i)

..(0)

— [AP|? = r?

In right angled ACOQ
ICQI* = [oC|* - 0Q/?

2 2
= |CQI*> =r% - {(x3+xi+2g) + (y3+y2+2f) } ¢+ r=10C))

2 2
(x1+x2+29) +(y1+y2+2f) }
4

= ICQI* =r*~ { 4 (using equation (1))

2 2 2
- @I=J4r (x1+x2+Zg) (V1+y+2f) i)

y

From (ii) and (iii), we get
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|AP| = |CQ
= 2|AP| =2|CQ|
ie, |AB|=|CD|
Hence two chords are congruent it they are equidistant from centre.
e Measure of the central angle of a minor arc is
double the measure of the angle subtended by the
corresponding major arc.
Let BC be a minor arc of circle x? + y? = r2 such
that its ends are B(—xy,y;) and C(x;,y;) whereas A(0, b)
is any point of corresponding major arc on the given circle
as shown in Fig. 8.27.
Now, £BOC is the central angle of minor arc BC.
and £BAC is the angle subtended by the
corresponding major arc BAC.

Here slope of BO =m, = _y_;l
Slope of CO = m, = iﬂ
1
Now tanm£BOC = 1"12;7"1
+mym,
Y14
X X
Le, tanezﬁ (Let mzBOC = 0)
Tea
1/\"1
2y
__ %
xf —yi
xf
2
tan6 = 12 ()
1791
we have
slope of AB = m3 = Eon
— b-
and  slope of AC = 73’1 =m,
1
Furthermore,
x2 +y? =12
ie., x12 +y12 = h2 (+ r=b)

= x=bi-y .. (ii)
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my—m3
1+m4m3

—(b-yy)_(b-y1)

: - _ " 1 -
ie, tan@= (=77 Gyy) (Let m£BAC = Q)
== =

—2(b—y1)

Now tan(m4BAC) =

=2 72 2_(122 312);;1 — (Using equation (ii))
—2(b —y1)x
-2y + 2by,
_ =2(b —y1)x;
- —2y1(y1 — D)
_20n—b)xy

B 2y:(y1 — b)
tan@ = — ! ... (iii)
V1

We know that
2tan @

tan2¢0 = ———
an 20 1—tan? @

o (iv)

From equation (i) and equation (iv)
tan @ = tan 20
= 6=20
Hence central angle of minor arc is double than the angle subtended by the
corresponding major arc.
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e An angle in a semi-cricle is a right angle

Let P(x, y) be any point on the circle x? + y? = 2 with radius r and centre at origin,
whereas A(r, 0) and B(—r, 0) are two points of its diameter AB as shown in Fig. 8.28.

Now 2APB is the angle in semi-circle

Now,
pp Y
Slope of PB =—=—=m
P x+r 1 y-‘axis
N A
and  Slope of AP = Y= m,
xr P (x.y)
Product of slopes = mym,

-G

2 < P x-axis
y 00,0
S B (-r, 0) 00 )4 0)
-y
A=y

2 v
i — Fig. 8.28
-y

2
(... x2 + y2 — TZ)

product of slopes = —1.
AP 1 PB
Hence £APB is right angle.
So, angle in a semi-circle is right angle.
e The perpendicular at the outer end of radial segment is tangent to the circle
Let / be the line perpendicular to the radial segment CP of circle

x? +y? 4+ 2gx + 2fy + ¢ = 0 at the outer end P(xy, y;) whereas C(—g, —f) is the centre of
the circle as shown in Fig. 8.29.

Now,

. = _Vitf _
Slope of radial segment CP = 0ty m
1
So, slope of I = — pre
(x+9)
T (D P (x1, y1)

We have
x2+y?+2gx+2fy+c=0
Differentiating w.r.t x
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2x+2y%+2g+2f§—¥=0
= (2y+2f)%=—2x—2g

dy -2(x+g) -—(x+g)
- Y_ _

dx  2(y+f)  y+f

Now,

Slope of tangent to the circle at (x;,y;) = (%)( )
X1,Y1

_ ut+tg
R .. (ii)

From equation (i) and equation (ii)

Slope of | = slope of tangent at (xy,y;)
So, line / is tangent to the circle at (xq,y;).

Hence the perpendicular at the outer end of a radial segment is tangent to the circle.

e The tangent to a circle at any point of the circle is perpendicular to the radial segment
at that point.

Let ¢ be the tangent to the circle at any point P(x,y) of the circle
x%2+y2+2gx +2fy + ¢ = 0 with centre C(—g, —f) whereas CP is the radial segment of
the circle at the point P as shown in Fig. 8.30.

Now,

, 75 _ Yt _
Slope of radial segment CP = - Tg =M P(x,y)
We have the circle

x> +y2+2gx+2fy+c=0

Differentiating w.r.t x

dy dy _ t
2x+2ya+2g+2fa—0 tangent

dy Fig. 8.30
2(y +f)a =-2(x+g9)

a4y _ (ﬂ)
dx y+f

ie,,  Slope of tangent to the circle at any point of the circle
_ G+g9 m
y+f
— (Y[ (xtg
Ll mymeg = (x+g) [ (y+f )]
=-1

)
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mum, = -1

Tangent to the circle is perpendicular to the radial segment at the point of

Exercise 8.4 )

Prove the following analytically

contact.

The tangents drawn at the ends of a diameter of a circle are parallel.

2. A normal to a circle passes through the centre of circle.

3. The mid-point of hypotenuse of a right triangle is the centre of the circle circumscribing
the triangle.

4. Measure of the central angle of a major arc is double the measure of the inscribed angle

of corresponding minor arc.

5. The parallelogram circumscribing a circle is a rhombus.
T

L. Tick the correct option.

(1) If a plane cuts one nappe of a right circular cone perpendicularly then conic is -----
(a) parabola (b) circle (c) ellipse (d) hyperbola

(ii) The centre of circle with equation (x + 3)% + (y — 5)% = 36 is ~-------------
(@ (3,-5) (b) (=3,-5) () (3,5 (@ @B5)

(iii)  The centre of circle with equation x? + y? + 10x — 8y 4+ 1 = 0 is ------mmmm--
(@ (=5, 8) (b) (=10, 8) () 5,-4) (@) (=5 4)

(iv)  The radius of circle with equation x? + y? + 4x + 6y + 1 = 0 iS ------mmm----
(a) V13 (b)V12 (c) V10 (d) V71

(v) Which of the following is a degenerate conic
(a) circle (b) ellipse (c) line (d) parabola

(vi)  The equation of circle with centre at origin and diameter of 10 units is ---------

(@) x2+y? =100 (b)x2+y2+100=0

(c) x> +y% =50 (d)x?+y%?=25
(vii)  For what value of k the radius of circle x? + y? + 6x —4y + k =01is 5

(a) 11 (b) —12 (c) 10 (d) 12
(viii)  The centre of the circle x? + y2 + 6x + 8 = 0 is:

(a) on x-axis (b) on y-axis (c) in 1* quadrant (d) at origin
(ix)  Thecircle x? + y? + 6x+ 10y +9 =0

(a) touches x-axis (b) touches y-axis

(c) passes through origin (d) cuts x-axis
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(x)  Thecirclex? +y%+20x—8y +16 =0

(a) touches x-axis (b) touches y-axis

(c) passes through origin (d) cuts y-axis
(xi)  Theline y = 2x + ¢ will be tangent to x% + y? = 25 if

(@) ¢2 =25 (b) ¢ = 625 © =50 (d)c2 =125
(xii)  For what value of k, the line y = 2x + 3 is tangent to x? + y? = k?

@ OFe Ot @

(xiii)  For what value of k, the line 2x+ 3y +k =0 is normal to the circle
x> +y242x+9=0

(a) =2 (b) 2 (c) 3 (d)-3
(xiv)  Equation of tangent to the circle x? + y? = 25 at (3, 4) is:
(a) 3x+4y =0 (b) 4x + 3y = 25
() 3x + 4y = 25 (d)3x+4y =5
(xv)  Equation of normal to the circle x? + y? = 36 at (2,4v2) is:
(a) 2x + 42y =0 (b)4V2x +2y =0
(c) 2x— 42y =0 d)4V2x -2y =0
(xvi)  The equation of tangent to x* + y? = 100 is if slope of tangent is V15
(a) y = V15x + 40 (b) y = —V15x £ 40
(c) y =V15x + 40y (d) y = —V15x £ 40y
(xvii) The length of tangent to the circle x2 + y% + 2y — 1 = 0 from (5, 2) is:
(a) V24 units (b) V33 units (¢) V32 units (d) V31 units

(xviii) Congruent chords of a circle are equidistant from its
(a) diameter (b) centre (c) arc (d) segment
(xix)  Angle in a semi-circle is --------------
(a) acute angle (b) obtuse angle (c) right angle (d) straight angle
(xx)  Thepoint (3,3)is the circle x% + y? = 64
(a) outside (b) inside
(c) on (d) cannot be determined
2. Find the equation of circle passing through (2, 3), (4, 6) and
(1) centre on x-axis (ii) centre on y-axis
3. y =+/3x + 10 is the equation of tangent to the circle with centre at origin. Find the
equation of normal to the circle at the point of tangent.

4. Find the condition of tangency, secancy and normality of line x + y + k = 0 to the
circlex? + y2 +2x -3 =0.
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Parabola, Ellipse
& Hyperbola

e Weightage = 11% e Periods = 22

Introduction

As a matter of fact, parabola, ellipse and hyperbola are the types of conic. In previous
chapter, the Greek concept of conic was discussed in detail whereas the analytic concept was
given in short.

In this chapter we will study conics analytically. Recall that in analytic geometry, a
conic is the locus of a moving point or the set of all points whose distance from a fixed point
(in the plane) bears a constant ratio to its distance from a fixed line in the same plane.

The fixed point, the fixed line and the constant ratio are called focus, directrix and
eccentricity of the conic respectively, whereas eccentricity is denoted by e.

The line through the focus and perpendicular to the directrix is called the axis of the
conic. The distance of a point on the conic from its focus is called the focal distance. The chord
through the focus of a conic is called focal chord of the conic and the focal chord which is
perpendicular to its axis is called the latus rectum.

Different conics are identified on the basis of the value of eccentricity as mentioned
below.

If e = 1, the conic is called a parabola.

If e < 1, the conic is called an ellipse.

If e > 1, the conic is called a hyperbola.

whereas
The distance from the focus to any point on the conic

e =
The distance from the directrix to that point on the conic
9.1 Parabola

9.1.1 Define parabola and its elements (i.e., focus, directrix, eccentricity, vertex,
focal chord and latus rectum).
Parabola and its elements:
A parabola is the set of all points in the plane which are equidistant from a fixed line
and a fixed point not on the line.
The fixed line is called the directrix of the parabola and the fixed point is called its
focus.

Parabola, Ellipse and Hyperbola
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The straight line through the focus and perpendicular
to the directrix is called the axis of the parabola. The point

where the parabola meets its axis is called the vertex of the _? 9
parabola. A chord which passes through the focus is called vergex| /¢ . .
focal chord and the focal chord which is perpendicular to the L Axis,
. . . . . Focus
axis of parabola is called its latus rectum. Focus is the mid-
point of latus rectum. In figure 9.1, P, Q and R are three points R
on the parabola whose focus is F and the vertex is V. The focal
chord QR is its latus rectum. By definition of eccentricity, Directrix
BE T Fig 9.1
|PF| [oF 'e?
e =— O0r e ==
|PT| QS|
=1 or e=1 (v |PF| = |PT|and |QF| = [QSI)

So, the eccentricity of parabola is 1.

Note: The axis of parabola is also called the axis of symmetry of the parabola as the parabola
is symmetric about its axis.

9.2 General Form of Equation of a Parabola

General form of equation of parabola means the equation which can be used to find
parabola for any focus and any directrix.

9.2.1 Derive the general form of an equation of a parabola
Consider a parabola whose focus is F(h,k) and equation of its directrix is
Ix+my+n=0.
Let P(x, y) be any point on the parabola. By definition of parabola
|PF| = |PT|

ie, -2t (y—k)E = |Amyin
\/l2+m2

> +mH)[(x - h)? + (y —k)?] = (Ix + my +n)?

12x2 — 2hl?x + 12h? + m?x? — 2hm2x + h?m? + [2y? — 2kl%y + k?[?

+m?2y? — 2km?y + k*m? = 12x? + m?y? + n? + 2lmxy + 2mny + 2Inx

= m2x? - 2lmxy + 1?y? — 2hl%x — 2hm?x — 2Inx — 2kl*y — 2km?y
—2mny + [?h? + R?m? + k212 + k*m? —n? =0

= (mx—1ly)?—2(hl? + hm? + In)x — 2(kl? + km? + mn)y + [>h? + h?m?
+k212 + k*m? —n? =0

(mx — ly)> + 2gx + 2fy+c =0 (1)

U

U
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g=—(hl+hm+In)
f=—(kl+ km+mn)

and ¢ =12h% + h®m? + k%1% + k*m? — n?

Equation (i) is the general equation of parabola.

It is evident from the equation that second degree
terms in the equation of parabola form a perfect square.

In case directrix is parallel to x-axis then [ = 0. So,
by adjusting values of g, f,c accordingly equation (i) is
reduced to

m?x? +2gx +2fy+c=0 ...(ii)

In case directrix is parallel to y-axis then m = 0. So, by adjusting values of g, f,c
accordingly equation (i) is reduced to

Fig 9.2

12y2 +2gx+2fy+c=0 ....(iii)
Leta=m?and b = [?
then

ax?+by? +2gx+2fy+c=0 ..(iv)

represents the parabola whose directrix is parallel to either of axes if either a = 0 or
b=0.
Example: Find the equation of parabola whose focus is F(3,4) and directrix I: 2x —3 = 0.
Solution: Let P(x, y) be any point on the parabola.

According to the definition of parabola

|PF| = distance of P from /

i.e., \/(x — 3)2 + (y _ 4)2 — |2x2—3

=  4{(x-3)2+ (-4 =(2x—3)?

=  4(x>—-6x+9+y*—8y+16) =4x>—12x+9
=  4x?+4y?—24x—32y+ 100 =4x%—12x+9
= 4y?2 —12x—32y+91=0

This is the required equation of parabola.

9.3 Standard Form of Equation of Parabola

The four possible orientations of parabola such that vertex is at origin and the axis of
parabola is along the x-axis or y-axis, are called the standard positions of a parabola and the
resulting equations are called the standard equations of a parabola.
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9.3.1 Derive the standard equations of parabola, sketch their graphs and find
their elements:
(a) Standard equations of parabola

e Standard equation of parabola when axis of parabola is along x-axis and vertex is at

origin. [ y-axis
. . . A A
Consider a parabola whose vertex is at origin and P(xy)
axis of symmetry is along x-axis as shown in the figure
9.3.

Let F(a,0) be the focus on x-axis then the F(a0) x-axis

equation of directrix / willbe x = —aorx +a = 0. 0 >
Let P(x,y) be any point on the parabola, where

a # 0. (Fig. 9.3)
According to the definition of parabola
|PF| = distance of P from / x g a
) Fig 9.3
ie, J(x—a)’+y?=|x+al

Squaring both sides

(x—a)?+y*=(x+a)?
= y? = 4ax
This is the required standard
equation of parabola.

If a > 0 then it is cup-right
parabola.

If a <0 then it is cup-left
parabola as shown in fig. 9.4.

cup-right parabola cup-left parabola
Fig 9.4

e Standard equation of parabola when axis of parabola is y-as

along y-axis and vertex is at origin.

A
By using definition of parabola, we can derive standard
equation of parabola, when axis of parabola is along y-axis and F(a, 0)
vertex is at origin which is
x% = 4ay x -ayis

where F(0,a) is focus and equations of directrix is

[

y = —a as shown in fig. 9.5 y=-a directrix

A

If a > 0 then it is cup-up parabola. Fig 9.5
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If a < 0 then it is cup-down parabola as shown in fig. 9.6.

Q
L
Q
»@ * F(a,0)
Vi
Z
cup-down parabola cup-up parabola
Fig. 9.6
Latus Rectum: t A
A
We know that the chord through the focus of a ¢
parabola and perpendicular to its axis is called the latus rectum
of the parabola. In the Fig. 9.7 AB is latus rectum. -
Here |AB| = 2|4F| = 2|AC| Zl O >
or |AB| = 2|EF| = 2(2a) = 4a
Thus, the length of the latus rectum is |4a|. b
B
directrix
Fig 9.7

(b) Sketching the graph of parabolas from their standard equations

Graphs of parabolas from their standard equations can be sketched using the following

steps.

1. Determine the axis of parabola from the given standard equations. If equation
contains x2-term, then its axis of symmetry is along y-axis. If equation contains
y?-term then its axis of symmetry is along x-axis.

2. Determine, in which way, the parabola opens. If parabola is along x-axis then it is
cup-right and cup-left if a > 0 and a < 0 respectively. If parabola is along y-axis
then it is cup-up and cup-down if a > 0 and a < 0 respectively.

3. Locate focus and draw the latus rectum of length |4a|.

4. Sketch parabola joining the ends of latus rectum with its vertex.

Example: Sketch the graphs of the following parabolas.

(i) y? =12x (i) x%2 = =10y
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Solution:
(i) y? =12«x
Comparing with y2 = 4ax
We get 4a = 12 = a=3

equation has y? —term

parabola is along x-axis and it is cup-right

because a > 0.

Here, latus rectum = |4a| = [4(3)| = 12

Now, we draw latus rectum AB through focus F(3,0)
and sketch the parabola as shown in figure 9.8.

©)

(i) x?=-10y
Comparing with x? = 4ay
We get 4a = —10 = a=—%
equation has x2 —term
parabola is along y-axis and it is
cup-down as a < 0.
_ _ S| =
Here, latus rectum = |4a| = |4(—§)| =10 4
Now, we draw latus rectum AB through
focus F (0, - E) and sketch the parabola as shown in
figure 9.9.

Standard forms of translated equations of parabola

Fig 9.9

The topic of translation and rotation of axes will be discussed in detail in section 9.12.

At this stage we should know that if standard parabola
is translated % units horizontally and & units vertically = » 'ﬁXis
then its vertex will be (h, k) and the resulting equations

will be

A

A

vertex

x F(a+h,k)

() (y—k)? =4a(x—h) in case axis of
symmetry is parallel to x-axis as shown in the Fig. 9.10.

%k) Axis of symmetry

Here focus and directrix will be (h + a, k) and
x = h — a respectively.

(2) (x—=h)?>=4a(y—k) in case axis of
symmetry is parallel to y-axis as shown in the Fig. 9.11.

\

\# X -axis

4

directrix

Here focus and directrix are (h,k + a) and
y = k — a respectively.

x=h

—da

Fig 9.10




along with its elements as under:
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In order to find elements of parabola from its equation, we summarize the equations

y -axis

vertex [(h, k)

»
>

directrix: y =k —a

A

[

Equation of Parabola

| o

X -axis

v
Axis of symmetry

Fig 9.11
Related information

(1) y? = 4ax

Axis of symmetry is along x-axis with vertex at origin.
Axis of symmetry: y = 0

If a > 0 then it is cup-right.

If a < 0 then it is cup-left.

Focus is (a, 0)

Latus rectum = |4a|

Directrix is x = —a

End points of latus rectum = (a, +2a)

() x* =4ay

Axis of symmetry is along y-axis with vertex at origin.
Axis of symmetry: x = 0.

If a > 0 then it is cup-up.

If a < 0 then it is cup-down.

Focus is (0, a)

Latus rectum = |4a|

Directrix is y = —a

Ends points of latus rectum = (+2a, a)

3) v —k)? = 4alx - h)

Axis of symmetry is parallel to x-axis with vertex
(hk)y—k=0.

If a > 0 then it is cup-right.

If a < 0 then it is cup-left.
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Equation of Parabola Related information
e TFocusis (h+a,k)

e Latus rectum = |4a|

e Directrixis:x —h =—a

¢ End points of latus rectum = (h + a, k + a)

e Axis of symmetry is parallel to y-axisi.e., x —h =0
e Ifa > 0 then it is cup-up.

e Ifa < 0 thenitis cup-down.

@) (x—h)2=4a(y—k) |e Focusis (hk+a)

e Latus rectum = |4a|

e Directrixis:y —k = —a
e End points of latus rectum = (h £ 2a,k + a)
(¢) Finding elements of parabola

We find different elements of parabola with the help of the following examples.
Example 1. Find focus, latus rectum and equation of directrix of the parabola with equation
y? = 12x. Also sketch its graph.
Solution: Given parabola is: y? = 12x

comparing with y? = 4ax

We get, 4a =12
= a=3 y -axis
Parabola is along x-axis with vertex (0, 0). *
Its focus = (a, 0) g A\
=(3,0) e
Now, latus rectum = |4a] / '
= 1403)| x-axis
= 12| = 12 0 FG3,00
Equation of directrix will be \ 6
X=-a
ie., x=-3 \
or x+3=0
Graph of Parabola Fig9.12

Here,
Axis of symmetry is along x-axis with vertex at origin.
a>0
Its is cup-right parabola and latus rectum is 12 units.
This graph is shown in Fig. 9.12.
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Example 2. Find vertex, focus, latus rectum, equation of axis and directrix of parabola
(x +2)% = —8(y — 3). Also sketch its graph.
Solution: Given parabola is (x + 2)? = —8(y — 3)
comparing with (x — h)? = 4a(y — k)
We get, h=-2,k=3and4a = -8
= a=-2
Axis of symmetry is parallel to y-axis.
Its focus = (b, k + a)
=(-2,3-2)
= (-2,1) .
Its vertex = (h, k) = (-2,3) Y 'ﬁXIS
Now, latus rectum = |4a|

= |—8| = 8 units V(-2,3) ¢4
Equation of axis will be
x=h K 4
ie., x=-2 < F(-2,1) X -axis
or x+2=0
Equation of directrix will be

y—k=-a
= y—3=2 X=- 2
directrix
=  y-5=0 Fig 9.13
Graph of Parabola
Here, axis of symmetry is x = —2, which is parallel to y-axis. Vertex, focus and latus
rectum are (—2,3), (—2, 1) and 8 respectively.
a<0
Its is cup-down parabola. The graph is shown in Fig. 9.13.

9.3.2 Find the equation of a parabola with the following given elements:
e focus and vertex,
o focus and directrix,
e vertex and directrix,
e vertex and points.
(i) Equation of parabola when focus and vertex are given.

The method of finding equation of parabola when focus and vertex are given is
explained with the help of the following examples.

Example 1. Find the equation of parabola when focus is (5, 0) and vertex is (0, 0).
Solution: Here focus = (5,0) = (a,0)
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Example 2. Find equation of parabola whose vertex is (2, 3) and focus is (2, 7).

1e.,

or

Solution:

(ii)

Example: Find the equation of parabola whose focus is D
(2,4) and equation of directrix is x + 3 = 0. N

So,
=

According to the condition axis of symmetry is parallel to y-axis with vertex (h, k).

So, its equation will be

By using values of a, h, k
We get,

=

=

Equation of parabola when focus and directrix are given

Method of finding equation of parabola when focus and directrix are given is explained
with the following examples.

Solution:

Here,

ie.,

=
=

(iii)

focus = (2, 4) and directrix is x + 3 = 0.
Let P(x, y) be any point of parabola.
So, |PF| = distance of P from directrix

a=>5
Focus is on x-axis and vertex is at origin

Its equation will be

y? = 4ax
y? = 4(5)x
y? = 20x

Here, vertex = (2,3) = (h, k) and focus = (2,7) = (h,k + a)
k+a=7
a=4

(x = h)? = 4a(y — k)
(x-2)?=4®H-3)

x?2—4x+4 =16y —48
x2—4x —16y—52=0

JE&=27+ (y— 4% = |x +3]| g
Squaring both sides

x2—4x+4+y*—8y+16=x*+6x+9 x+3=0

y2 -8y —10x+11=0 Fig 9.14
This is the required equation of parabola.

Equation of parabola when vertex and directrix are given

Method of finding equation of parabola when vertex and directrix are given is
explained with the help of the following examples.

(x=22+(@y—-4)?%=(x+3)?



Example 1. Find the equation of parabola whose directrix is x = 5 and vertex is at origin.

Solution:
directrix is parallel to y-axis and vertex is origin.
axis of symmetry is along x-axis and its equation will be
y? = 4ax ..(0)
with directrix xX=-a ...(11)
whereas given directrix is: x=5 ...(111)

comparing equations (ii) and (iii)
we get a=-5
By using a = =5 in equation (i)
we get, y2 = —20x
This is the required equations of parabola.
Example 2. Find the equation of parabola whose vertex is (1, 2) and directrix is y = 4.
Solution:
directrix is parallel to x-axis and vertex is not at origin.
Axis of symmetry will be parallel to y-axis and its equation will be
(x—h)?=4aly — k) ...(0)
with vertex (h, k) and directrix y = k — a ...(ii)
Given directrix is y = 4 ...(ii1)
Here vertex = (h, k) = (1,2)
comparing equation (ii) and (iii)
we get, k—a=4
ie., 2—a=4
= a=-2
Using a =—2,h =1and k = 2 in equation (i)
we get, (x —1)2 = -8(y—2)

y -axis
This is the required equation of parabola. A \
(iv)  Equation of parabola when vertex and point are given: P K\”L
The method of finding equation of parabola when vertex
and point are given is explained by the following example.
Example: Find the equation of parabola whose vertex is (0, 0) and

passes through (1, 2).

Parabola, Ellipse and Hyperbola

Solution:

Vertex is at origin.

Axis of symmetry may be along x-axis or y-axis.
Case I: When axis of symmetry is along x-axis

Let  y?=4ax ...(1) Fig 9.15
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N

be the equation of parabola
point P (1, 2) lies on the parabola
equation (i) becomes
4=4a = a=1
By using a = 1 in equation (i)
we get,
y? = 4x, which is the required equation of parabola.
Case I1: When axis of symmetry is along y-axis
Let x%=4ay ...(0)
be the equation of parabola
point P(1, 2) lies on the parabola

equation (i) becomes

1
1=8a = a=g P(1,2)

By using a = % in equation (i)

X -axis
we get g
2 1
=3y Fig 9.16
This is the required equation.
™ Baerseon )
1. Draw the following parabolas:
(i) y? = 10x (i) x2 = =12y
(i) y?—x—-2y—-1=0 (iv)x2—6x—2y+5=0
2. Determine vertex, focus, latus rectum and equation of directrix of the following. Also
find the equation of the axis of symmetry.
(i) y%? = —8x (i) x2 = —16y
(iii) (y +3)2 = 12(x — 2) (iv) (x+5)2 =8(y —3)
Vx?+4x—y+5=0 (vi)y2—6y+8x—23=0
3. Find the equation of parabola whose focus is F(1, —2) and directrix is 3x — 5 = 0.
4. Find the equation of the parabola whose focus is (3,4) and the directrix is the line
x+y—-1=0.
5. Find the equation of the parabolas whose focus and vertex are as under:
(1) Vertex (0,0) ; focus (5,0) (ii) Vertex (0,0) ; focus (0,—2)

(iii) Vertex (1,—3) ; focus (1,2) (iv) Vertex (2,4) ; focus (3,4)
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Find the equation of parabola whose focus and directrix are given:

(i) focus (3,0) and directrix x — 5 =0

(ii) focus (0,4) and directrix y + 6 = 0

(iii) focus (—4, 3) and directrix y = 6

Find equation of the parabola whose vertex and directrix are as under:
(i) vertex (0,0) ; directrix x = —6

(ii) vertex (0,0) ; directrix y =5

(iii) vertex (3,4) ; directrix x =5

Find the equation of parabola whose vertex and point are given:

(i) vertex (0,0) ; point (3,4)

(ii) vertex (5,0) ; point (4,6)

Find the standard equation of parabola whose latus rectum and vertex are the diameter
and centre of the circle respectively x% + y? —4x—8y —5 = 0.

Find the equation of circle and its circle is at the focus, whose diameter is the latus rectum
of the parabola x? = 12y and its centre is at the focus.

For what point of the parabola y? = 10x, the abscissa is equal to three times its ordinate.

Equation of Tangent and Normal of Parabola

In this section we will study about tangent and normal to a parabola along with their

equations and conditions.

9.4.1 Recognize tangent and normal to a parabola

We know that a line which touches a parabola at a P

single point is called tangent and the line perpendicular to
the point of tangency is called normal. In the figure 9.17, the
line / is tangent to the parabola at point P whereas the line m
is normal.

m

Fig 9.17

9.4.2 Find the condition when a line is tangent to a parabola at a point and hence

write the equation of a tangent line in slope form
Consider a line

Ly=mx+c ..(1)

and parabola y? = 4ax ...(ii)
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Solution:

By using y = mx + ¢ in equation (i),
we get (mx + ¢)? = 4ax
= m2x? + 2cmx + ¢? = 4ax
=  m?x?+2(ecm-2a)x +c? =0 ...(iii)

Given line will be tangent to the parabola

if A= 0 (where A is discriminant of equation (iii))
ie, 4(cm—2a)?—-4c*m?>=0

=  *m?—4dacm+4a® - c*m? =0

= 4a® =4acm

= a=cm
a
= cC =—
m

This is the condition of tangency of y = mx + ¢ to the parabola y? = 4ax.

By using ¢ = rr% in equation (i) (since a # 0)

we get,

L@
=mx +—
Y m

This is the equation of tangent to parabola y? = 4ax in slope form.
From equation (iii), by quadratic formula

we have x = — 2(M=20)
2m
a—2a a
bg(., c=9)
m? m
a
“m?

. a . L
By using x = 7 in equation (i)

we get,

So, the point of tangency is (%,2—"?)

Example: Find the condition when the line 2x + 3y = p is tangent to the parabola y? = 12x.

Also find equation of tangent and point of tangency.

Le., y=—§x+§

We have parabola y? = 12x in which a = 3 and the line I: 2x + 3y = p



9.4.3

Comparing with y = mx + ¢

we get, m = —%andc =§
Now condition of tangency is:
a
c=—
m
. p_ 3
e, =72
3
L
2
Equation of tangent will be y = mx + %
e, y= —%x + _%
3
N
3 2

This is the required equation of tangent.

Now the point of tangency = (% ) %)

(3 6
\r_2
9 73

-G

Parabola, Ellipse and Hyperbola

Find the equation of a tangent and a normal to a parabola at a point

Let P(x;,y;) be a point of parabola y? = 4ax,

So y? = 4ax,

Differentiating w.r.t x

dy
Zya—ﬁta
d
— dy _2a
dx y

Now slope of tangent at P(x1,y,) = (%)

_Za

ie., =
Y1

(x1,¥1)

By point slope form, the equation of tangent will be

2

Na

90°

Normal

Tangey

v

Fig 9.19
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y—y1 =m(x —xq)
; 2a
1.€., Y—y1= y—(x —X1)
1

=  yy, —y?=2ax — 2ax;
=  yy; —4ax; = 2ax — 2ax; (- y? = 4ax;)
=  yy, =2a(x + x1)

This is the equation of tangent to y? = 4ax at (x;,y,).

Normal is perpendicular to the tangent at point of contact P(x4,y;)

slope of normal = — 1
m

N
T 2a
Now equation of normal, by point slope form is

y—n=—%&—m>
=  y(x—x)+2aly—y) =0
This is the equation of normal to the parabola y? = 4ax at (xq,y;).
Example: Find the equation of tangent and normal to x? = 8y at (4, 2).
Solution: We have
x? =8y

Differentiating w.r.t x

dy
2x = 8—
x=8 Ix
dy x
= | ax 2

dy

Now slope of tangent at (4,2) = (dx (4.2)
4,2

ie., m=1

By point slope form the equation of tangent will be
y—y1=mx —x1)
y—2=1x—-4) [+ (x1,p1) = (4,2)]
= x—y—2=0
Normal is perpendicular to tangent
Slope of normal = m' = —1
By point-slope form, equation of normal will be
y—4=-1(x—2)
= x+y—6=0
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9.5 Application of Parabola

Parabolas have important applications in suspension bridges, design of telescopes,
radar antennas and lighting systems.

This is because of the important geometrical property of parabola which is stated as
under:
Theorem: The tangent at a point P of parabola makes equal angles with the line through P

parallel to the axis of parabola and the line through P and the focus.

Proof: Let line / be a tangent to parabola y? = 4ax at point P(x;,y;) as shown in Figure.

Let o be the angle between tangent and the line PQ parallel to the axis of the parabola
and 3 be the angle between the tangent and the line through P and focus F(a, 0).

v P (x4, 1) lies on the parabola

y? = 4ax,
2
_)1
= a= Ix;

We have y? = 4ax

differentiating w.r.t x
2 v _ 4 ! '
Yy~ *a

dx =
dy 2a F(a,0)
=S5 _ =
dx y
Now, the slope of tangent to the parabola at P will be J”g\,
dy 2a &
e,
ax/(xy) W1 Fig 9.20
()
Y1 \4x;
_n
le
Slope of PQ = m, = 0 and slope of PF = m; = xi,ia
N
2
Y1
x ——
1 4x
_ 4x1y1
4xf —yi
Angle from P_Q) to the tangent
my —mp
tana =

1+ mym,
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tana = Re - (D)

2x4
Angle from tangent to PF
_omg—my
tanB = H—T1m3
4y 1

4xf —yi 2%

- 4,101 V1
—_— X - =
M Rry

_ Sxiy —dxiyi +yi

8x3 — 2x,y2 + 4x,y?
4ty +y3
- 8x3 + 2x,y7
_ y1(4xf +yD)
- 20 (4xf + )
Y1

tan 3 =2—x1 .. (i)
a and B are acute angles and tan o = tan 8 (from (i) and (ii))
a= Hence proved.

9.5.1 Solve suspension and reflection problems related to parabola

In physics, according to the law of

S _ normal
reflection of light, the angle of incidence is equal to
the angle of reflection at point P of the surface as incident reflected
shown in the Fig. 9.21. ray ray,
2 —
ie. 6,=0, V= dax
So, a = B (complements of congruent 0110
angles) a i
It means the angle between incident ray P tangent line
and the tangent line at P is equal to the angle Fig 9.21

between the reflected ray and the tangent line at P.

Therefore, if the reflecting surface has parabolic cross sections with a common focus, then all
light rays entering parallel to the axis of parabola will be reflected through the focus as shown
in the figure 9.22.

In reflecting telescopes, this rule is used to reflect the parallel rays of light from the
stars or planets off a parabolic mirror to an eye piece at the focus of the parabola.



\ 4

A\ 4

A

y

Focus Axis
Fig. 9.22 Fig. 9.23

Conversely, if a light source is located at the focus of a parabolic reflector, then the
reflected rays will form a beam of parallel rays parallel to the axis of parabola as shown in the
figure 9.23. The parabolic reflectors in automobile headlights and flash light use this rule. The
optical principles which have been discussed above are also valid for radar signals, sound
waves, radio waves etc.

Parabolas are also used in suspension problems related to suspension bridges and
structures.

. Tower
Suspension Cable Main Cable
K
-llllll|I.III IIIIIII...II..IIII'IIIIIII IIIIIII...II-
Deck Anchor

Fig. 9.24
We know that the cables of suspension bridges are mostly parabolic in shape. This
shape provides the stability of bridges. The weight of the bridge and other physical forces

(tensions, compressions) acting on the cable are transferred by the parabolic cables to the

towers to which the cables are attached. This transfer of physical forces helps the bridges to

remain operational for a long period of time.
Let us solve few examples related to suspension and reflection.

Example 1. How far from vertex should a light source be placed on the axis of parabolic
reflector so that it produces a beam of parallel rays, whereas the depth and
length of chord perpendicular on axis of parabolic reflector are 10 cm and 12 cm
respectively and the parabola is cup-right.

Solution: Let the vertex of parabolic reflector is at origin as shown in the figure 9.25.

Parabola, Ellipse and Hyperbola
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According to the condition [AB| = 12 cm
and |OC| = 10 cm.
point C is the mid-point of AB
|AC| = |BC| = 6cm
Hence coordinates of A and B are (10, 6) and (10, —6)
respectively.

Le the equation of parabola be
2=4 (i B
yoE e . O Fig 9.25
A(10, 6) lies on the parabola
we have 36 = 40a

9
—3 = —
= 10

Now, focus = (a,0) = (%, 0)

9
So, the light source should be placed at F ((19—0, 0) which is at a distance of 1—0 cm from

vertex.

Example 2. A main cable of a suspension bridge is suspended in the shape of parabola between
two towers that are 600 ft apart and 90 ft above the roadway. If cable is at the
height of 10 ft from the roadway at the centre of bridge then find

i) equation of parabola

(i1) height of suspender cable which is 150 ft away from the centre of bridge.
Solution: Let AC and BD represent towers of suspension bridge as shown in the Fig. 9.26.

According to the condition |QE| = 10, |QP| = 80,|BD| = 90 and |DE| = 300.

Let vertex Q is on y-axis then equation of parabola will be

x% =4a (y — 10) ..(Q)
According to the condition, point A AP B
B(300,90) lies on parabola. (300, 90)
So from equation (i), we get 80
90000 = 4a(80) Towgr90 ft 90 ft| Tower
o g 2000 QA 0,105
32 P 150 R
1125 < 5 >
=  a=— C D
So, equation (i) becomes — oooft |H —
v

x%2=1125(y — 10) ...(ii) Fig 9.26
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Let 4 be the height of suspender cable at 150 ft away from the centre of bridge.
v T(150, h) lies on the parabola

equation (ii) becomes

(150)% = 1125 (h — 10)

22500
= h—10=20
= h= 30

So, the required height is 30 ft.

Exercise 9.2 )

1. Find the condition when the line y = mx + ¢ is tangent to the parabola x? = 4ay.
Also find point of contact and the equation of tangent.

2. Find condition of tangency and the point of tangency for the following lines and
parabolas. Also find equation of tangent in each case:
(i) 2x+y=c ; y>=10x
(i1) 3x+4y=p ; x?2=12y

(i) y=cx ;o yi=8(kx—-1)
3. Find the equation of tangent and normal to the following parabolas at the given points:
(i y*=8x ; (2,4)
() x%=4y ; (6,9
(i) OG-D*=9x-2) ; B9
4. Find the equation of tangent and normal at P(x,,y;) to the parabola x? = 4ay.
5. A light house uses a parabolic reflector that is 1 m in diameter. How deep should the

reflector be if light source is placed halfway between the vertex and the plane of rim
to produce parallel beam of light to the axis of parabola.

6. There is a parabolic reflector of 12 cm in diameter is used in a vehicle where should
the light source be placed to produce parallel beam of light whereas the reflector is 8
cm deep.

7. The main cable of suspension bridge is suspended in the shape of parabola between

two towers that are 100 m apart and 30 m high from the roadway. If the cable is at the
height of 5 m from the roadway at the centre of the bridge then find the equation of
parabola and the distance of 10 m high suspended cable from the centre of the bridge.

8. The main cable of a suspension bridge is in the shape of a parabola. The towers are
600 feet apart and 60 feet high from the roadway. If the cable touches at the roadway
at the midway between the towers. What is height of the suspender cable 150 feet from
the centre of the bridge.
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9.6 Ellipse

We have already studied about ellipse that ellipse is an special type of conic. Here we
will discuss its definition and elements in detail.

9.6.1 Define ellipse and its elements (i.e., centre, foci, vertices, covertices, directrices,
major and minor axes, eccentricity, focal chord and latera recta)

An ellipse is defined on the basis of two geometrical properties, one is called focus-
directrix property and the other one is related to the distances of a point of ellipse to two fixed
points.

Definition 1: An ellipse is a set of all the points in plane whose distance from a fixed
point bears a constant ratio to its distance from a 4 A
fixed line. The fixed point is called focus, the fixed B: L
line is called directrix and the constant ratio is
called eccentricity. We denote eccentricity by e 90°
whereas 0 < e < 1. By symmetry ellipse has two
foci and two directrices as shown in the figure

Az F2 Fi As

9.27. In the figure F; and F, are two foci whereas
l; and [, are two directrices. The mid-point of the B2
foci is called centre of the ellipse. The chord ;2' ‘;1
through two foci and the centre is called major axis Fig 9.27

whereas a chord through centre and perpendicular

to the major axis is called minor axis. In the figure point C, A;4, and B; B, are the centre,
major axis and minor axis of the ellipse respectively. The end points of major axis and minor
axis are called vertices and covertices respectively.

In the figure, A; and A, are vertices whereas B; and B, are covertices. Any chord
through a focus is called focal chord of the ellipse whereas the focal chord which is
perpendicular to the major axis is called latus rectum of the ellipse. In the figure LM and PQ
are latera recta (plural of latus rectum) of the ellipse.

Note: The major and minor axes together are called principal axes and their halves are
called semi-axes.

Definition 2: An ellipse is the set of all P2 P
points in the plane, the sum of whose distances
from two fixed points is a positive constant that is Fa F.
greater than the distance between the fixed points A» : A

and equal to the length of major axis. The fixed
points are called foci as shown in the figure 9.28.

Let P; and P, be any two points of ellipse

: ) Fig 9.28
whereas F; and F, are foci as shown in the figure
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then by definition.

|PyFy| + [P F,| = |PoFy | + PRl = k
Where k >0 ,k > |F1F2| andk = |A1A2|
Basic relation of distances of focus, vertex and covertex from the centre of ellipse.

Let a, b, c are respectively the distance of vertex, covertex and focus from centre of the
ellipse as shown in the figure 9.29. The basic relation of a, b, ¢ is a? = b? + ¢?. Let us prove
it. First of all, we take two points P and Q such that P is at vertex and Q is at covertex.

According to the definition 2 of ellipse Q
|PFi| + [PF;| = [QFy| + [QF|

ie, (a—c)+(a+c)=+vbh?%+c?2+Vb2+c?

= 2a = 2Vb? + 2

Squaring both sides

=

ta? = b% + c2.
we ge + Fig 9.29
Hence proved.
Relation of a, c and e where e is eccentricity of the ellipse.

Consider an ellipse whose centre is at C and directrices [; and [, as shown in the figure
9.30. A; and A, are two vertices and F; and F,, are the foci. By definition of eccentricity

_ miF
B mA,D;
- mAlFl = e(mAlDl) (1) A

C N
Similarly, mA,F; = e(mA,D,) ...(i) Dzl & JAI l

e

From Fig. 9.30

mA,A, = mA,F; + mAF, b .
or 2a = e(mA,D; + mA;D;) Fig 9.30
= 2a = e(mA,C + mCD; + mCD; — mA,C)
=  2a=e(2mCD,)
= mCD; =% .. (i)
Now, mCF, = mCA, — mAF,
ie, c=a—emA;D, (using (i))

c =a—e(mCD; —mCA;)
= c=a-e(5-q) (using (i)
= c=a—e (a eae)
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= c=ae

or e =

c
a

i.e., eccentricity of ellipse is also the ratio of distances of focus and vertex from centre.
9.6.2 Explain that circle is a special case of an ellipse

We know that in ellipse, the eccentricity “e” is given by
c
e=- where0 <e<1

and it is the measure of the flatness of ellipse.
If we keep major axis constant then the closer the eccentricity is to 1, the flatter will be

the ellipse. Conversely if e gets closer
to zero the ellipse will become circle,
as shown in the figure 9.31.
We have
c
e=-
a e=0

e=0.5
If ¢ approaches to zero then =09

eccentricity will be zero and two foci Fig 931
will coincide and the resulting ellipse
will be a circle.

We also have

a’ = b2 + ¢?
If c=0
then a? = b?
ie., a=>b

Hence circle is an special case of circle when eccentricity is zero, foci coincide and

9.7 Standard Form of Equation of an Ellipse y-axis

The simplest equations of ellipse are obtained when
coordinate axes are positioned in such a way that the centre of ellipse
is at the origin and the foci are on either x-axis or y-axis. The two
possible such orientations are shown in the figure 9.32 and 9.33. F2 € j
These are called the standard positions of ellipse and their equations
are called standard equations of ellipse.

> ‘
‘7>'<
=3
7




9.7.1 Derive the standard form of equation of an ellipse y-éﬁiis

when major axis is along x-axis and the other when major axis is
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and identify its elements
There are two standard forms of equation of ellipse: one / a
X-axis

along x-axis

Let P(x,y) be any point of ellipse with major axis along
x-axis and centre at origin as shown in the figure 9.34. Let a, b, ¢
be the distances of vertex, covertex and focus from
the centre respectively. AL A

foci are on x-axis
foci are F; (c,0) and F,(—c, 0) /7“
Fa Fi

along y-axis. We derive both standard forms. C g
(a) Standard form of equation of ellipse when major axis is F2

Eithe de@tion 2 of ellipse 0 o0 o)
|PF,| + |PF,| =2a  wherea >b

= Jx-02+y*+(x+c)2+y2=2a

or (x+c)2+y?=2a—(x—c)?+y? v

Squaring both sides
(x+c)?+y?=4a*—4a\/(x —c)? +y?+ (x —¢)* + y?
or ay(x—c)2+y%2=a%?—cx

Again, squaring both sides

a?{(x — ¢)?> + y?} = a* — 2a’cx + c%x?

= (a® — cH)x? + a?y? = a?(a? — ¢?)

Dividing both sides by a?(a? — ¢?)
52 y2

we get E + 22 —c2 =1
X2 2

ie., _2+y_= 1 (+ a®>=b?>+c%?anda > bh)
a? b2

coordinates of vertices and covertices are (+a, 0) and (0, +b) respectively.

. . . a
centre. So, equations of directrices are: x = + z

a
We have already proved in section 9.6.1 that directrix is at distance of -

P x-axis

Fig 9.34

This is the standard equation of ellipse when major axis is along x-axis where

from the
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(b) Standard form of equation of ellipse when major axis is along y-axis

Let P(x,y) be any point of ellipse with major axis % is
along y-axis and centre at origin as shown in the figure f >
9.35. Let a, b, ¢ be the distances of vertex, covertex and @)
focus from the centre respectively. Fi(0, ¢)
foci are on y-axis .
. (0’ 0) X-ax1s
foci are F; (0, ¢) and F,(0,—c) < C >
By the definition 2 of ellipse
|PF,| + |PF,| =2a  wherea > b B
= 2+ -+ x2+(y+c)2=2a s R

2 — _ 2 — )2 \{
or  Jx2+(y+e)=2a-x2+ (-0 Fig 9.35
Squaring both sides
Y+ +x?=4a® —4ayx?+ (y—c)? +x2 + (y — ¢)?
or ayx+ @y —c)2=a*-cy

Again, squaring both sides
a?{x?>+ (y — ¢)?} = a* — 2a’cy + c?y?

= a’x? + (a® — c®)y? = a%(a® — ¢?)
Dividing both sides by a?(a? — ¢?)
52 y2
We get 2oz + - 1
2 42
X y
ﬁ+§=1 (v a?=b%*+c%anda > bh)

This is the standard equation of ellipse when major axis is along y-axis where
coordinates of vertices and covertices are (0, +a) and (b, 0) respectively.

a
We have already proved in section 9.6.1 that directrix is at distance of Z from the

centre. So, equations of directrices will be: y = i% .

Length of latus rectum:
Let AB be the latus rectum of ellipse with major axis along x-axis having equation
2 .2
x° y .
; + ﬁ =1 (l)
Focus is on x-axis
Coordinates of one focus are (¢, 0)

Now equation of line containing latus rectum is
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X=c or X =ae (v c=ae) Y
By using x = ae in equation (i)
aZe? 2

We get, 22 +§ =1

A
R
= iepa-e) 1V
o yoanisE B

So, the end points of latus rectum are

A(c,bV1 —€e?) and B(c,—bV1 — e?) Fig 9.36
Now, mAB = 2bV1—e?
a? — 2 c
=2b a2 ('.' e = E)
b
=2b(—) 2 _ 2=b2
. (v a*—c¢ )
_2b®
a
2b?

So, the length of latus rectum is PR

Standard equations of translated ellipses:

If the axes of an ellipse are parallel to the coordinate axes B:
and centre is not at the origin then, by the translation the equations
of ellipse may be determined which are as under:

(1) Ellipse with centre (h, k) and major axis parallel to x-axis.
(x-h?  (y—k)?

a? * b?
In this case foci are (h+c, k), vertices (h+a,k),

=1(a>b) > x

Fig 9.37
covertices are (h, k + b) and directricesare x — h = + %. v €
(ii) Ellipse with centre (h, k) and major axis parallel to y-axis. 1
(x—h)?* (y—k)?
52 + - 1(a>Db) (h, k)

In this case foci are (h, k + ¢), vertices are (h, k + a) covertices
are (h + b, k) and directricesare y — k = + %.
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General equation of ellipse when axes of ellipse are parallel to coordinate axes

=

=

Consider a translated ellipse

AV A
—h° =k

pz 1

b?(x? — 2hx + h?) + a?(y? — 2ky + k?) = a®b?
b2x? 4+ a?y? — 2hb%x — 2ka?y + b*h? + a’k? — a?b?> =0  ...(0)
Let A=b?%B =a?

G = —2hb?% H = —2ka? and C = b%h? + a%k? — a®b?

then equation (i) becomes

Ax? + By? + Gx + Hy + C = 0, where A and B are non-zero with same sign.

This is general equation of ellipse when axes of ellipse are parallel to coordinate axes.

Summary of equations of ellipse

Equation

Related terms and conditions

(@)

2 2

| %
<
N

b

Major axis is along x-axis and centre is origin
Foci: (+c,0),

Vertices: (+a, 0)

Covertices: (0, £b)

. . a
and Directrices: x = + z

2b?
Length of latus rectum: P

(i)

Major axis is along y-axis and centre is at
origin. Foci: (0, c¢),

Vertices: (0, +a)

Covertices: (+b,0)

. . a
and Directrices: y = + z

2b?
Length of latus rectum: P

(iii)

(x-n)?  (y-k)?
a? + b2

= 1(a> b)

Major axis is parallel to x-axis with centre at
(h, k)

Foci: (h + ¢, k), Vertices: (h + a, k)
Covertices: (h,k + b) and

Directrices: x — h = i%

2b?
Length of latus rectum: o
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A

Equation

Related terms and conditions

(x-n)?  (y-k)?
+

v

a2

Major axis is parallel to y-axis with centre at
(h, k)

Foci: (h, k + ¢), Vertices: (h, k + a)
Covertices: (h + b, k) and

Directrices: y — k = i%

2b?
Length of latus rectum: P

General equation
Ax?>+By*+Gx+Hy+C =0

A and B are non-zero with same signs. All
related elements can be found by converting
into a standard form.

2 2

2

llipse: —
ellipse: —=

2
L2
9

Here, a?=25andb?=9
So,

we know that

a? = b2 = 2

= 25=9+c?

= =16

= c=4

We know that ¢ = ae

= 4 =5e = e=§
4

So, the eccentricity is <

Now,
Foci = (+¢,0) = (+4,0),

Note: For all types of ellipses mentioned above, we have

2

a’? = b? + c?, latus rectum = % and ¢ = ae.

Aucxiliary Circle: Auxiliary circle of ellipse is the circle whose diameter is the major axis of
ellipse. For ellipse ztzT 1, auxiliary circle is: x? + y2 = a?.
Example 1. Find foci, vertices, covertices, latus rectum and equations of directrices, of the

Solution: This is the ellipse with centre at origin and major axis along x-axis.

a = 5 and b = 3 are the semi-axes of the ellipse,
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Vertices = (+a,0) = (£5,0),

Covertices = (0,1b) = (0,13),
2

Lal‘cusrectum=&=w=E
a 5 5
and equation of directrices are
a
x=4-
e
5
1e., x=4 (¢>
5
or X = 124—5.

Example 2. Find semi-axes, centre, foci, vertices, covertices, latus rectum and equations of
(x=2)*  (y+3)*
+ =1
25

directrices of the ellipse

o o =m? (=k)?
Solution: Comparing given ellipse with L2 + 2z 1
we get a® = 25,b% = 16,h = 2,k = —3 and major axis is parallel to y-axis.
We know that
a? =b%+c?
= 25 =16 + c?
= c? =
= c=3
We know that ¢ = ae
= 3 =>5¢e = e =%

3
So, the eccentricity is < and a = 5,b = 4 are the semi-axes of the ellipse.

Now,
Centre = (h, k) = (2,-3)
Foci= (hk+c)=(2,-3+3)
So, Foci are (2,0) and (2,—6)
Vertices = (h,k +a) = (2,—-3 +5)
So, Vertices are (2,2) and (2, —8)
Coverticesare (h + b, k) = (2 + 4,-3),
So, Covertices are (2,1) and (2,—7)

2
Latus rectum = & = ¥ = %

a
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and equation of directrices are

k=14-
Y e

y+3=+

ull w| L1

or y+3=i§.

9.7.2 Find the equation of an ellipse with the following given elements:

e major and minor axes,

e two points,

e foci, vertices or lengths of a latera recta,

e foci, minor axes or length of a latus rectum.

e Equation of ellipse whose major and minor axes are given

The method is explained with the help of the following example.
Example: Find the equation of ellipse with centre at origin where major and minor axes are 10
and 8 units respectively and major axis is along x-axis.
Solution: Here length of major axis = 10
e, 2a=10
= a=5
and length of minor axis = 8

ie., 2b =18

= b=4

According to the condition, equation of ellipse will be
xt y? . o .
= + 7= 1 ..(1) (~ major axis is along x-axis)

By using values of a and b in equation (i)

we get,
x2 2
LY
25 16

This is the required equation of ellipse.
e Equation of ellipse when two points are given
The method is explained with the help of the following example.
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Example: Find the equation of ellipse passing through (1, \/E) and (@, 1) whereas the centre

is at origin and major axis is along y-axis.

Solution:

major axis is along y-axis and centre at origin

equation of ellipse will be

X2 y?
ptae=1
(1, \/f) lies on the ellipse

we have from equation (i)

1 2
b2 + 2 =1
(@, 1) lies on the ellipse

we have from equation (i)
3 1

T

..(0)

...(ii)

...(iii)

Fig 9.39

3
Multiplying equation (ii) by > and subtracting equation (iii) from the resultant equation

and

or

=

By using values of @ and b in equation (i)

we get,

=

This is the required equation of ellipse.

The method is explained with the help of the following examples.

3 3 3

22" @z 2
23?+%=—1

2 1

a2 2

a’ =4 = a=2

x2 2
—+==1
2 4

4x% +2y? =8

= b2 =2

Equation of ellipse when foci, vertices or length of latera recta are given
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Example 1. Find the equation of ellipse with centre at origin whose focus and vertex are
(8,0) and (10, 0) respectively.
Solution:
According to the condition, focus and vertex lie on x-axis.
So, major axis is along x-axis.

Here c¢=38
a=10
We know that
a? = b? + ¢?
ie, 100 =b?%+ 64
= b? =36 = b=6
Equation of ellipse will be
2 2
ZtEel
. x? y?
1.e., R + g =

This is the required equation of ellipse.

Example 2. Find the equation of ellipse with centre at origin such that its focus is (0, 3) and
32
latus rectum is of ") units.

Solution:
According to the condition, major axis is along y-axis.
We have,
c=3

and length of latus rectum = 3—52

2b% 32
ie., —_— =
a 5
16a
2 %
= b = £
We know that
a? = b? + ¢?
2 _ 16a

i.e., a —T+9
= 5a% = 16a + 45
= 50> —16a—45=0
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5a%> —25a+9a—45=0
5a(a—5)+9(a—-5)=0
(a—5)5a+9)=0

Lyl

9
a=5o0ra= -t
a cannot be —ve
we neglect a = —%

Hence a=5

We knot that
a? = b? + ¢?
ie, 25=b*+9
=  b*=16 = b=4
Now equation of ellipse will be
x2 2
LY
b? " a?
x2 2
ie., — 4+ - =1
16 25

This is the required equation of ellipse.
o Equation of ellipse when foci, minor axis or length of latus rectum are given
The method is explained with the help of the following examples.

Example 1. Find the equation of an ellipse whose focus is (5,0) and minor axis is 12 units
long and along y-axis where centre is at origin.

Solution:
According to the given conditions, equation of ellipse will be

x2 yZ

P + 2 1 () /‘—\
Here c¢=5 12 units) g (5, 0)
and length of minor axis = 10 \\C (0, 0)
ie, 2b=12
= b=6 Fig 9.40
We know that

a? = b% + ¢?
ie, a*=36+25
a? =61 = a=+61
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By using values of a and b in equation (i)

we get
x?  y?

61736 |
This is the required equation of ellipse.

Example 2. Find the equation of an ellipse whose minor axis is 10 units long and along x-axis
whereas latus rectum is 8 units long and centre is at origin.

Solution:

According to the condition, the equation of ellipse will be

X2 y?
pta=!

Here length of minor axis = 10

ie, 2b=10 = b=5

and length of latus rectum = 8

, 2b? 10 units
1.e., — =38
a
=  b®=4a
- _2
e, a=-
By using values of a and b in equation (i) Fig 9.41
We get
2 2
X
¥ v
25" 25
4
2 2
X 4
= —+ 2> 1
25 25

This is the required equation of ellipse.
9.7.3 Convert a given equation to the standard form of equation of an ellipse,
find its elements and draw the graph

In section 9.7.1, we have already studied the general equation of ellipse when major
and minor axes of ellipses are parallel to the coordinate axes. The equation is as under:

Ax*+By?*+Gx+Hy+C=0
where A and B are non-zero and having same sign.

Equation (i) can be converted into standard form of equation of an ellipse. The method
will be explained in the following examples.
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Technique for drawing graph of an ellipse

Graph of an ellipse can be drawn from their standard equations using the following

three steps:

1. Determine whether the major axis is along x-axis or y-axis or parallel to one
of them. If denominator of x2 or (x — h)? is larger then major axis is along
x-axis or parallel to x-axis respectively. If denominator of y? or (y — k)? is
larger then major axis is along y-axis or parallel to y-axis respectively. If both
denominators are equal then it is a circle.

2. Determine the values of a and b and draw rectangle extending a units on each
side of the centre along major axis and b units on each side of the centre along
the minor axis.

3. Using the rectangle as guide, sketch the ellipse so that it touches the sides of
the rectangle where the sides intersect the axes of the ellipse.

Example: Find foci, eccentricity, vertices, covertices, latus rectum and equations of directrices
of ellipse 9x% + 16y2 — 144 = 0. Also draw its graph.
Solution: We have
9x2 + 16y% — 144 =0

or 9x2 + 16y? = 144

Dividing both sides by 144
X2 y?

E + ? =1

Here a? =16 and b?> =9, so a = 4 and b = 3 and major axis is along x-axis and

centre at origin.

We know that
a? = b% + ¢?
16=9+c2 = %=7 or c=+7
Also, we know that
c=ae
V7
So, T =e
Now,

Foci = (+¢,0) = (£V7,0)
So, Foci are (\/7, 0) and (—\/7, 0)

Vertices = (+a, 0) and (+4,0)
So, Vertices are (4,0) and (—4,0)
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Covertices = (0,+b ) = (0, £3)

So, Covertices are (0,3) and (0, —3) y-il:(is
2
2b 2x9 9
Latus rectum = =1 =3 / 3\
equations of directrices will be > raxi
q . YRRGI) 7> vaxis
x=+- \ 3/
e
EEE Fig 9.42
T
16
= =+—.
T
Graph of ellipse

Here centre = (0,0)

Semi axes area = 4 and b = 3
Major axis is along x-axis
Graph is shown in Fig. 9.42.

Example 2. Find centre, foci, vertices, and latus rectum of ellipse
9x2 — 18x + 4y? + 16y — 11 = 0. Also draw its graph.

Solution: We have
9x2 —18x + 4y + 16y — 11 =0
=  9x?-2x)+4@pt+4y)=11
= 9(x2—2x+1)+4(y>+4y+4)=114+9+16
= 9(x —1)2+4(y+2)> =36
Dividing both sides by 36
2 2
i) A
(x-h)?  (y+k)?
b2 * az
We get centre = (h, k) = (1,—2)
a’ =9and b? =4

= a=3andb =2

Comparing with 1

Also, major axis is parallel to y-axis.
We know that
a? = b? + ¢?
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ie, 9=4+c?

= =5 = =45

Now, foci= (h,k+c)= (1, -2+ \/E)

So, foci are (1, -2+ \/E) and (1, -2, _\/E)
Vertices = (h,k + a) = (1,-2,%3)

So, Vertices are (1,1) and (1, -5)

2 y
Latus rectum = % 4
_2(4) 8 A BN > X
9 9
Graph of ellipse 2 2_

Here centre = (1,—2)
Semi-axesarea = 3 and b = 2

N Q
~
—
NY
~

Major axis is parallel to y-axis. Fiz 9.43
1 .
Graph of the ellipse is shown in the Fig. 9.43. 8
Exercise 9.3 )
1. Find semi-axes, eccentricity, foci, vertices, covertices, latus rectum and equations of
directrices of the following ellipses. Also draw their graphs.
2 2 2 2
. Xty . x y
—+=—==1 —+—=1
@ 9 25 (i) 16 + 10
x—3)? +4)2 x+1)? -2)?
a2 GNP € L5 A e GO
25 16 9 16
(v)  9x?+25y% =225 (vi) 4x2 —16x + 25y% + 200y —316 =0
2. Find the equations of the following ellipse whose centres are at origin and their axes
are along coordinate axes. Also satisfy the given conditions:
(1) Major and minor axes are 12 and 8 respectively with minor axis is along y-axis.

(i1) Ellipse passes through <1, \E) and (%, 1 ) with major axis is along y-axis.
(iii)  Foci at (£3,0) and vertices at (£5, 0)

18
(iv)  Foci at (0, +4) and latus rectum 0

V) Foci at (5, 0) and minor axis is 12 units long and along y-axis.

(vi)  Minor axis along x-axis with length is 8 units and latus rectum are 6 units long
and along y-axis.

22
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(vil)  Covertices at (0, £3) and distance between foci = 10 units.

o 25 32
(vii)  Directrix y = = and latus rectum =

Find equation of auxiliary circle to 5x? + 7y% = 11.

4, Is the point (4, 5) inside on or outside the ellipse 2x% + 3y? = 6.

5. Find equation of ellipse with centre at (5, —3), one vertex at (10, —3) and one focus
at (9,—-3).

6. If ellipse is 9x% + 13y? = 117 then find:
1) distance between foci;
(i1) distance between vertices;

(iii)  distance between covertices.

7. Find eccentricity of ellipse if:
)] axes are 32 and 24;
(i1) latus rectum is equal to half of its major axis.
8. Find equation of the circle passing through focus of parabola y? + 8x = 0 and foci of

ellipse 25x2 + 16y2 = 400.

9. Find the length of, and the equations to, the focal radii drawn to a point (4\/§, 5) of
the ellipse 25x% + 16y2 = 1600.

10. Find equation of ellipse with centre at (0, 1) and major axis parallel to y-axis. Also, it
passes through (2, 1) and (0, 4).

9.8 Equations of Tangent and Normal of an Ellipse

As tangent and normal are very important to solve many physical problems, so we will
discuss concept, conditions and equations of tangents and normals to an ellipse in this section.
9.8.1 Recognize tangent and normal to an ellipse

Like any other curve, tangent to an ellipse is the line
which touches the ellipse at a certain point P. The point P is
called point of tangency. Normal to the ellipse is a line which is
perpendicular to the tangent at the point of tangency.

In the figure 9.44, [, is tangent to the ellipse at P and [,
is the normal.

9.8.2 Find points of intersection of an ellipse with a line including the condition
of tangency
As a matter of fact, a line can cut or touch an ellipse and sometimes it neither cuts nor
touches the ellipse as shown in the figure 9.45. We will discuss the method of finding points
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of intersection of an ellipse with a line along with condition of
tangency in this section.

Consider aliney = mx + ¢ ..() %
_x? P y

and the ellipse ? + b_2 =1 ...(ii)

Solving both equations simultaneously,

we get b?x? + a?(mx + ¢)? = a®b?

= (b% + a?m?)x? + 2mca®x + a®(c? — b?) = 0 .. (iii)

Roots of quadratic equation (iii)
represent abscissas of the points of intersection.

=~ Abscissas of points of intersection will be the roots of (iii) and the corresponding
ordinates of points of intersection will be obtained by

Substituting the values of x in (i)

Moreover, the nature of roots of quadratic equation (iii) will represent the nature of
parallel lines, [;, [, and 5 each having slope m with respect to given ellipse.

Here, discriminant of equation (iii) is
A= 4m?c?a* — 4a?(b? + a’>m?)(c? — b?)
= 4m2c?a* — 4a®’b%c? + 4a’b* — 4a*m?c? + 4a*m?b?
= 4a%b?(b? — c? + a’*m?)
If A> 0 then line will cut the ellipse because there will be two distinct real roots.

If A< 0 then the line will neither cut nor touch the ellipse because there will be no real
root.

If A= 0 then line will be tangent to the ellipse because there will be only one real root.
ie, 4a’b?’(b>*-c*+a*m?) =0
= b -c*+a*m?=0
=  c?=b*+a’m?
2 2

This is the condition of tangency of line y = mx + ¢ with the ellipse = + T 1.

Example: Show that the line y = 2x + 4 is tangent to the ellipse 4x2 + 3y? = 12. Also find
point of contact.

Solution: We have
Line y=2x+4 ...()
and ellipse: 4x2 + 3y% =1 ..(ii)

Solving equation (i) and (ii) simultaneously,

223
y
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we get 4x> +3(2x+4)>—-12=0
= 4x% +3(4x*+16x+16)—12=10
= 16x%+48x+36=0
= 4x2+12x+9=0 ...(iii)
Here A= 144 —4(4)(9)
=144-144=0
A=0
Given line is tangent to the given ellipse.
From equation (iii), we have x = — %
i.e. x = _l2_ 3
’ 8 2
By using x = —% in equation (i)
we get y = (—%)+4
=1

So, the point of intersection is (— %, 1).

9.8.3 Find the equation of a tangent in slope form

Lety =mx +c¢ . (1)
2 2
be the equation of tangent to the ellipse 2z + bz 1

By the condition of tangency
c? =b% + a’*m?
or ¢ =Vb?% + a?m?

By using this value of ¢ in equation (i)

we get y = mx + Vb? + a?m?
2 2
This is the required equation of tangent in slope form to the ellipse P + o 1.
x2 2

Example: Find the equation of tangent to Te + y? = 1 whose slope = 2.

Solution: Here slope = m = 2,a? = 16 and b? = 9.
We know that the equation of tangent in slope form is
y = mx ++/b? + a’?m?
ie., y=2x++v9+16x4

y=2x++v73
This is the required tangent.
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x2 y2
Let P(x4,y;) be a point on the ellipse E + b_2 =1

Differentiating w.r.t x

2x  2ydy 0
a2 bZdx <
d b*®
- |Z__2*
dx azy
dy
N 1 ft tat (xq, ==
ow, slope of tangent at (x4,y;) ( dX)(x1,y1)
_ bPxy
~ a?y;
By point-slope form, the equation of tangent will be

B ble( )
y—nh= azyl X=X

- x1(x — xq) +}’1(}’ - 1) _

a? b2 0
xx, yyi (X ¥i _ 0
= @ T e Thz)T
XX1 YW1
= | @ et

2 2

This is the required equation of tangent to the ellipse p) + v

Normal is perpendicular to the tangent at P (x4, y;)

a?y,
slope of normal = —== at (x4, y1).
X1

By point-slope form, the equation of normal will be

a’y;
Yy—»1 = _ble(x_xl)

- b*(y = y1) _ a?(x — x1)

1 X1
a’x b?
22 2V peypr=g
X1 V1
a’x b?
ori X 2Y g2 _p2
X1 V1

2 2

X
This is the equation of normal to the ellipse — + A 1 at (xq,¥7).

a? b2

1 at (xq,y1).
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. : x? y? 5 [3
Example: Find equation of tangent and normal to = + 3= 1 at 342 |

2 2
Solution: We have ellipse: = + 3" 1

differentiating w.r.t x

2x 2ydy
TR
dy ~ 2x 3
dx 5 2y
dy 3x
dx 5y

Now, slope of tangent at ( \E, \E) =m= (%)( \/E JE)

242
3
N

So, by point-slope form, the equation of tangent will be

Y=y =mx—x)
] 3 |3 5
ie., y= 3= (¥ |3
Normal is perpendicular to the tangent at < \E, \E)

slope of normal = \/g =m'
By point-slope form, the equation of normal will be

y—y1=m'(x —x)

) 3 _[5 5
ie,y 5= [31* 5

Exercise 9.4 )

1. Find the condition when line y = v/5x + ¢ is tangent to the ellipse 4x? + 9y? = 36.
2 2
2. Show that the line x = 2y + 4 touches the ellipse 7 + 3= 1. Also find point of

contact.
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2 2
3. Find the condition of tangency of line y = mx + c to the ellipse 0z + i 1.

2 2
4. Find the condition of tangency of given line to the ellipse = + T 1.
. x Yy .
(1) -—+==1 (i1) xcosa+ysina=p
p q
(i) Ix+my+n=0
x2  y2

5. Find the equation of tangent to 3 + i 1 with slope 3.
6. Find the equation of tangent and normal to

() 9x2+25y2=225at(3,%)

(i)  49x% + 64y? = 64 x 49 at (8 cos a, 7 sin )
7. Find the equation of tangent and normal at the ends of the latus rectum with positive

2 2
abscissa of the ellipse 3 + o= 1.
x?2  9y?

8. Find the equation of tangent to the ellipse 0 + >0 - 1 at the points where abscissa

is 1.

9.9 Hyperbola

In previous chapter we defined hyperbola as conic section of right circular cone but in
this section, we will discuss hyperbola in detail on the basis of eccentricity and directrix.
9.9.1 Define hyperbola

A A

Hyperbola is defined on the basis of two geometrical P
properties, one is directrix-focus property whereas the other one is
based on the distances of a point from two fixed points.

Definition 1: A hyperbola is the set of all the points in a )
plane whose distance from a fixed point bears a constant ratio to its
distance from a fixed line such that the ratio is greater than 1.

The fixed point, fixed line and ratio are called focus,

vV Vv
directrix and eccentricity respectively. Hyperbola has two foci and L I
two directrices as shown in the figure 9.47. Fig 9.47
Definition 2: The locus of a point, the difference of whose

. o . P(x,y)
distances from two fixed points is constant, is called hyperbola. The
fixed points are foci.

F> Fi

Let P(x,y) be any point of hyperbola whereas F; and F,
are two foci as shown in the figure 9.48 then
|PF,| — |PF;| = constant (say k). Fig 9.48
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9.9.2 Define elements of hyperbola (i.e., centre, foci, vertices, directrices,

transverse and conjugate axes, eccentricity, focal chord and latera recta)

As discussed above hyperbola has two \X A

fixed points and two fixed lines which are
called foci and directrices respectively. In the
figure 9.49, F,,F, are foci whereas l;,l, are _ Focus

A

P

Fi Focal_

directrices of hyperbola. ) F> o 4
The mid-point of the line segment

joining the foci is called centre. In the figure /Y
point C is the centre of hyperbola. The line
through foci is called focal axis.

Hyperbola intersects focal axis at two points called vertices.
In the Fig. 9.49 A; and A, are two vertices of the hyperbola. The
two parts of hyperbola are called its branches. Any chord of
hyperbola through any one of its foci is called focal chord. In the
figure LM is a focal chord. The focal chord perpendicular to the focal
axis is called latus rectum. In the figure PQ and XY are the latera
recta (plural of latus rectum) of the hyperbola. The ratio of distances
of any point from focus and directrix is called eccentricity and is
denoted by e where e > 1.

A line passing through centre and gets closer and closer
to hyperbola but never touches it is called asymptote. There are
two asymptotes of any hyperbola as shown in the figure 9.50.

respectively. Asymptotes are in fact diagonal lines of a rectangle
which extends a unit from centre on either side on focal axis and
it extends b units from centre on either side on the line

Let distance of focus and vertex from centre are ¢ and a >
/A

perpendicular to focal axis and through centre as shown in the
Fig. 9.51 where we define b as b = Vc¢? — a?.

The line segments A1 A, and B, B, are called transverse and
conjugate axes respectively where A; and A, are the vertices but B;
and B, are the ends of conjugate axis of hyperbola.

The relationship of a, b and ¢ is pictured geometrically in the figure.

Relation is: ¢? = a? + b?

AN Focus Axis

ON\M

Fig 9.49

Centre

F>

Fi
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Property: The differences of the focal distances of a
point on a hyperbola is equal to the length of its transverse axis
as explained with the help of the figure 9.53. We take vertex A
as a point of hyperbola.

By definition 2 of hyperbola

mAF, — mAF; = k (constant)

ie, {(c—a)+2a}—-(c—a)=k

= c—a+2a—-c+a=k y-axis
or k = 2a. Fig 953
This is valid for any point of hyperbola.

Hence difference of focal distances of a point on a hyperbola is equal to the length of
its transverse axis.

Distance of directrix from the centre and the relation ¢ = ae

Consider a hyperbola in which distance of a focus and vertex from centre is ¢ and a
units respectively and [ is the directrix cutting focal axis at point D as shown in the figure 9.54.

mF; A
Now, mAl—Dl = e > 1= mF,;A; = e(mA,D) as point A, is nearer to D then F; and
1
mF; A, A
mAD = —e (asmF; A, = —mA,F,)
= mF A, = —e(mA,D
Fufly = —e(mAaD) AN
= mAzFl = e(mAzD) AZ Al
The points A; and 4, are on the opposite sides of /. Take
C as origin and CF; as positive x-axis. Now, by definition of
hyperbola v
mA1A2 = mA2F1 — mA1F1 Flg 9.54

=md,F, — mF A,
= e(mA,D + mA,D)
e(mA,C + mCD) + e(mA,C + mCD)
2a = 2e(mCD) (~ mA,C = —mA,C)
— a

= mD=1 ..()

a
Hence, directrix / is at a distance of — from the centre.
e

Similarly, mCF, = mCA; + mAF;
=mCA; + e(mA,D)
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c =a+e(mCA; —mCD)

a
= c=a+e(a—z)
= c=a+ae—a
or c=ae ...(11)

9.10 Standard Form of Equation of Hyperbola

The simplest form of equation of hyperbola is when the coordinate axes are positioned in
such a way that centre of hyperbola is at the origin and the transverse axis and conjugate axis are
on the coordinate axes. The two possible such orientation are shown in the figure 9.55 and 9.56.

conjugate Y-axis y-axis
axis \ \
\ conjugate
) ¥ axis
X-axis /
transv‘ege
axis
transverse
axis
Fig 9.55 Fig 9.56

These are the standard positions of hyperbola and the resulting equations are called
standard equations which will be derived in the next section.

9.10.1 Derive the standard form of equation of a hyperbola and identify its
elements
(a) Standard equation of hyperbola when transverse axis is along x-axis.

Let P(x,y) be any point on hyperbola with centre at origin, transverse axis on x-axis
and conjugate axis along y-axis as shown in the figure 9.57 whereas foci are F;(c,0) and
F,(—c,0). The length of transverse axis is 2a.

By the definition of hyperbola P(x,y)
|PF;| - [PFy| = 2a 0|2a

ie, Jx+o?P+yi—Jx—0?+y?=2a Fa(=c,0) /42 | A\ Fi(c,0)
or Jax+o)?2+y2=2a+(x—c)?+y?

Squaring both sides

(x+c)?>+y? =4a% +4a/(x — )2 + y?

+(x—c)? +y?

Fig 9.57
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= 4ex — 4a? = 4aq/(x — €)% + y?
cx
= ;—a=w/(x—c)2+y2
Again, squaring both sides
2

cx
——2cx+a* =x* = 2cx +c* +y?
a
= c?x? + a* = a®x? + a’c? + a’y?
= (CZ _ aZ)xZ _ a2y2 — aZ(CZ _ aZ)
Dividing both sides by (c? — a?)a?
we get
2 2
x
2 zy ;=1
a? c2-a
2 2
- Yy _ w2 02 4 2
ie., az—bz—l (v c*=a*+b*)

This is the required equation of hyperbola whose transverse axis is along x-axis.
with centre at origin whereas foci are (0, +c), vertices are (0, a), ends of conjugate

2
: . . o 2b
axis are (tbi, 0), equations of directrices are y = + % and latus rectum = -

With centre at origin whereas foci are (£c, 0), vertices are (+a, 0).

In order to find ends of conjugate axis, we find y-intercepts of hyperbola by using
x = 0 in the equation

X2 42
7—L=1
a’? b?
we get y? = —b?
= y = +bi

So, the ends of conjugate axis are (0, +bi)

a
Distance of directrix from centre is — as we studied in section 9.9.2.
e

Equation of directrices will be x = + %.

Length of latus rectum of hyperbola
2
Let PQ be the latus rectum of hyperbola Pl 1 ...(1)
with a focus F; (¢, 0) as shown in Fig. 9.58
latus rectum PQ passes through focus F; (c, 0) and perpendicular to the focal
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its equation will be x = ¢ ...(ii)

n.- P
Solving (i) and (ii) simultaneously

c2 2
We get -t / Fi(c,0)

a2 b2

0 {Cz_az

a Q

ie.,

<

2 .
Fig 9.58
y = i% ( CZ _ a2 — bZ) 1g

b? —b*
So, the coordinates of P and Q are (c, 7) and (c, T)

2 2

2
S 2b 2b
Now, |PQ|= <_a ) ==

 2b?
So, the length of latus rectum is PR
(b) Standard equation of hyperbola when transverse axis is along y-axis

Let P(x,y) be any point on hyperbola with centre at origin, transverse axis along
y-axis and conjugate axis along x-axis as shown in the figure 9.59, whereas foci are F; (0, ¢)
and F, (0, —c). The length of transverse axis is 2a.

By the definition of hyperbola
|PF;| - [PFy| = 2a
e, JxX2+@+c)?r—Jx2+(y—c)2=2a

or JX2+ @ +c)?=2a+x2+ (y—c)?

Squaring both sides

x2+(y+co)? =4a’+4ax?+ (y—c)?+x%+ (y —¢)?

=  4cy—4a® =4a/x2 + (y—c)? 10.0) P (x.y)
Z-a=\+G-F 4
Again, squaring both sides < 5 2a >
CZ}ZIZ—ch+a2=x2+y2—ZCy+c2 4
= c?y? 4+ a* = a’x% + a®y? + a®c? F2(0,—¢)
= (c? —a?)y? — a?x? = a®(c? — a?) Fig 9.59

Dividing both sides by a?(c? — a?)
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we get

=1

This is the required equation of hyperbola whose transverse axis is along y-axis.
Equilateral or Rectangular hyperbola

A hyperbola, in which transverse axis and conjugate axis are of same length is called
rectangular or equilateral hyperbola.

ie., 2a =2b

ie, b=a b

So, the equation of hyperbola is: x? — y? = a? a a

where e = /2 bl

because ¢ = a? + b?

ie, a’e?=2a’ (¢ = ae) Fig 9.60
= e =12

In rectangular hyperbola asymptotes are perpendicular to each other as shown in the
figure 9.60.

Conjugate Hyperbola

The conjugate hyperbola of a given hyperbola is the hyperbola whose transverse and

conjugate axes are respectively conjugate and transverse axes of given hyperbola.
2 42 . ‘ x2  y?

Thus, 2 gz 1 is conjugate hyperbola of 22T 1.
Standard forms of Translated Hyperbolas

If centre of hyperbola is not at origin but the transverse
and conjugate axes are parallel to the coordinate axes then it is ¢
standard form of translated hyperbola and its equations along (h,k)
with its elements are given below.

() Equation of hyperbola when centre is at (h,k) and 0
transverse axis parallel to x-axis is: Fig 9.61
(x-h)? (y-k?
az bz 1
Here foci are (h + ¢, k), vertices are (h + a, k), ends of conjugate axes are (h, k + bi).

2b?
. o a .
Equations of directrices are: x —h = + p and latus rectum is -




(b)
axis parallel to y-axis is:
y-k? (x—h?
a b

Equation of hyperbola when centre is at (h, k) and transverse

1
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et (hk)

Here foci are (h, k + c), vertices are (h,k + a), ends of

conjugate axes are (h+ bi, k). Equations of directrices are
2
y—k=+ % and latus rectum = %.

0]

Fig 9.62

() General equation of hyperbola when transverse and conjugate axes are parallel

to coordinate axes.
Consider a hyperbola
(x-h? O -k?_
a2 b2
On simplification, it becomes
b?(x? — 2hx + h?) — a?(y? — 2ky + k?) = a?b?

1

= b2x% —2hb%x + b%h? — a?y? + 2ka’y — a’k? — a*h?* =0
=  b%x%? —a?y? — 2hb?x + 2ka?y + b%h?® — a?k? — a’bh? =0

(i)

Let A=b?%B=-a%G=—-2hb?F =2ka?and C = b*h? — a®k? — a?b?

So, equation (i) becomes

Ax?>+ By?+Gx+Fy+C=0
Where A and B are non-zero and have different signs.
Equation (ii) is the general equation of hyperbola.

Summary of standard equations of hyperbola and related terms

... (ii)

Equation Related Terms
) x%  y? ) Foci are (+c, 0)
@ az b2 Vertices are (+a, 0)

Centre at origin and transverse axis is along | Ends of conjugate axis are (0, +bi)

X-2xis. Directrices: x = + %
Asymptotes: y = igx
. y?  x? Foci are (0, +c)
(@) az b2 1 Vertices are (0, +a)

o . . a
y-axis. Directrices: y = +2

Asymptote: y = + %x

Centre at origin and transverse axis is along | Ends of conjugate axis are (+bi, 0)
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Equation Related Terms
(x-h)? (y-k)? Foci are (h + ¢, k)
(i) a2 b2 1 Vertices are (h + a, k)

Centre at (h,k) and transverse axis is | Ends of conjugate axis are (h, k + bi)

parallel to x-axis. Directrices: x — h = i%

Asymptote: y — k = + g (x—h)
. (y_k)z (x_h)z Foci: (h, k i C)
(iv) az  pz 1 Vertices: (h, k + a)

Centre at (h,k) and transverse axis is | Ends of conjugate axis: (h, +bi, k)

parallel to y-axis. Directrices: y — k = i%

Asymptote: y — k = + % (x —h)

Note: For all standard equations of hyperbola, we have

2
Latus rectum = %,c =ae and c? = a? + b?

Similarities and differences between ellipse and hyperbola

o  Similarities for standard forms along x-axis

Ellipse Hyperbola
@) Two foci: (+c¢, 0) (i) Two foci: (+c¢, 0)
(ii) Two vertices: (+a, 0) (ii) Two vertices: (+a, 0)
(iii)  Two directrices: x = i% (iii)  Two directrices: x = i%
. 2b° . 2D
(iv) Length of latus rectum = & (iv) Length of latus rectum = &
) c=ae ) c=ae
(vi) axes are 2a and 2b (vi) axes are 2a and 2b
o Differences
Ellipse Hyperbola
(1) a>c (1) a<c
(ii) c?=a%?-b? (ii) c?=a?+b?
(iii) Ellipse is closed curve (iii) Hyperbola is not closed figure
(iv) If b = a then it is an auxiliary circle | (iv) If b=a then it is an rectangular
with e = 0 and foci coincide hyperbola with e = /2 and foci do
not coincide
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Example 1. Find eccentricity, foci, vertices, ends of conjugate axis and latus rectum of
h erbola'—2 - ﬁ =1
PO 16 T 9 T
2

x2  y?
Solution: We have hyperbola e 1

Comparing with standard equation.
we get a® = 16,b? = 9, transverse axis is along x-axis and centre at origin.
we know that
c?=a%+b?
ie, ¢*2=16+9=25
So, a=4,b=3andc =5.
We obtain eccentricity by ¢ = ae

) 5
ie, —=e
4
Foci = (+¢,0) = (£5,0)
Vertices (+a, 0) = (+4,0)

Ends of conjugate axis = (0, +bi) = (0, £3i)

2

and Latus rectum = %
18 9
42

Example 2. Find eccentricity, equation of directrices and equations of asymptotes of hyperbola
2 2
ye x
9 4

Solution: Comparing given hyperbola with standard equation of hyperbola.
we get a? = 9,b? = 4, transverse axis along y-axis and centre at origin.
We know that
c2=a%+b?
ie, ¢*=9+4+4=13
So, a=23,b=2andc=+13.
We obtain eccentricity by ¢ = ae

1e., V13 = 3e
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Its directrices will be

y=xe

. 3
1e., y=iﬁ
3

9
or y:i\/T_3

Also, the equation of asymptotes will be

a

y=+gx

w T

ie., y=4 5 X.
Example 3. Find centre, foci, vertices, latus rectum and equations of directrices, for the
@=3)? G+9? _

64 36
Solution: Comparing given equation of hyperbola with

x-m? G-k _

hyperbola

a? b? 1

Weget h=3and k = —4
Also, a? =64 = a=8
and b%2=36 = b=6
Its transverse axis is parallel to x-axis with centre = (h, k) = (3, —4)
We know that

c? =a? + b?
= c? =64+ 36
= c? =100
= c=10
Now, foci= (h+c,k)

=(3+10,—-4)

So, foci are (13, —4) and (—7,—4)
Vertices = (h + a, k)
=(3+8,—-4)
So, vertices are (11,—4) and (—5,—4)

2
Latus rectum = %

_2(36)




Parabola, Ellipse and Hyperbola

Here, ¢ =ae
ie., 10 = 8e

- _>5
€=z

Transverse axis is parallel to x-axis

Equations of directrices will be

a
x—h=%+-

e

. 8
1.e., x—3=i§
4

= x—3=-i_-%

9.10.2 Find the equation of hyperbola with the following given elements

e transverse and conjugate axes with centre at origin,

e two points,

e eccentricity, latera recta and transverse axes,

e focus, eccentricity and centre,

e focus, centre and directrix.

The equation of hyperbola can be found with different conditions and elements. Here
we discuss some of them.
(a) When transverse and conjugate axes are given with centre at origin

The method is explained with the help of the following example.

Example: Find the equation of hyperbola if transverse axis and conjugate axis are 8 and 6 units
long respectively, where centre is at origin and

transverse axis is along y-axis.
Solution: Here

2a =8 and 2b=6

8
= a=4 = b=3 6

centre is at origin and transverse axis is along

y-axis.
y2  x2

Its equation will be 2 1 Fig 9.63
2 2
X
ie., Y T .15 9y2 — 16x2 = 144
16 9

(b) When two points of hyperbola are given
The method is explained with the help of the following example.
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Example: Find the equation of hyperbola with centre at origin and transverse axis along

: . (145 1 -3
y-axis, such that the hyperbola passes through the points (f , 7) and (J_§ , ﬁ)
Solution: Centre is at origin and transverse axis is along y-axis.
2,2
its equation will be T 1 ..(1)
(% ) g) lies on the hyperbola
we have 1 ﬁ
5 1 272
—_— — = 1
4a%2  4b2
...(i) ( 1 —_3)
1 -3\. V8’ V8
(ﬁ , ﬁ) is on hyperbola
we have Fig 9.64
9 1 e
@—@= 1 ...(iii)

©

1
Multiplying equation (ii) by E and subtracting resultant equation from (iii)

we get
4 _1
8a2 2
= a’=1

By using a? = 1 in equation (ii)

1
We get —-———=1
© 8 4  4b?
1 1
= —-=— b? =1
4  4b?
By using values of a? and b? in (i)
We get y2—x2=1

When eccentricity, latera recta or transverse axis are given

The method is explained with the help of following examples.

Example 1. Find the equation of hyperbola when centre is at origin and transverse axis is along

x-axis with the length 10 units, whereas eccentricity is /3.

Solution: Centre is at origin and transverse axis is along x-axis

Its equation will be




Parabola, Ellipse and Hyperbola

Here, e = V3
and 2a =10
ie, a=5 = a’> =25

Now, ¢ =ae
= c=5V3
We know that
c? =a?+ b?
ie, 75=25+b?

=  b?2=50
By using values of a? and b? in equation (i)
2 .2
x
We get = _X_ 1
25 50

=  2x2-y?2=50

Example 2. Find the equation of hyperbola with centre at origin and transverse axis is along

y-axis, such that latus rectum is 12 units long and eccentricity is 2.

Solution: Centre is at origin and transverse axis along y-axis

its equation will be

2 2
Z_z - Z_z =1 .(0)
We have e = 2 and latus rectum = 12
, 2b?
1.e., T =12
= b? = 6a ...(>i1)
We know that
c? =a? + b?
ie, a’e?=a%+6a (¢ =ae)
= 40’ = a? + 6a
= 3a> —6a=0
= 3a(a—2)=0
= a=0 or a=2

Neglectinga = 0

We have a=2 or
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So, from equation (ii)

we get b? =12

By using values of a and b in equation (i)
y2 X2
412

or 3y2 —x2 =12
(d) When focus, eccentricity and centre are given
The method is explained with the help of the following example.
Example: Find the equation of hyperbola with centre (2,3) and transverse axis parallel to
x-axis, such that a focus is (6, 3) and eccentricity is v/5.
Solution: Centre is not at origin and transverse axis is parallel to x-axis
equation of hyperbola will be
(x-h)? -k)?*
a? b2

1 (D)

We have
Centre = (h, k) = (2,3)
and  Focus= (h+ ¢ k) =(6,3)
ie, (2+¢3)=(63)
= c=4
Now, ¢ =ae
ie., a= % ( e= \/g)
We know that
c? =a?+b?
16

6,2
5+b

_80-16
-5
_ 64
-5
By using values of h, k, a? and b? in equation (i)
We get
(x—2)> (y—3)?
T e !
5 5
5(x —2)? 5(y—3)?
f—1 — =

ie., 16 =

= b?

= b?

1

16 64

=)
y



Solution:
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When focus, centre and directrix are given

The method is explained with the help of the following example.

Example: Find the equation of hyperbola whose centre is (3, 4) and transverse axis is parallel

to y-axis, such that one focus is (3, 12) and one equation of directrix is y = 7.

Centre is not at origin and transverse axis parallel to y-axis.
The equation of hyperbola will be
2 2
(yaf) —(xbf) =1 ()
We have
Centre = (h, k) = (3,4)
and  Focus = (h,k +¢) = (3,12)
ie., k+c=12
= 44c=12
ie., c=28
and one equation of directrix is y = 7
Comparing it with y= % +k
We get
E+4=7
e
= a=3e ...(il)
Also, we know that
c=ae
1e., ae =8

By using a = 3e from equation (ii)

we get

So, equation (ii) becomes a = 3 \/g

ie, a’=24
We know that

c? =a?+ b?
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ie, 64=24+0b?
= b? = 40
By using values of h, k, a? and b? in equation (i)
we get
(y-4? (x-3)°
24 40
9.10.3 Convert a given equation to the standard form of equation of a hyperbola,

find its elements and sketch the graph

1

As we have studied in section 9.10 that the general equation of hyperbola when
transverse and conjugate axis are parallel to coordinate axes is
Ax?*+By*+Gx+Fy+(C=0
Where A and B are non-zero and have opposite sign. Also, 4, B, G, F and C are real
numbers.
This general equation can be converted into standard forms by the method of
completing square which will be explained in the following examples.

Technique for graphing hyperbolas
Graphs of hyperbolas from their standard equations can be drawn by using the

following steps.

1. Determine whether the transverse axis is along or parallel to x-axis or y-axis which can
be determined by checking the sign of x2-term or y2-term. In case of positive x2-term,
the transverse axis will be along or parallel to x-axis.

In case of positive y2-term, the transverse axis will be along or parallel to y-axis.

2. Determine the values of a and b and draw a rectangle extending a units on either side
of the centre along the transverse axis and b units on either side of the centre along the
conjugate axis.

3. Draw the asymptotes along the diagonals of the rectangle.

4. Using the rectangle and the asymptotes as guide draw the graph of hyperbola.

Example 1. Find the eccentricity, foci, vertices and directrices of hyperbola

9x2 — 16y2 — 144 = 0. Also draw its graph.

Solution: First of all we convert the given equation into the standard form.

Given hyperbola: 9x% — 16y? — 144 = 0

or 9x2 — 16y? = 144
Dividing both sides by 144
We get

b
N

1

Yy
9

)}

=)
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Here, centre is origin and the transverse axis is along x-axis with
a’=16and b?* =9

So, a=4andb =3

We know that
c? = a? + b?

ie, ¢2=16+9

= ?=25 or c=5

Now, c=ae
1e., 5=14e = e= %

Major axis is along x-axis.

coordinates of foci = (+c, 0)

= (£5,0)
and  coordinates of vertices = (+a, 0)
= (+4,0)
Equation of directrices will be
a
x=+4-
e
or x=i% ie., x=i%
4
Graph of Hyperbola y_:lids
Standard form of given hyperbola is
x2 y? 3
2 oy
16 9 4 4 )
By using the steps of drawing graph, we sketch the » x-axis
graph as show in Fig. 9.65. 3
Fig 9.65

Example 2. Find centre, foci, eccentricity and vertices of
hyperbola 16y% — 9x2 + 36x + 64y — 116 = 0. Also draw its graph.

Solution: We first convert the given hyperbola in standard form.
Given hyperbola: 16y? — 9x? + 36x + 64y — 116 = 0

By re-arranging the terms
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we get (16y2 + 64y) — (9x? — 36x) = 116
or 16(y? +4y) — 9(x? — 4x) = 116
or  16(y%+4y+4) —9(x? — 4x +4) = 116 + 64 — 36
or 16(y +2)? —9(x — 2)® = 144

Dividing both sides by 144

we get
O+ @-2F
9 16
Comparing this equation with
G-k _G=m?_

a? b?
Weget h =2,k =-2,a%> =9and b? = 16.
and transverse axis is parallel to y-axis.
We know that
c? = a® + b?
ie, ¢>=9+16=25
So, c=25a=3andb =14

Now, c¢=ae

Le., 5=3e = e=

3 \

Now, centre = (h, k) = (2,-2) 3
Foci=(hk+c)=(2,-2+5) C(2,-2) | >
So, Foci are (2,3) and (2,—7) 4 3 4

and  vertices= (h,k+a)=(2,-2+3) /
So, vertices are (2,1) and (2, —5)
Graph of Hyperbola

Fig 9.66

By using the steps of drawing graph, we draw the graph as shown in the figure 9.66.

Exercise 9.5 )

1. Find the equation of the hyperbola with centre at the origin satisfying the following
conditions.

(1) Transverse and conjugate axes are 16 and 12 respectively. Also, transverse

229
y

axis is along y-axis.
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Hyperbola passes through (3Tm, 1) and (3,0) with transverse axis along

(ii)
X-axis.
(iii)  Transverse axis of length 8 units and along y-axis where eccentricity is /5.

(iv)  Transverse axis along x-axis with latus rectum = 10 units and eccentricity = %

W) Focus (5, 0), directrix x = 2.

(vi)  Eccentricity = 3 and focus (8,0).

(vii)  Eccentricity = 2 and vertex = (0, 4).

Find equation of the hyperbola with centre (1, 3) and satisfying the following condition.

(1) Focus is (2,3) and eccentricity is v/3, whereas transverse axis is parallel to
X-axis.

(i1) Focus is (4,5) and an equation of directrix is y = 1 where transverse axis is
parallel to y-axis.

Find eccentricity, foci, vertices and latus rectum of each of the following. Also, draw
graph.

2 2 2 2
. x* y N
— == —_==1
@ 9 16 (i1) 5 4
2 2
X
(i) 9x2—y2+1=0 (iv) T—%=1

Find centre, foci, eccentricity, vertices and equations of directrices. Also draw the
graph.
i =5 @+3* (i W= @+8)*
9 16 36 64
(i)  9x%—4y?+36x+8y—4=0
(iv)  25x%—150x —9y? + 72y +306 =0
Find equation of rectangular hyperbola with centre at origin whose vertices are (+4, 0)
and find equation of its conjugate hyperbola. Also, find equations of asymptotes of the

rectangular hyperbola.

Find the eccentricity of a hyperbola whose latus rectum is double the transverse axis.
Show that the eccentricities e; and e, of the two conjugate hyperbolas satisfy the
relation e? + e? = eZeZ.

Equation of Tangent and Normal of a Hyperbola

In this section, we will discuss about the tangent and normal to a hyperbola along with

their conditions and equations.

Parabola, Ellipse and Hyperbola
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9.11.1 Recognize tangent and normal to a hyperbola

In the figure line [ is tangent to the hyperbola as the
line touches the hyperbola at a single point, whereas line m
is the normal to the hyperbola as it is perpendicular to the
tangent at the point of contact P.

Fig 9.67
9.11.2 Find 8
e points of intersection of a hyperbola with a line including the condition of
tangency,
e the equation of a tangent in slope form.
2 2
Consider a hyperbola PRt ...(D)
and a line y=mx+c ...(i)
Solving both equations simultaneously
we get
x?  (mx+c)?
2 T !
=  b%x?—a’m?x? — 2a’cmx — a*c? = a?b?
or (b? — a’>m?®)x? — 2a’cmx — a*c? — a’b?> =0
Here, A= 4a*c?m? + 4(a®c? + a?b?)(b? — a’m?)
By quadratic formula Fig 9.68
2a’cm + VA
X=—""-
2a
By using this value of x in equation (ii), we will get value of y, so we will get point of
intersection.

The given line will be tangent, if A= 0

ie, 4a*c®m?+4a®b?c? — 4a*c*m? + 4a?b* — 4a*b*m? =0
= 4a’b%(c? + b2 —a’m?) =0
or c? = a’m? — b?

=  c=tV@E D2

This is the condition of tangency when given line is tangent to the hyperbola.
By using this value of m in equation (ii)

we get, y = mx + Va?m? — b?

This is the equation of tangent to the given hyperbola in slope form.

)
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Example 1. For what value of k, will the line y = kx + 1 be tangent to the hyperbola
3x2 —4y? =127
Solution: We have

Hyperbola: ~ 3x2 —4y? =12 ..(Q)
and line: y=kx+1 ...(ii)
Solving simultaneously,
we get 3x2 — 4(kx + 1)? = 12
= 3x2 —4k*x* —8kx—4-12=0 ...(1i1)

(3—4k®)x>—-8kx—16=0
A= 64k? — 4(3 — 4k?)(—16)
= 64(k%+ 3 — 4k?)
= 64(3 —3k?)
The given line will be tangent to the given hyperbola
if A=0
ie, 643-3k>)=0
= k’=1
= k=41
This is the required value of k.
Example 2. Find the equation of tangent to the hyperbola 2x? — 3y2 = 6 whose slope is 2.
Solution: We have
Slope =m =2
and hyperbola: 2x2 — 3y2 = 6

2 2

. X y

1.e., -—=1
2

3
Here a?=3andbh?=2
2 2

We know that the equation of tangent to the hyperbola 2 1lisy = mx £ Va?m? — b?

By using values, we get

y=2xxvV12-2
y=2x-|_-\/ﬁ

This is the required equation of tangent.

9.11.3 Find the equation of a tangent and a normal to a hyperbola at a point
2 2

Consider a hyperbola ; - Z_Z =1 ..()

Let P(x;,y;) be a point of this hyperbola
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e, —-=L=1 ...(ii)

dy b%? 2x b%x

dx 2y @ a2y
Now slope of tangent to the given hyperbola at
(x1,y1) is

(@
m=|—

) b%x,
dx (x1,y1) a2y1

By point slope form, the equation of tangent will be

y—y1=mx—xq)

b%x

e, y-y =7 -(x-x)
= a’yy, — a?y? = b%xx; — b?x?
= b%xx, — a’yy, — b*x? + a’y? = 0
Dividing both sides by a?b?
we get,

XX1 YW1 xi yi 0

a2 b2 \a? b2

xx
ie., a_; - % -1=0 (Using equation (ii)

Xy
or 2 p2 =

2 2

This is the equation of tangent to the hyperbola 2 p s 1 at (x1,y1)

Normal is perpendicular to the tangent at the point of contact
a?y,
bzx 1

Slope of normal = m' = —

By point-slope form the equation of normal will be
y=y1=m'(x —x)
@y,

ie, y—y1=———(x—x)
bx1

y
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b%x,y — b*x1y, = —a’xy; + a’x;y;

Dividing both sides by x;y,

we get,
b? a’x
y_ b? = ——+a?
V1 X1
2 2
a‘x b
Y &
X1 1
2 2
This is the equation of normal to the hyperbola 2 1 at (x4, v41).

2 2

x
Example 1. Find the equations of tangent and normal to y: -5 = 1 at (\/g, 2\/7)

Solution: We have

2

2
Hyperbola: y: -

x
5

Differentiating w.r.t x

d
2}’% 2x_O

=1

4 5

d 2x 2
& _xz
dx 5 'y

d 4
Y

dx 5y

dy

Now slope of tangent at (\/g, 2\/5) =m= (ﬁ) (E2v3)
i.e., m= 45

5(2v2)

2
y
By point slope form, the equation of tangent will be
y—y1=mx—x)
e, y-2v2= \E(x—\/g)
= 5y —-2V10 =v2x —+10
=  2x—+5y+V/10=0

Normal is perpendicular to the tangent at the point of contact
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9.12

simplify the equation of a curve and to bring conics in standard forms. We discuss these
concepts in detail as under.
9.12.1 Define translation and rotation of axes and demonstrate through examples

geometrical shape is changed but its size, shape or orientation remains same.

Fig. 9.71.

o1
Slope of normal at (\/g, 2\/7) =m' =-—

ie., m' =- |5

By point-slope form the equation of normal will be
y—y1=m'(x—x)

ie., y—2ﬁ=—\/§(x—\/§)

= V2y—-4=—-5x+5

=  V5x+V2y-9=0

Translation and Rotation of Axes

Translation and rotation of axes are the transformations which are commonly used to

The concept of translation is of a transformation in which the location of the

A

Fig. 9.70 Fig. 9.71
For example, an ellipse in Fig. 9.70 has been translated 2 units to the right as shown in
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The concept of rotation is also of a transformation in which the location of the

geometrical shape is rotated around a fixed point but its size and shape are not changed, for

example an ellipse in Fig.9.72 has been rotated 45° clockwise as shown in Fig. 9.73.
Definition: A translation of axes is a transformation Y v

between two rectangular coordinate systems in which the origins O

and O are at different locations but the corresponding axes are

parallel and have the same directions as shown in the figure 9.74. X’
Ol
0 X
Fig 9.74
Definition: A rotation of axes in the plane is a Y Y

transformation in which the axes OX and OY of one rectangular X
system are rotated about the origin O through an angle 6 to locate
the corresponding axes OX' and OY’ of other coordinate system as
shown in the figure 9.75. 9 X
9.12.2 Find the equations of transformation for 0

Fig 9.75

e translation of axes,

e rotation of axes.
e Equations of transformation for translation of axes

In order to obtain the equations of transformation for translation of axes we have
translated the axes of an xy —coordinate system to get a new x’'y’ — coordinate system whose
origin O’ is at the point (h, k) as shown in Fig. 9.76.

As a result, a point P in the plane will have both (x,y)- coordinates and (x',y')-
coordinates as shown in the Fig. 9.77. These coordinates are related by

x=x"+h, y=y'+k
or x'=x—h, y=y—-k
These equations are called the equations of transformation for the translation of axes.

)

y v y y
A A A
____________ Px, ) or P&, )
K * '
>x' = ) ,
t o |t l ¥ ,
k ~= YVeue- ' xr
¢ I T z :
|- >\ ' .
o|«h— rx v ; .
Ol «h» « X' =,
— X —>!

Fig. 9.76 Fig. 9.77
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e Equations of transformation for rotation of axes

In order to get the equations of transformation for rotation of axes, the axes of an
xy — coordinate system have been rotated about the origin through an angle 8 to produce a new
x'y" — coordinate system as shown in the Fig. 9.78.

As aresult, any point P in the plane will have both P(x, y)- coordinates and P(x', y')-
coordinates as shown in the Fig. 9.79.

In order to relate these coordinates, we suppose r as the distance from the common
origin to the point P and let a be the angle of OP from x'-axis as shown in the Fig.9.79.

’

y Y Yoy
A A
¢ P(x,y)or P(x',y")
x'
0
‘ > x » X
(0]
Fig. 9.78 Fig. 9.79

From figure 9.79, in AOAP

x
cos(0 +a) = " and sin(0 + a) = %

or x =rcos(0 + a) ...>0)
or y =7 sin(6 + a) ...(11)
In AOBP

x' =rcosa ...(iii)
and y' =rsina ...(iv)

Using trigonometric identities equation (i) and equation (ii) become
X =rcosBcosa—rsinBsina
and y=rsinBcosa+rcosbsina
By using equation (iii) and (iv)
we get
x =x"cos0 —y’sine}
y =x"sin® + y'cos0
These equations are called the equations of transformation for rotation of axes.
9.12.3 Find the transformed equation by using translation or rotation of axes

The method of finding the transformed equation by using translation or rotation of axes
is explained with the help of the following examples.
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Example 1. Find the transformed equation of parabola (v + 5)? = 4(x — 3) when axes are
translated with new origin (3, —5).

Solution: Given parabola is (y + 5)% = 4(x — 3) ..(1)
Shifting the origin to (3, —5) and keeping the axes in parallel position.
Let (X,Y) be the new coordinates of any point P(x, y) after shifting the origin.
By equations of transformation
x'=x—handy' =y—k
Here (x',y')=(X,Y)
and (h, k) =(3,-5)
So, we get
X=x—3andY =y +5
So, equation (i) becomes
Y2=14
This is the required transformed equation.

Example 2. Find the transformed equation of 5x? — 6xy + 5y% — 8 = 0 when the axes are
rotated through an angle of 45°.
Solution: Given equation is 5x? — 6xy + 5y2 —8 =0 ...(0)
Now, we rotate the axes about the origin through an angle of 6 = 45°
Let (X, Y) be the new coordinates of any point P(x, y) after rotation
By equations of transformation, we have
x = x'cos 0 —y’sine}
y =x"sinB 4y’ cosO
Here (x',y") = (X,Y)
and 0 =45°
So, we get
— X cos45°Y sin45° = -
x = X cos sin = W

and
Xsin45°+Y 45° X+
= Xsin cos =—
Y NG

Substituting these values in equation (i), we get
S(X_Y)Z 6(X—Y)(X+Y>+5<X+Y)2 80
V2 V2 /N V2 V2 -

5 5
= S (X2 = 2XY + V) = 3(X* = ¥?) + 5 (X* + 2XY +¥?) =8 =0
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5
:E(2X2+2Y2)—3X2+3Y2—8=0

= 2X2+8Y2-8=0

or X2 +4y?=4

This is the required transformed equation.
9.12.4 Find new origin and new axes referred to old origin and old axes

Let O be the origin of xy-coordinate system as shown in the figure 9.80.

A new XY-coordinate system is introduced with new )j‘
origin O'(h, k). This system is translated h units in the x-direction
and k units in the y-direction and then rotated anticlockwise by 6

radians as shown in the figure.

The relations among x, y, X, Y and 0 are given below
x=(X+h)cos®— (Y +k)sin® 0
and y=X+h)sin0+ (Y +k)cos6 Fig 9.80

Example 1. Find new origin in O’ and new axes (X-axis and Y-axis) with respect to xy-
P g

T
coordinate system if it is translated 5 units to the right, 3 units down and rotated " radius

anticlockwise.
Solution: Here h=5andk =-3
So, new origin = (h, k) = (5,—3)
Here inclination of X-axis = 0 = %
So, slope of X-axis = tan 45°
=1
By point slope form equation of X-axis will be
y—(=3)=1(x-5)
= y+3=x-5
= x—y—8=0

Now, inclination of Y-axis = 6 = % + %
3T
or 9 = T
Its slope = tan 6
3w _
= tanT =-1

By point-slope form, the equation of Y-axis will be
y=(=3)=-1(x-5)
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So new origin = (5,—3),
Equation of X-axisis: x —y —8 =0
and equation of Y-axisis: x +y—2=0

Example 2. Find new coordinates of P (4, 5) if new origin is (2, 3) and XY-coordinate system

s
is rotated with " radians anticlockwise from xy-coordinate system.

Solution: Here (x,y) =(4,5)
(h k) =(2,3)
and 0= %

By the equation of transformation
x=X+h)cos0 — (Y + k)sin6 and y=(X+h)sin0+ (Y +k)cosB
(X+2) (Y+3) _(X+2)  (Y+3)
V2 V2 T2 V2
= 42=X-Y-1 (i) = 5/2=X+Y+5 ...(i)
Adding equation (i) and (ii), we get
W2 =2X+4
9J2-4
2
By using this value of X in equation (ii), we get

N2 — 4
5V2 = \/_2

ie., 4= ie., 5 +

X =

+Y+5

= 5v2—5— —(9€_4) =y

2 2
9.12.5 Find the angle through which the axes be rotated about the origin so that
the product term xy is removed from the transformed equations

9,/2—-4 ﬁ—é)

So, new coordinates of P (4, 5) are (

If we remove xy-term from the second degree equation in x and y then the equation is
reduced to familiar form of equation of conic.
The following theorem tells how to determine an appropriate rotation of axes to
eliminate the xy-term of a second degree equation in x and y.
Theorem: If the equation Ax? + By? + Hxy + Gx + Fy + C = O is such that H # 0
and if an XY-coordinate system is obtained by rotating the xy-axes
through an angle 0 satisfying.
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t20 = ——
co I

then in XY-coordinates, the given equation will have the form
A'x*+B'y?+G'x+F'y+C' =0
Example: Identify and sketch the curve xy = 1.
Solution: We have xy = 1 (D)
Comparing given equation with Ax? + By? + Hxy + Gx + Fy + C = 0, we get
A=0,B=0andH =1

Now, cot26 = # =0

= 20 =

N A

s o
= 0= Z =45
By the equation of transformations
X =Xcos® —Ysin0 and

y =Xsin® +Ycos0

YRR
By substituting these values in equation (i)

We get,
(X Y)(X+Y>—1
V2 V2/\W2 2 Fig 9.81
X% vy?
= — =1
2 2

This is the equation of rectangular hyperbola with centre at origin and rotation of 45°.
Here a? =2 andb? =2

So, c¢?=4=c=2

Here vertices are (\/7, 0) and (—\/Z 0) in XY-coordinate system.

The graph is sketched as shown in Fig. 9.81.

Exercise 9.6 )

1. For what value of k , the line y = 2kx will be tangent to 2x? — 5y2 = 10.
2,2

2. Find the condition when the line y = mx + c is tangent to 2 1.
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(@)

(i)

(iif)

(iv)
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Find the equation of tangent to the hyperbola 3x% — 4y? = 12 when slope is 3.

2 2
X
Find the equation of tangent and normal to Z—z v 1 at (x4, y1).
x2 y?
Find the equation of tangent and normal to s 1 at (2\/3, V7 )
, . (x=6)*  (y+7)*
Find the transformed equation of + e - 1 when axes are translated

with new origin (6, —7).

If xy-axes are rotated through given angle 6 then find the new coordinates of given
point P

(1) (2,3),86 =60° (i) (6,7),8 =45° (iii) (—4,6),6 =30°
Find new origin O’ and new XY-axes with respect to xy-coordinate system if it is

T

translated 6 units to the left, 5 units up and rotated . radians anticlockwise.

Find new coordinates of P(4,5) if new origin is (1,2) and XY-coordinate system is
s

rotated with . radians anticlockwise from xy-coordinate system.

Identity and sketch the curve xy = 9.
Through which angle the axes be rotated about origin so that the transformed equation
of 9x% + 12xy + 4y? — x — y = 0 does not contain the term involving XY.

Review Exercise 9 )

Tick the correct option.

If the eccentricity is zero, then the conic is ----------------

(a) parabola (b) ellipse (c) circle (d) hyperbola
The focus of parabola x2 = —16y is ------------
The latus rectum and vertex of (y — 3)? = —8(x + 4) is ------------
(a) —8,(3,—-4) (b)8,(3,—4) (c) 4,(=3,—4) (d)8,(—4,3)
The equation of tangent at (4, 6) to the parabola y? = 9x i§ --------------
@) 6y =5 (x+4) (b) 6 = 9(x —4)
(c)4y=%(x+6) (d)3x—4y+12=0
2 2

The latus rectum of ellipse — + =— = 1 is -----------

25 16

s N 50
@ o ®) ©
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(vi)

(vii)

(vii)

(ix)

(xi)

(xii)

(xiii)

(xiv)

2 2
x
The eccentricity of the conic ? + T = 11§ -mmmmmmmm-

(a) V5 (b) \/ig ()5 (d) None
2 _2)2
The centre of ellipse (x+5) + (yz(?) [ ——
(a) (V10,20) ) (5,3) (c) (=5,3) (d) None
2 2
The equation of directrix for the conic T + 7 = 118 -—=mmmmmmm-
@ =17 (0)x =+ ©Ox=t% @r=:27

ax? + by? + gx + fy + ¢ = 0 where a, b, g, f and c are real numbers that represents
hyperbola if

(a) a and b are non-zero and of same sign
(b) a and b are non-zero and of different sign
(c) eithera=00rb =10 (da=b=0

2 2
Auxiliary circle of ellipse ? + ? = 11§ -mmmmmmmmm-

(a) x> +y2 =36 (b)x2 +y? =25
(c)x?+y%?=5 dx*+y2=6

. o (x-h)?  (y-k)?
The equations of directrices for 2 + 72 = 1 are ----------- where g > p
a)x=1=% x—h=%-
(@)x =& by x—h=+1
©y-k=1+{ @x—h=2+E

2 2

The vertices of hyperbola ? + 31/_6 = 1 are -----------

(a) (£5,0) (b) (0,£5) ) (0,44)  (d)(+4,0)
2 2
Conjugate hyperbola to s 118 =-----m----

2

=1 (b)y?_

The eccentricity of rectangular hyperbola is ------------

(a) 1 (b) 2 (©)V3 (d)v2

2 xZ

x 2 x?
—=1  ©

2
Sl




(xvi)

(xvii)

(xviii)

(xix)

(xx)
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X2 2
The equation of tangent to s + y? = 1at (Ve ()) T

(@)x =6 ®x=v6 (c)y=+v6  (d)None

X2 2
For what value of k, y = k is tangent to the ellipse o + y? = 118 ---------
(a) £3 (b) 5 ©+1 (d) None

2 2
X
The equation of tangent to E - ? = 1 with slope 2 is ----------------

(a) y =2x +23 (b)y = 2x + V41

(c) x =2y ++23 (d)y = 2x £/55

The equation of xy = c? represents

(a) parabola (b) ellipse (¢) hyperbola (d) circle
If origin is shifted to (2, 3) then coordinates of (5, 6) are -----------

(@) (2,2) (b) (3,3) (c) 44 (d) None

o
If xy-coordinate system is rotated at angle of " transformation for abscissa is

!

_X_y _X_y
(@) x =3 7 (b)x—\/7 7
(c) x= %—% (d) None

Find the foci, vertices and directrices for the conic
(x=5)? N (r+3)? (x+4)%  +7*

@ 25 16 1 ®) 9 16 1
Find the condition of tangency the line y = x + ¢ is tangent to the conic
(i) y? =10x () 2x*2+3y’=6
(i) 5x2—7y?=35
. (45 (y-3)? o
Find transformed equation of T s - 1 when new origin is (=5, 3).

If xy-axes are rotated through angle 6, find coordinates of P if new coordinates is
(=2,7),0 = 45°.



Differential Equations

Unit Differential Equations

e Weightage = 8% e Periods = 18

10.1 Introduction

In previous chapters of differentiation, we discussed how to differentiate a given function

f with respect to an independent variable i.e., how to find f'(x) for a given function f at each x
in its domain of definition. Further, in the chapter of integration, we discussed how to find a
function f whose derivative is the function g, which may also be formulated as follows.

For a given function g, find a function f such that

3—?: =g(x) where y = f(x) (1)

An equation of the form (i) is known as differential equation. It is defined as an
equation containing the derivatives of one or more dependent variables with respect to one
independent variables.

10.1.1 Define ordinary differential equation (DE), order of a DE, degree of a DE,
solution of a DE — general solution and particular solution

An equation involving derivatives ordinary derivatives of one or more dependent
variables with respect to a single independent variable is called ordinary differential equation.

dy d?y dy

. iy —_2iey=0
(1) ™ +5y=ce (i1) T dx + 6y
dx dy d?y (dy)2
i ELY oy v 2 42(2) =0
Gt ==ty W) 7z ax) T

Order and degree of the differential equation
The order of a differential equation is the order of the highest derivative appearing in it.
The degree of the differential equation is the degree of the highest order derivative
occurring in it, after the equation has been expressed in a form free from radicals and non-
integer powers of derivatives.
Solution of differential equation

A solution of a differential equation is a relation between the variables free from
derivatives, such that this relation and the derivatives obtained from it satisfies the given
differential equation.

Example: Find the order and degree of following differential equation.

. d%y ay\’ .
1) E+Z(—) +x=e¢€

dx

=)
y
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The order of differential equation is 2 and its degree is 1.

3y\’ 2y d
e ay ay ay _
(i1) (dx3> + 3 (dx2> + ax +y=x

The order of differential equation is 3 and its degree is 2.

2
dy\? _ f d’y
(1ii) (ﬁ) = 1+m

The equation contains fraction power of derivative. First, we reduce it into integer
power by squaring the whole equation.
We get

dy\® d?
() =12

dx dx?
Now the order of differential equation is 2 and its degree is 1.
d%y 1
1 — = 2vy3
(iv) Tz = %Y

order of differential equation is 2 and its degree is 3.
d
Example 1. Show that y = Ae?* is the solution of differential equation d_ic} -2y =
Solution: The given differential equation is
dy 2v = 0 .
i y = ...()
Now, to verify y = Ae?* is the solution of the differential equation. We differentiate
y wW.I.tx
dy

— =24e?*
dx ¢

d
Now by substituting the values of y and ﬁ in equation (i), we get

24e?* — 24e** =0
0=0
dy
Hence y = Ae?* is the solution of differential equation dr 2y = 0.
Example 2. Show that y = Asinx + Bcosx is the solutions of differential equation
dzy
ﬁ +y=0.
Verification: The given differential equation is
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d?y
— +y=0
dx? Y

Now to verify, y = Asinx + B cos x is the solution of the given differential equation,

We differentiate y w.r.t x
We have
Y _ 4 (Asinx + B cosx)
I g Asinx cos x
dy :
— =Acosx — Bsinx
dx
Again, differentiate w.r.t x
d’y _d .
i a(Acosx — Bsinx)
'y = —Asi B
Iz = Asinx Cos x

2
o Y. L
Now by substituting the values of y and ) in equation (i), we get

—Asinx —Bcosx + (Asinx + Bcosx) =0
—Asinx —Bcosx + Asinx +Bcosx =0
0=0
d?y
Hence, y = Asinx + B cos x is the solution of differential equation ) +y=0.

General and Particular Solution:

The general solution (complete solution) of a differential equation is the one in which
the number of arbitrary constants is equal to the order of the differential equation.

A solution obtained from the general solution by giving particular values to the
arbitrary constants is called particular solution.

. : _d?’y :

For example, the differential equation ) + y = 0 has the general solutions
y = Asinx + B cosx whose A & B are arbitrary constants. When we assign fixed values to
arbitrary constants according to given condition. For example, at y(0) = 1 and y'(0) = 2, we
get A=2 and B=1, then the solution will be
y = 2sinx + cos x known as particular solution.

Example 1. Verify that y = Ae® 4+ Be?* is the solution of differential equation

d? d
d—szl - 3£ + 2y = 0. Also, find the particular solution of the equation satisfying the

conditions y(0) = 1 and y'(0) = —1.

=)
y



Solution: Since y = Ae* + Be?*
d
Y _ de* +2Be?
dx
d?y
— 2
F = Ae* + 4Be**
da? da? d
Putting the values of y dy and 22 in given differential equation 2 3 s +2y=0
Tdx T dx2 dx? dx
We get Ae* + 4Be?* — 34e* — 6Be?* + 24e* + 2Be?* = 0 (i)

0 =0 Hence proved.
To find the particular solution we use the given conditions:
y(0)=1 (mean whenx = 0,y = 1)
and y'(0)=-1 (means when x = 0,% =-1)
y(0) =1 = 1=Ae"+Be°

— A+B=1 (D)
y0)=-1 = —2=Ae + 2Be°
—  A+2B=-1 .. (i)

Solving (i) and (ii)) we get A = 3,B = —2.

Hence the particular solution of given differential equation is y = 3e* — 2e2*,
10.2 Formation of differential Equation

10.2.1 Demonstrate the concept of formation of a differential equation

If the relation between the dependent variable and independent variable involves some
arbitrary constants, we can form a differential equation by eliminating arbitrary constants from
the relation by differentiating with respect to the independent variable successively as many
times as the number of arbitrary constants. We illustrate by the following examples.

Example: Form the differential equation

(a) y = Asin 2x + B cos 2x (b) y=Ce*+Ce™
(c) y=x+Ce* (d  x*2+y?2=r?
Solution: (a) y = Asin2x 4+ B cos 2x ...()

As there are two arbitrary constants, so we differentiate two times. Differentiate (i) with
respect to x
d
d_ic, = Acos 2x (2) — B sin 2x (2) ...(11)

Again, differentiate with respect to x

Differential Equations
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2

d”y .
Frei —Asin2x (4) — Bcos2x (4)

%y
dx?
d?y

—_ = _4_
dx? y
d?y

— +4y=0
dxz Y
Solution: (b) y = Ce* + C,e™ ...>0)

As there are two arbitrary constants, so we differentiate two times. Differentiate (i) with

= —4(A sin 2x + B cos Zx)

w7y =Asin2x + B cos 2x

wrtx
dy _ ..
Again, differentiate w.r.t x
d? _ -
d_x32] = (" = Ce(=1) = " + cpe” ...(iif)
d?y Using
= — = sing i
ez Y (Using 1)
d?y L .
= Tz y = 0 is required differential equation.
Solution: (¢) y=x+Ce”* ...(1)
As there are only one constant, so we differentiate one time. Differentiate (i) with w.r.t x
dy
— =1+ Ce" (i
» (ii)
Now by using equation (i)
dy
—=1+y—x
dx Y
This is the required differential equation.
Solution: (d) x? +y? =12 (i)
Since there is only one arbitrary constant, so we differentiate one time. Differentiate
(i) wrtx

d d d
00 =)
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which is the required differential equation.

Exercise 10.1 )

Find the order and degree of each of the following differential equation.

. d?y (dy)3 y s 5
)] dx2+ I +xy =20 (i1) x*dx +y°*dy =0
2= 1) () (@)
(it dx dx? (V) dx3 dx? dx
. 1
d*y (dy)E
—_ | = =0
) dx* dx
Show that y = x — x In x is the solution of the differential equation x % +x—y=0.
Show that y = Ae?* + Be3* is the general solution of &y -5 &y +6y =0
Y 8 dx? ax Y ’
Obtain the differential equation by eliminating arbitrary constant from the relation.
1) y =Acosx + Bsinx (i1) y =Asin(x + 1)
(iii) y=ax?+bx (iv)  y=Ce¥+Ce >
Find the particular solution of:
da J1+cosy T
)] 2 ——,y(3) = —, given that x +2,/1+cosy+c=0 is the
dx siny 2
general solution of the differential equation.
(ii) dz_y _ Y + 2y =0, y(0) =1,y'(0) = 3, given that y = Ae?* + Be % is
dx? dx =Y > Y 'y » 8 y

the general solution of the differential equation.
Solution of Differential Equation

Solve differential equations of first order and first degree of the form:

e separable variables,
e homogeneous equations,
e equations reducible to homogeneous form.

Separable variables

dy f(x)
If the differential equation — = —— ...@
a dx g) ®
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Where f(x) is the function of x only and g(y) is the function of y only, then we can
write equation (i) as below
g(dy = f(x)dx
The equation is in separable variable form. To find the solution we integrate both sides,

ie, [gOdy=[f@)dx+C
Where C is an arbitrary constant, called constant of integration.

dy 2 2
E le 1. —_—— =0
xample Tx x° cos” y

. ay 2 2
Solution: We have Pl x“cos"y =0

d
% = x2cos?y

By separable variable, We have
dy

cos?y

=  sec?ydy = x?dx

= x%dx

Integrate both sides
[ sec’ydy = [ x%dx
X3
tany = 3 +C
or y =tan™! (é +C ) is the general solution of differential equations.

d
Example 2. d—i:= 1+x+y+xy

a
Solution: We have d_ic] =1l+x+y+xy

dy
E: (1+x)+y(1+x)
dy
separating the variables,
dy
m = (1 + x)dx

By integrating both sides
dy

fm=f(1+X)dx

or

2
In(1+y)=x+ x7 + C is the general solution of given differential equation.
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a
Example 3. Solved—z =e7;y(0) =2

Solution: The given equation can be written as
d_y — ex . e_y
dx

By separating the variables

pe e*dx = eYdy=e*dx

Integrating both sides
[eYdy = [ e*dx
ey =e*+C ()
Apply y(0) =2,y = 2 where x = 0, we gete? = e® + C
e?—-1=C
Substituting the values of € in equation (i)
Hence particular solution is ¥ = e* + e? — 1.
(ii) Homogenous Differential Equation
Before going to discuss the definition of homogeneous differential equation, first we
define homogeneous function.
A function f(x,y) is said to be homogeneous function of degree n if it can be
expressed in the form.

fay =xf(2)

or fx,Ay) = 1 f(x, ¥)
x3+y3
Z—y?

For example, let f(x,y) =

Replacing x by Ax and y by Ay

)\3x3 +)\3y3 )\B(xS +y3)

fOL ) = s =
A2xZ2 —A%y2  A2(x%2—y?)

Thus f(x,y) is homogeneous function of degree 1.

=Af(xy)

. . . : , cdy  fxy).
Homogeneous differential equation: A differential equation — = is said to
dx  g(xy)
be homogeneous differential equation, if f(x, y) and g(x,y) are the homogenous functions of
dy x%+y?

the same degree in x and y. For example, — =

P > .5 ishomogeneous differential equation.
X x4=y

To solve the homogeneous differential equation, we reduce it into the separable variable form
by putting

dv

dy
y=vx = —— = v+ x——,where v isanew variable.
dx dx



Differential Equations

Example 1. Solve (x? + y?)dx — 2xydy = 0
Solution: We have (x? + y2)dx — 2xydy = 0

2

2 Y-
dy _ x2+y2 _ X <1+x2>
dx 2xy x2<ZY)

=

Thus, given differential equation is homogeneous differential equation.
Let y =vx
Differentiate w.r.t x

So equation (i) becomes
dv  x*+v?x* x*(1+v?) 1+v?

VAT 2x(vx) ~  2x2v 2V
dv 1+7v? 1+v%—-2v? 1-—v?
xa: 2v V= 2v - 2v
dv 1-v?
xﬁ= 2v

By separating the variable and then integrating
2v dx
[ =[S
x

1—v?
—In(1-v?)=lnx+d
= —In(1 —v?) =Inx + InC whered = InC
In(1 —v?)"! =1n (Cx)
= Q-v»)1t=cCx

Replacing v by%

2\ 1
(3=
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d
Example 2. Solve 22X + tan 4
dx x x

Solution: First we check the given differential equation is homogeneous or not.

Here, f(x)= % + tan%

= f(tx, ty) = % + tan%

flx,y) = %+ tan%
d
2 2 + tan 4 is homogeneous differential equation.
dx x x
= fltxty) =f(xy)
Let y=vx

Yy
= ==

X
Differentiate w.r.t x
d dv
d =v+x——
dx dx

Given equation becomes
dv
vtxg=v+tanv

x@— tanv
dx —

By separation the variables and integrating
J dv dx
tanv ) «x

fcotvdv=lnx+lnc

Insinv = In(c)

= sinv = cx
. y
Replacing v by "
.Y
sin= = cx
x

Y _ gin-t
x—sm (cx)

y = xsin~(cx)
(iiiy  Equations reducible to homogeneous form
dy aix+biy+cy .

The differential equation of the form — = ——————is not homogenous, but can
dx azx+byy+c,

a; by
be reduced to the homogeneous form, when P * oo
2 2
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. Z—: * z—;for the differential equation Z—Z = % ,
Weputx=X+h y=Y +k
dx =dX anddy =dY
Then given differential equation becomes homogeneous and then we reduce it into
separable variable form. We explain the method by the following example.

dy x-2y+2
Example: —_— =
dx 2x+y-1
a 1 b -2 a b
Solution: Here — = ~and — = — - S22
2 b 1 a; by

So, we put x=X+h y=Y+k
dx=dX ,dy=dY
Given equation becomes’
aYy X+h)-2Y+k)+2 X+h-2Y-2k+2
X 20+ +( +k) -1 2X+2h+Y+k—1
dy  (X-2Y)+(h—2k+2)
dX ~ (2X+Y)+(2h+k—1)
To convert the equation (i) into homogeneous we assume
Let h—2k+2=0and2h+k—-1=0
= h=0 and k=1.

Now (i) becomes

()

dYy X-2Y
dX " 2X+v
Put Y=VX =>%=V+XZ—)V('
v  X-2VX X(1-2V) 1-=-2V
VA X T XAV XQ V) 24V
av _1-2v
ax — 2+V
v 1=-2V=-2V-V? —(V2+4+4V-1)
dx ~ 24V - 24V
Separating the variable and integrating
2+V dX
fV2+4V—1 )X
1 2V+4
Ef—vz+4v_1dV=—lnX+lnC

y
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1 C
- 2 N =mn(=
2ln(V +4V - 1) ln(X>
InyV244V —-1=1 (C)
n —1=Inl|<
X
Replace V by &
eplace V¥

Y2+4Y 1_C
X2 X X

Y2 +4XY - X? C
=4 _—_— = —
X? X

Y2 4+4XY —X2=C
Y2 +4XY - X? = C?
Replace X=x—h=x—-0=xand Y=y—-k=y-1
G-D?+4ax(y-1D—-(x)?=C
y:—2y+1+4xy—4x—x*=C

This is the general solution of given differential equation.

{/}

e When —_— ==

ay aix+biy+cq
dx  m(ayx+biy)+cy

then

We put z = +b dE— +b L
eputz=a;x+byyand——=a; + by

1 (dz ) dy z+cq
= “-|l—0)=—=—
b \dx dx m(z)+cy

Then the given differential equation reduced to separable variable form. We explain
by the following example.

d x—-y—1
Example: Solve—y - .
dx x-y-5
a; by
Solution: Here, — = —=1,so,weputz=x—7y
az 2
dz d d dz
dx dx dx dx
Given equation becomes
dz _z—1

Tdx z-5
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dz_z—l—z+5_ 4

dx z—75 z—75
dz_ 4
dx  (z—=5)

It is in separable variable form, so separating the variables and then integrating

f(z—S)dz=f—4dx

z—5)?
( ) =—4x+d
2
Replace zby x — y
We have (x—y—5)2=-8x+2d

x2—2xy+y?—10x+ 10y +25=4x+¢
x2—2xy+y?—14x+16y+25=c¢

is required solution.

10.3.2 Solve real life problems related to differential equation

Example 1. If the population of a certain town doubles in 10 years, in how many years will it
triple. Under the assumption that the rate of increase in population is proportional
to the number of inhabitants.

Solution: Let y denote the population at time t years and y, at time t = 0.

. . .. dy dy .
According to the given condition It Xy = Fri ky where k is the constant.

Separating the variables and integrating

d
j—y=fkdt
y

Iny=kt+C ...()
Apply t=0 and y =y, wegetlny, =C

Iny = kt + Iny, ...(ii)
Apply t =10, y = 2y, (Double given)

In 2y, = 10k + Iny,
2
In2y, —Ilny, =10k = In (%) = 10k

0
In2
— = = k =0.06931
10
Hence Iny = 0.06931¢ + Iny, ...(1i1)

To find time t for triple population, we put y = 3y,
In3y, = 0.06931 t + Iny,
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—Iny, = 0.06931 ¢

1(3 )—0069311: P
"y, T = 0.06931

Hence the population will be triple in 15.85 years.

= 15.85

Example 2. According to Newton’s law of cooling, the rate at which a substance cools in air
is proportional to the difference between the temperature of the substance and that of
the air. If the temperature of the air is 300K and the substance cools from 370K
to 340K in 15 minutes. Find the time when the temperature will be 310K.

Solution: Let T be the temperature of the substance at the time ¢ minutes.

ar
Then, — o (T = 300)
dt
ar k(T —300 ar kat
— = - —_ — = —
dt ) T —300
Integrating with the given limit t = 0, when T =370 and t = 15, when T = 340
340 15
[
T-300
370 0

[In (T —300)13%) = [—kt]§®
In40 —In70 = —15k

Now, = 1n(%)=15k
— 15k =056 =  k=00373

310 t
[p—
T —300
370 0
310
In (T — 300) f =—kt
370

In10-In70=—-kt = In7 = 0.0373t
= t = 52.2 min

Example 3. A capacitor of 0.1 farads and a resistor of 10 ohm are connected in series with 100
volts battery. Assume that there is no charge and current in the circuit initially.
Find the charge and current in the circuit at any time.

Solution: Potential difference at resistor
V =1IR (by ohm law)
V =101

Potential difference at capacitor
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¢ = V=p1710¢
By Kirchhoff’s law
101 +10Q = 100 ( I =
dq
— =10
dt +Q
dQ
= =(10 -
—<=(10-0)
Separating the variables and integrating 01 farads
dQ | W
fQ_lo-—fdt || 100
In[Q—-10|=—-t+C
Apply t =0, when Q = 0, we get
C =1n|-10|
| |
Hence In(Q — 10) = —t + In|—10| 106 I1
ts
Q-10 Vo
1n| 0| =t Fig. 10.1
Q-10  _,
= — =e
-10

Q—10=—10e"¢
= Q=10—-10et=10(1—e™)
Charge on the capacitor at any time.

To find current, differentiate Q w.r.t time

dQ
[I=—=0-1 _t—1: 1 -t
It 0—10e7*(—1) = +10e
I =10et

Example 4. A ball is thrown upward vertically with velocity 49 m/s. Find (i) the time when the
body at maximum height (ii) Find the height with t = 3 sec (iii) Find the maximum height.

Solution: g =—-9.8m/s?
d’h _ _og
dez 7
Integrating both sides
dh
dt

dh
V=—r=-980+¢

y
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t =0, when V=49

V= -98t+49 .0
dh

— = 9.8t +49

dt

Integrating both sides

2
=  h=-98T+49+c,

t=0h=0 = =0
h = —4.9t% + 49t ...(ii)
(1) At maximum height V = 0 put in equation (i)

0=-9.8t+49 = t = 5 second

(i1) Put t = 3 in equation (ii) height
h=-49(3)?+49=1029m

(i)  Putt = 5 in equation (ii)
h=-4.9(25)+49(5) =1225m

Exercise 10.2 )

1. Solve the following differential equation by separating the variables.
(1) xtanydy = dx (i1) xsinydx + (x> + 1) cosydy =0
(i)  yA+x)dx+x(1+y)dy=0(@Gv) (1+x3)dy—x%dx=0

. ay 2 2 .
v) xydy=@+1)(A—-x)dx (vij — =3y —y“sinx

dx
(vii)  (y? - 1)2—3; = 4xy? (viii) xcos?ydx +tanydy =0
2. Solve the following homogenous differential equation.

(i) (x+y)dy—(x—y)dx=0 (i) (6x2 4+ 2yH)dx — (x% + 4xy)dy = 0
(i)  (x?+4+3yHDdx—2xydy=0 (iv) (x2+yHdx—2xydy=0

o =)o)

3. Solve the following differential equation.
y @ xyr i) @r+y+Dde+@xty—1dy=0
(1) dx . x-y (i) x+y x+@2x+y y=
dy x+2y-3 . dy 2x+y-2
(i) —=—7TT (iv)y, —=—"7"
dx 2x+y-3 dx 2x+y+3
4. A body moves in a straight line, so that its velocity exceeds by 2 its distance from a

fixed point of the line. If V = 5 m/s when t = 0, find the equation of the motion.
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104
10.4.1

cuts every member of a given family of curves
f(x,y,c) =0 at right angles, is called an
orthogonal trajectory of the given family.

through origin y = mx cuts every circle whose
centre is at origin x2 + y? = r2. Hence straight
right line passes through origin is orthogonal
trajectory of family of circles whose centre is at
origin. As shown in the figure 10.2.

When the temperature of the air is 290 K a certain substance cools from 400 K to 350
K in 20 minutes. Find

1) the temperature after 40 minutes
(i1) After how much time temperature is 300°C

A resistor of 5 ohms and a capacitor of 0.02 farads are connected with 10 volts battery.
Assume that initially charge on capacitor is 5 (coulombs). Find the charge and current
in the circuit at any time.

The population of a certain town is directly proportional to the square root of the
present population at any time. If the population initially is 20000.

6))] How much the population after 10 years?
(i1) After how much time the population be doubled?
Orthogonal Trajectories

Define and find orthogonal trajectories (rectangular coordinates) of the
given family of curves.

Any family of curves @(x,y, c) = 0 which

For example, family of straight lines passes

Procedure to find orthogonal trajectories.

Step 1: Let f(x,y,c) = 0 be the equation

of given family of curves. Where c¢ s an arbitrary Fig. 10.2
constant.

Step 2: Form the differential equations of the given family of curves.
. dx . 4y, . . .
Step 3: Substitute — dy for Tx in equation obtained in step 2.

Step 4: Solve the differential equation obtained from step 3.

Example 1. Find the orthogonal trajectory of family of straight lines passing through the origin.

Solution: Family of straight line passing through the origin is y = mx.

Where m is an obituary constant.




Differential Equations

y =mx ...(1)
Differentiating w.r.t x

—— =m ...(ii)

— == ....(iii)

d
Replacing d_ic’ by — Z—;

dx _y

dy x

dy vy
= —=-=
dx x

ydy = —xdx
Integrating on both sides
y? X2

7=—7+C

y?+x?=2d
y2+x%2=r? [Assume r? = 2d]

x% 4+ y2 =12

Which is orthogonal trajectory.

Example 2. Find the orthogonal trajectories of the curves xy = c.

Solution: The equation of the given family of curves is xy = ¢ ...(1)
Differentiating equation (i) w.r.t x,

We get

dy
— =0
xdx+y

dy -y .
T x ...(11)
dx

. dy
Replacing T by — P
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ydy =xdx

Integrating on both sides

Jydy=fxdx

y_r
2—2+c
2 2
y X
> 2+c

Which is required orthogonal trajectory.

Example 3. Find the orthogonal trajectories of the circles x* + y? — ay = 0 where a is a
parameter.

Solution: Here, x2 + y2 —ay =0 ..(1)
is the given family of curves.

Differentiating equation (i) w.r.t to x,

We get

2x+2 d v _ 0

YT Y

dy

— 2y —a) =-2 ...(ii

—(2y—a) = -2z (ii)
Eliminating ‘a’ from equation (i) and equation (ii), we get

d x2+y?

—y(Zy - Y ) = —2x ...(111)

dx y

d
%(y2 —x?) = —2xy

a
Replacing d—i} by — Z—; in equation (iii)

dx  —2xy

dy y?-—x?

dy _ y?—x? .
- ~ o=y ...(1v)

It is homogeneous differential equation.
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vZ—1
v+ xa = o
dv v?-1
xa “Tw
dv _ (1+v?)
xa T 2w
By separating the variable
2v dx
1+v2  x
Integrating on both sides, we get
In|1 4+ v?| = —In|x| +Inc

In|1 4+ v?| +In|x| = Inc
= x(1+v)=c

Replacing v by %

2
x(l +y_2> =c
X

x(x? +y?) = x%c
3 +y?x—x%c=0
Which is the required equation of orthogonal trajectory.
Use MAPLE graphic commands to view the graphs of given family of
curves and its orthogonal trajectories
To view the graphs of given family of curves and its orthogonal trajectories following

steps are to be considered:
Steps for orthogonal families of curves:

1. Differentiate the implicit function
2. Eliminate constant k of the function from the differential equation, slop of the
original family
3. Form opposite reciprocal- slope of the orthogonal family
4.  Separation of variables to find y the orthogonal family
5. Plot several versions of the original function and the orthogonal family
Maple Command Format Description
y? =kx3 To calculate or compute the orthogonal trajectories for the
y2 = kx3 function y? = kx3
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Maple Command Format

Description

solve for k

|-

yZ — kx3
yZ — kx3

implicit differentiation

3kx?
2y

2y
3y
2x

d 2x
a)’(x) )

solve DE
_

J—6x%2 +9¢;

y(x) =- 3 :

J—6x% +9¢;

3
V—6x%+c
3

y(x) =

y:

cross multiply
_—

3y =+y—6x2+c¢
9y2 = —6x% +¢

solve for ¢
D ——

[[c = 6x% 4+ 9y?]]
c = 6x% + 9y?

We follow the following steps in Maple command:
1. First, we implicitly differentiate the given function.
To do this we select the function and use the differentiate
option from the command pallet
2. Here we choose y a dependent variable and x an

3kx?

independent variable in check box and get

3. From the function we solve for k by solve option
2
command and get [[k = y_3”
x

4. The value of k will be replaced by copy and paste
command and get ;—i which is the differential function of
the given function.

5. And write its negative reciprocal to get orthogonal

. . 2x
funct "= -
prime function as y 3y
6. By using command pallet, from differential function
dwe get = y(x) = ——2
command we get ——y(x) = 37

7. By using DE command from command pallet we get

solution of this differential equation as
J—6x% 4+ 9¢;

J—6x% +9¢;
3

3 'y(x)z

8. Here 9c in square root is just a constant it can be
replaced be another constant ¢ and by selecting one of the

,/—6x2+c

solution i.e., y = 3

y(x) =—

9. By cross multiply command from the pallet and square
both sider we get the solution as [[c = 6x2 + 9y?]].

10. Now taking different value of c i.e., 1,3,5,9 we can
plot family of curves (ellipses) whose concentric center is
origin.

11. Through Maple >plot 2D command from the
command pallet, first we draw all the ellipses from
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Maple Command Format Description

following solution
1=6x?+9y?%,3 =6x%+9y?%,5 = 6x% +9y%,9

/— \ = 6x2 + 9y?
/_ \ 12. We also want to graph the original family. i.e.,
1

By taking different values of k i.e., 1,3,5,9 we have the
following equations

y2 = x3,y2 = 3x3,y2 = 5x3,y2 = 9.x3

13. we can draw the graphs of these function and drag
them on its differential functions graph (ellipses) by using
Maple which will add them in. And we'll drag and drop
one at a time so we can see that they are curves, these
families of curves intersect everywhere at 90 degree
angles. And so, the trajectories, the paths of those
functions are orthogonal.

1=6x2+9y%3 =6x%+9y%5 = 6x%2+9y%,9 = 6x% + 9y?
1=6x?+9y2%,3 = 6x2+9y2,5 = 6x2 +9y2,9 = 6x2 + 9y?
y? = 1x3,y% = 3x3,y? = 5x3,y2 = 9.3

y2 = x3,y2 = 3x3,y? = 5x3,y2 = 9.x3

Exercise 10.3 )

Find the orthogonal trajectory of the curves y = ax?.

Find the orthogonal trajectories of the hyperbola xy = c.

Find the orthogonal trajectories of the family of parabolas y? = 4ax.
Find the orthogonal trajectories of the family of curves y = %{ .

1
Find the general equation of family of curves perpendicular to the y = ¢; sin x.

1 1
Find the general equation of family of curves perpendicular to the x3 + y3 = c.

Review Exercise 10 )

Tick the correct answer.

2
The order and degree of the differential equation 1 + % =x % s o
(a) order 2, degree 2 (b) order 2, degree 1

(c) order 1, degree 2 (d) order 1, degree 1
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(ii) The degree of differential equation (Zy ) +3 Z 32/ s

(a)2 (b) 4 (€)1 (d)3

3
(iii)  The order and degree of differential equation (3 }3} ) = % s

(a) order 3, degree 4 (b) order 4, degree 3
(c) order 2, degree 1 (d) order 1, degree 2

(iv)  The degree of differential equation y = x (Zi’ ) + (ch, ) s

(@)1 (b) 2 (c)3 (d) 4

N _d?y dy\” .
V) The order and degree of differential equation—= = [1+ |—=——] is
dx? dx

(a)2,2 (b)2,3 (c)3,2 d2,1

(vi)  Differential equation xdy — ydx = 0,y(1) = 2 has a solution given by y. Then
y(-is .
(@) -1 (b) -2 (c)2 (d) 1

a
(vii)  The solution of differential equation d_ic] + y2 =0is
1
@y =ce" b)y =117

3 2
(©y=-F+c dy=F+c

(viii)  The general solution of the differential equation 9y% +4x=0is

2 2
4x* +9y* = b)y—-—=

(@) 4%+ 9y% = ¢ O - =c

() 4x*+y*=c (d)9x? —4y?2 =0
2. Show that y = Ae3* + Be** is the general solution of the differential equation

d’y _dy

7— + 12y = 0.

dx? Y=
3. Solve the followmg differential equation

(1) cos(x +y)dy =dx (i) x? 24y _ =x2+xy+y?

dx
(i)  (xy+yHdx = (x?—xy)dy (iv) d—y y+xtans
v) 2x+3y—=5)dy+@Bx+2y+1)dx=0
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(vi)
d d
wi) =2 =24 cos (Z) (ill) =2 = &
dx x X dx
Given y = (A + Bx)e™?* is the general solution of the differential equation
d?y d

P + 4% + 4y = 0,y(0) = 2, ¥'(0) = 5. Find the particular solution.

Form / obtain the differential equation by eliminating arbitrary constants from the
given relation

(1) y=g+b (i) y =e*(acosx + bsinx)

(ii) y=Incos(x—a)+b (ivy  y =Acos(Inx) + Bsin(Inx)

1
A body moves along a straight line, its acceleration after t sec is given by ﬁ

Att =9 sec, V = 25 m/s. Find the velocity at any time and at ¢ = 20 sec.
Find the orthogonal trajectories of the family of the curve 3x + 4y = c.

Find the general equation of the family of the curves perpendicular to the
y =In(tanx + ¢;).
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Unit Partial Differentiation
e Weightage = 4% e Periods = 10

11.1 Differentiation of function of two variables

We have already studied the differentiation of function of one variable. Now, in this
section, we will focus on differentiation of function of two variables.

11.1.1 Define a function of two variables

If a quantity z has unique and finite value for every pair of values x and y, then z is
called function of two independent variables x and y.

ie., z=fxy)
Here, z possesses unique and finite value for each ordered pair (x,y) € R?.

For example, f(x,y) = x2+ xy + y? is a function of two variables, because for
different values of x and y, f has a unique and finite value.

11.1.2 Define partial derivative
The concept of partial derivative arises when function is of two or more variables.
Definition:

Let f is the function of two variables x and y, denoted by f(x,y), then partial
derivative of f with respect to x is the ordinary derivative of f(x, y) with respect to x by taking

0
y as a constant. It is denoted as é or f,. Similarly, partial derivative of f(x,y) with respect to

0
y can be defined, and is denoted by é or fy.
11.1.3 Find partial derivatives of a function of two variables
E llF'da—f da—f' that
xample 1. Find = an 3y given tha

i fy)=x*+xy+y’ (i) fCoy)=ye*
i)  fC,y)=lny,y>0
M As f(x,y) = x* +xy +y?
Differentiating f partially with respect to x, we get
af

i)
S =a(x2+xy+y2)

6f_2 +y(1)+0
ax xTy

&)
y
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of
2L =9
ox xX+y
Similarly, differentiating f partially with respect to y, we get
of 2 2
3y oy (x* +xy +y°)
0
% =0+x(1)+2y
0
% =x+2y
fx,y) = ye*
Differentiating f partially with respect to x
of 0
ax  ox (ve™)
of  (oe*
ax Y \ox
af
Pkl
Similarly, differentiating f partially with respect to y
of 0 x
9y~ ay (ve™)
9]
T ey
a_f — ex
ay

fxy)=Iny,y>0
Differentiating partially with respect to x, we get

of o (ny)

dx  0x ny

of 1 d o

ox ny 0x

0

% =lnyx0

af

Pl 0
Similarly, differentiating partially with respect to y, we get

of o0

Z —__q

3y~ 3y (Iny)

af 1

dy 'y
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Example 2. Find the partial derivative of the area of triangle by base as well as height of the
triangle.

Solution: The area of triangle is defined as A = %bh

Here b and h are base and height of the triangle respectively.

Now, partial derivative of Area A with respect to base b is
A= ! bh
2

Differentiating A partially w.r.t b, we get

E)A_ 0 1bh>
%"%(E

0A

-2 h (1) (here h is treated as constant coefficient)
0A 1 B

ob 2

Similarly, differentiating A partially w.r.t h, we get

! bh

2

0A 0 (1 bh)

oh ~ 9r\2

0A 1 b ) :
-2 b(1) = > (here b is treated as constant coefficient)

11.2 Euler’s Theorem

Euler’s theorem is one of the most important theorems of calculus, which contains
homogeneous function and its partial derivative.

11.2.1 Define a homogeneous function of degree n
Definition: A function f(x,y) is said to be a homogeneous function of degree n if it
can be written in the form of f(tx,ty) = t"f(x,y)or f(x,y) = x"f (%)

Example 1. Show that the polynomial function in two variables p(x, y) = x3 + x%y + xy? + y3
is the homogeneous function of degree 3.

Solution: Asp(x,y) =x3 +x%y + xy? + y3

By taking highest power of x as common

2 3
V) PENP AP AP A
p(x,y) =x [1+x+x2+x3
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0 2 3
10 +0+0) +0)]
p(x,y)=x’p [(%)]

Hence p(x, y) is the homogeneous function of degree 3.

x4yt

Example 2. Show that the function f(x,y) = pay

is homogeneous function of degree 3.

Solution: Replacing x by tx and y by ty
(0)* + (e)*

tx,ty) =
f(tx, ty) x—ty
t4-x4- + t4-y4-
tx,ty) = ——
f(tx, ty) (=)
Cttxt+yY)
t(x—y)

o (xt Yt
f(tx, ty) —t3< —y )

ftx, ty) = t3f(x,y)

x4 +y4 . .
flx,y) = is homogeneous function of degree 3. Hence shown.

x=y
4
40147
x4+y4 _ X <1+x4>
(=

Alternatively, f(x,y) =

fay) =2 ()

44 14
This shows that f(x,y) = xxti is the homogeneous function degree 3.

24 4,2
Example 3. Show that the function f (x,y) = sin (xxt; ) is not a homogeneous function.

2442
Solution: Here f(x,y) = sin (%)
Replacing x by tx and y by ty , we get

()P + (ty)?
“mm-“§aﬁﬁﬁ)
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f(tx,ty) = sin

e/—\

2

sl (5 y))mmm

ftx,ty) #t f(x,y)

Hence, f(x,y) is not homogeneous a function.

VEHJT .

Example 4. Show that the function f(x,y) = I—y2 is homogeneous of degree — %

Solution: As f(x,y) = \/_+‘}/}_
\/9?<1 +\/§)
B x? (1 —i’—z)

|« fGoy) =2"f (%)]

I
=
wolw
\'\
e
I's
N——

f(x,y)

+./y. .
Hence f(x,y) = g_‘}/g is the homogeneous function of degree — %

11.2.2 State and prove Euler’s theorem on homogeneous functions
Let z = f(x,y) is a homogeneous function of degree n, then by Euler’s theorem, we
have
0z 0z
X I +y @ =nz
Proof: It is given that z = f(x,y) is the homogeneous function of degree n. So, it can be
written as

= feey) = £ () ()

0z 0z
From the statement of Euler’s theorem, we need the values of a and 5
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Differentiating partially (i) with respect to x, we get
0z 0
n
ax 0x [ f ( )]
By applying product rule of derivative, we get

=)o e s ()
= G Qe () )
= = () ()
Multiplying both sides by x, we get

xg—i = nx"f (%) — x"Lyf! (%) .. (ii)

Z; 63’< nf( ))

£-02s0)
() )
=)
2=y ()
Multiplying both sides by y, we get
yZ}Z, x"tyf! ( ) ... (i)

By adding equations (ii) and (iii), we get,
g rQ)=xy ey )

e
xSl 4y S = nf () [+ feeyy =xnr (2)]
az 0z

ax Y5y ay n

Hence proved.
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11.2.3 Verify Euler's theorem for homogeneous functions of different degrees
(simple cases)

24,2
Example 1. Let z = xJ; _ﬁ’ " then verify Euler’s theorem.

24,2
As,z = x’; _ﬁ’ " is homogeneous function of degree 2. Then by Euler’s theorem.
0z 0z
—+y—=2 @
Yo tVay =% )
To verify this, we find partial derivatives of z.
x2v2
g
x% +y?

Differentiating partially with respect to x
0z d [ x*y*
dx  ox\x%+y?

9 d
0z (% +y?) 5o (¢Py?) — (Py?) 5 (e + %)

T 7
0z _ (x* +y%) (2xy*) - (x*y*)(2x)
o & 1577
0z  2x3y? + 2xy* — 2x3y?
R RS
0z 2xy*
0z 2x2y*t

X& = m (ll)

Similarly, differentiating partially with respect to y, we get
0z 0 [ x*y?
dy 0y \x2+y?

9 9
0z (YD) gy (YD = (Y 55 (0 + 59

ay (% +y2)?

0z _ (x* +y%) (2x%y) - (*y*)(2y)
iy~ O+ Y27

0z 2x*y+ 2x%y3 — 2x2%y3

Iy GTtyd?

y
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0z 2xty?

y@ = —(x2 D) .. (i)
By adding equations (ii) and (iii), we get
0z 0z 2x*y? 2x2y*
X+ y—= +
ox o0y (x*+y?)? (x2+y?)?
0z 0z 2x%y%(x*+y?)
Xo-+y—=
ox dy (x% 4+ y2)2
0z N 0z 2x%y*
*ax Y dy x2+y?
62+ 62_2 o x®y?
X ox yay_ z 'Z_x2+y2

Hence verified.

Example 2. Given that p(x,y) = ax? + bxy + cy? be the homogeneous function of degree 2.
Then verify Euler’s theorem for it.

Proof: As p(x,y) = ax? + bxy + cy? is the homogeneous function of degree 2. Then by
Euler’s theorem.

dp  Op :
xa+y$—2p ()

To verity this, first we find partial derivatives of p(x, y).

p(x,y) = ax? + bxy + cy?

P _ axtb
ax— ax y

Multiplying both sides by x, we get

xg—z = 2ax? + bxy .. (ii)
Similarly,

dp

@ = bx + 2cy

Multiplying both sides by y, we get
9]
y% = bxy + 2cy? ... (iii)

By adding equation (ii) and equation (iii)
We get,
dp

x—+ ya—p = 2ax? + bxy + bxy + 2cy?
dx dy
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dp dp ) 5
xax+yay—2(ax + bxy + cy*)

dp  Op
xa*‘)’@ =2p(x,y)

Hence verified.

R

Example 3. Verify Euler’s theorem for the function z = sin™! g + tan~?!

Solution: Let us check the homogeneity and degree of the function.

Here f(x,y)=z= sin‘lg + tan‘1¥

Replacing x by tx and y by ty, we get

tx ty
— cin-1 -1
f(tx,ty) = sin (ty) + tan (tx)

X

f(tx, ty) = sin™* (y) + tan™ (%)

X y
tx,ty) = t° [sin‘1 —+tan~?! —]
f(tx, ty) " .
Hence z = sin'lg + tan™! % is the homogeneous function of degree 0.

By Euler’s theorem

x—+y=—=0z=0 . (i)

RI<L

To verify Euler’s theorem, we find the partial derivatives of z = sin_lg + tan™?

w.r.t their independent variables.

dz 0 x y
— =——|sin~1= -1Z
% ox [sm y + tan x]
0z 1 1 x? -
ax St (_Z)
dx ,1 _ (5)2 Yy x4+y? \x
y
0z 1 y

ax /yz_xz_x2+y2

Multiplying both sides by x, we get

0z x xy
ox T [yz—x2 x2+y?
Similarly,
dz 0 x y
- = 3 —1_ t -1 _]
3y oy [sm y + tan "

y



Partial Differentiation

0z 1 d (x 1 a y

a=1_—(£)z'@(;)+—z)z'@(;)
y

0z y —x x2 1

@‘W(F)Uuﬂi

Multiplying both sides by y, we get

0z  —x N xy (i)

yay = \/m Ty .. (i
By adding equations (ii) and (iii), we get,

0z 0z x xy x xy
x—+y—= - —~ +

ox "y | [yz—xz x*+y? [yz_32 x*+y?

0z N 0z 0
* dx y oy

Hence verified.
11.2.4 Use MAPLE command diff to find partial derivative

The format of diff command to partial derivative of a function in MAPLE is as under:

0
> dif f(f,x,y) is equivalent to the command I f in Maple version 2022,

Where,
f stands for function whose partial derivative is to be evaluated
X,Y  stands for the variable x and y, the partial derivative with respect to x or y.
0
P means 1% order partial derivative with respect to variable x

| Note: All above operators should be taken from the Maple calculus palette.l

Use MAPLE command diff or (i f ) to differentiate a function:

ox
Partial Derivative of functions:
> f = (x,y) — (x%y + 5xy + xy?) > f=(x,y) — (x +In(xy)
f=(0y) = x%y + 5xy + xy? + 2xsin(y)?)
> dif f(f G0 ), ) f = (x,y) = x +In(yx) + 2x siny?
2xy +y* +5y > dif f(f (x,y),%)
> dif f(f(x, ), y) il siny?
x? + 2xy + 5y ' x
> dif f(f (6, ¥), %, %) > dif f(f (6, ¥),y)
2x+2y+5
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Partial Derivative of functions:

> dif f(f(x,9),9,%) 1. 4sin y
2x+2y+5 y
> dif f(f (x,y),x,x) >dif f(f (x,¥),x,y)
2y 4siny
>dif f(f(x,9),y,5) > dif f(f (x,¥),x,%x)
2x _i
X2
>dif f(f (6, ¥),5,5)
- F + 4sinx

>f=(xy) > x+y+ye*)
f=@y) 2 x+y+ye*

>f=(xy)—Un(x+1)+y+ye)
f=ky) = In(x+1)+y+ye*

> dif f(f(x,y),x) > dif f(f (x,¥),x)
1+ ye* 1 x
+ ye
> dif f(f(x,9),y) 1+x
1+ex >dlff(f(x:J’)'Y)
> dif f(F (x, ), %,%) L+e?
yex > diff(f(x'Y)'x: X)
. 1
> dif f(f(x,y),y, y)O “a et ye*
> dif f(f(x,¥),y,¥)
0

Exercise 11 )

Fi da—f da—f hen f(x,y) is given b
n axan ayw en f(x,y) is given by

(i) fO,y)=3x3+y?—6x+2y—7
(ii) fo,y) =x>+xy—y?—2x—2y—8 (iii) f(x,y) =sin(x + )

(V) fxy)=e*cosy W f@y) =76 +y2)

The volume of the cone is given by formula V = %1‘[ r2h. Differentiate V with respect

to their independent variables.
Check whether the following functions are homogeneous or not. Find the degree in
case of homogeneous function.

3_gy2 2443
() floy) =Ty ) fey)=tan(27)

xy




Partial Differentiation

(i)  fOoy) =x*+3x%y+2y*x+y*  (iv)  f(x,y)=cos™! (x—z_yz)

Xy
xZ2—xy+y? .
M =72 V) fGy) = x® = 3x7y0
2 2442
.. R S _ x“+y
(vii))  f(x,y) = x°sin ( x) (viii)  f(x,y) = ln< y )
4. Verify Euler’s theorem for the following homogeneous function.
. . X
0 feoy) =xy+y? () fxy) = cos(])
. x+
(i) fOoy) = xy—x v fey)=m(57)
ou Ju 2
5. Ifu = x2(y — x) + y2(x — y) then show that — + — = —2(x — y)2.
dx 0dy
3443
— pan-1 (XY ou Ou_ .
6. Ifu =tan ( —y ) then prove that x Ty 3y sin 2u.
7. Use MAPLE command >diff or (% f ) to partial differentiate with respect to x and

y of the following functions:

i) floy) = x*y+xy+xy> () f(xy)= y+xcos(y)

(i) foo0) =355

Review Exercise 11 )

1. Multiple choice questions (MCQs)
@A) Given that f(x,y) = e then fx = L
y
x y y+x f (xy)
a) — b) 1 c) = d)—————
@ 3 (b) © = Clorsey=roowe:
(i1) Surface area of a cube is a function of ____variables.
(@) 1 (b)2 (c) 3 (d) 4
. x 9y
iii Given that g(x,y) = cos (=) then— =
(iif) 9%, y) (y) P
X X X y
@ -3 (b) 5 (c) — 3 (d)—%

(iv) A function tan (g—;) is a homogeneous function of degree

(a) undefined (b)g ()1 @o
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V)

(vi)

(vii)

(viii)

(ix)

The perimeter of rectangle is given by a function P(x,y) = 2(x + y), where x and
y are respectively its length and breadth. Then sum of partial derivatives w.r.t their
independent variables is

() 2x (b) 2y (©) 2(x +y) (d) 4

Giventhat z = f(x, y) is a homogeneous function of degree 0 then x == I Z+ y g—; =
@ +y) f'(xy) b)x+y (c) 0 (d) f(x,y)
The area of trapezium is a function of variables.
(@ 1 (b) 2 (c) 3 (d) 4
ow ow _
Givenw = f(u, v) is a homogeneous function of degree — thenu —— TV T
@ @+)f' @)  (©)0 © 2 @ 2w
. u\ . . 0z
Giventhatz =y (;) is a homogeneous function of degree 0 then v 3= .
0z 0z
(a) Uns b0 (©) U~ (d) -1
Let f(x,y) and g(x, y) are homogeneous functions of degrees 2 and 3 respectively,
X,

then degree of homogeneous functions (xy) s

9(xy)

2

(a) 6 (b1 © 3 (d) -1

Let f(x,y) =xy and g(x,y) = xy be the homogeneous functions for the areas of

rectangle and triangle respectlvely, where x and y are their independent variables. Are
f+9f—gfgand f—] homogenous? If yes, what are their degrees?

Verify Euler’s theorem for the function z = /x? + y?

Given that z = g(x,y) is a homogeneous function of degree 3 then show that
az 0z

R 3y = 3z.
Given that y = f(u,v) is a homogeneous function of degree —% then show that
ay dy _ 3
Uau tV5 w2V
. - ﬁ—ﬁ) ou ou
— 1
Given that u = sin ") show that x =— T yay 0.
3_43
Given that u = sec™! (2= ) show that x 7 Ou < tv5 0 _ 3 cotu.
x+y dy —
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Introduction to
Numerical Methods
e Weightage = 10% e Periods = 24

Unit

12.1 Numerical Solution of Non-linear Equations

12.1.1 Describe importance of numerical methods

Till now, all the methods we have learnt to solve the non-linear equation and finding
of the derivative or integration of functions are analytical methods.

When analytic approaches are failed to find the solution of a non-linear equation or
require too many tedious computations then, mathematicians used numerical methods to
compute approximate solution. Therefore, numerical methods have great importance in the
field of mathematics.

12.1.2 Explain the basic principles of solving a non-linear equation in one variable

The basic principle of solving a non-linear equation is to find the interval (values of a
and b) for a function f (x), where f (a) and f(b) are of opposite signs such that f (a). f(b) <0,
then the root of f(x) = 0 lies in the interval [a, b].

For example, f(x) = x3 — 2x — 5, put the values of x = 0,1,2,3 in f(x), we get

f(0) =(0)*>-2(0)-5=-5
f=@1P°-21)-5=-6
f2)=@2)3-22)-5=-1
f3)=@2)3°-23)-5=16

Here f(2) = =1 < 0(—ve) and f(3) = 16 > 0(+ve),

such that f(2).f(3) = (=1).(16) = -16 <0,

Now, root lies in the interval [a, b] = [2, 3].

12.1.3 Calculate the real roots of a non-linear equation in one variable by
e bisection method
e regula-falsi method
e Newton-Raphson method
e Bisection Method
The bisection technique is a root-finding method which repeatedly bisects an interval and
then selects a sub-interval in which a root must lie for further processing. It is a very easy and
reliable procedure.
Algorithm of a Bisection method

If f (x) is a continuous function over an interval, then to find the root of f(x) = 0

by bisection method, following steps are taken.
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Step 1. Choose two approximations a and b(b > a) such that f(a). f(b) < 0.

Step 2. Evaluate the midpoint ¢ of an interval [a, b] given by ¢ = %b.

Step 3. Now there are three possibilities:
(1) If f(c)=0,, then cisarootof f(x)=0.
(ii) If f(c)<0, and f(a)f(c) < 0 then root lies in the [a, c] else if f(b)f(c) <
0 then root lies in the [c, b]

Step 4. Continue the process till the root is found to the desired accuracy, that is two decimal
places or three decimal places or four decimal places etc.

Example 1. Use Bisection method to find a root of an equation x2 — 3 = 0 up to four iteration.

Solution:
Let f(x)=x2-3=0
Taking a=1landb = 2.

Here f(1)=1-3=-2<0and f2)=4-3=1>0
Since f(1)f(2)<0
Therefore, root lies between 1 and 2

1% iteration

Now,

_1+2_15
c=——=1

f(c)=f(15)=(1.52%-3=-0.75<0
Since f(2)f(1.5) <0
therefore, root lies between 1.5 and 2
2" jteration
Taking a =1.5and b = 2
(1.5+2)
=—
f(c) = f(1.75) = (1.752)2 =3 = 0.062 > 0
Since f(1.5)f(1.75) <0
therefore, root lies between 1.5 and 1.75
3 jteration
Taking a = 1.5andb = 1.75
(1.5 + 1.75)
c=——F =
f(c) = f(1.625) = (1.6252)> =3 = — 0359 < 0

c =175

1.625
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Since f(1.75)f(1.625) < 0
therefore, root lies between 1.625 and 1.75
4™ jteration
Taking a = 1.625and b = 1.75
‘e (1.625 + 1.75)

2
F(c) = f(1.688) = (1.6882)2 —3 = —0.152 < 0

= 1.688

Hence 1.688 is the approximate root of x2 — 3 = 0 after four iterations.

Example 2. Find a root of an equation f(x) = x3 + 2x? + x — 1, using Bisection method
correct to two decimal places.
Solution:
Here f(x) =x34+2x2+x—-1=0
Find the value of f(x) atx = 0,1
f(0)=(0)>3+20)2+((0)—1=-1
fH=@M*+21)*+ 1) -1=3
Here f(0)=-1<0andf(1)=3>0
Since f(0)f(1) <0
therefore, root lies between 0 and 1
1% iteration
Takinga = Oandb = 1
_0+1

= _05
€=

£(0.5) = (0.5)3 +2(0.5)2 + (0.5) -1 =0.125> 0
Here f(0)=-1<0andf(0.5)=0.125>0
Since  f(0)f(0.5) <0
therefore, root lies between 0 and 0.5
2" jteration
Takinga = Oandb = 0.5
0+05
T2
£(0.25) = (0.25)3 + 2(0.25)% + (0.25) — 1 = —0.6094 < 0
Here f(0.25) = —0.6094 < 0 and f(0.5) = 0.125> 0
Since f(0.25)f(0.5) <0

therefore, root lies between 0.25 and 0.5

=0.25

c
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3rd jteration
Takinga = 0.25and b = 0.5
. 025+05

=T 0375
¢ 2

£(0.375) = (0.375)3 + 2(0.375)? + (0.375) — 1 = —0.291 < 0
£(0.375) = —=0.291 < 0 and f(0.5) = 0.125> 0
Since  f(0.375)f(0.5) <0
therefore, root lies between 0.375 and 0.5
4t jteration
Takinga = 0.375andb = 0.5
0.3754+ 0.5
=
£(0.4375) = (0.4375)2 + 2(0.4375)? + (0.4375) — 1 = —0.0959 < 0

Since f(0.4375) < 0 and f(0.5) > 0.

therefore, root lie in the interval.

c = 0.4375

5t jteration
Takinga = 0.4375and b = 0.5
0.4375+ 0.5
‘Tz
c =0.4688
£(0.4688) = (0.4688)* + 2(0.4688)2 + 0.4688 — 1
£(0.4688) = 0.112 > 0
Since f(0.4688)f(0.4375) < 0
therefore, root lie between 0.4375 and 0.4688.
6 iteration
Takinga = 0.4375and b = 0.4688
_ 0.4375 + 0.4688

2
c =0.4531

£(0.4531) = (0.4531)3 + 2(0.4531)? + 0.4531 — 1
£(0.4531) = -0.0432< 0

Since  f(0.4531)f(0.4688) < 0

therefore, root lic between 0.4531 and 0.4688.

c
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7th iteration

Takinga = 0.4531and b = 0.4688
_ 04531+ 0.4688

= =04
c > 0.4609

£(0.4609) = (0.4609)3 + 2(0.4609)2 + 0.4609 — 1
£(0.4609) = —0.0162 < 0
Since f(0.4609)f(0.4688) < 0
therefore, root lie between the 0.4609 and 0.4688.
8t iteration
Takinga = 0.4609 and b = 0.4688
_ 0.4609 + 0.4688

2
£(0.4648) = (0.4648)3 + 2(0.4648)? + 0.4648 — 1

£(0.4648) = —0.0026
Hence, we obtained accuracy up to two decimal places. Therefore 0.4648 is
required approximate root.

c = 0.4648

12.1.4 Use MAPLE command fsolve to find numerical solution of an equation
and demonstrate through examples

The fsolve command is the numeric equivalent of solve. The fsolve command finds
the roots of the equation(s), producing approximate (floating-point) solutions.
Examples:
> polynomial := 3x* — 16x3 — 3x? + 13x + 16
> fsolve(polynomial)

1.324717957,5.333333333
> polynomial := x® — x- 1
> fsolve(polynomial)
—0.7780895987,1.134724138
> fsolve(2x +y = 17,x% — y? = 20,x,y)
{x = 1637758198,y = —15.75516397}
>fi=sin(x+y)—exp(x)*y=0
>Sg=xt—y=2
> fsolve(f,g,x = —1..1,y = —2..0)
{x = —0.6687012050,y = —1.552838698}
> fsolve(cos(x) — x = 0,x);
{x = .7390851332}
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Exercise 12.1 )

1. Use Bisection method to find a real root of the following equations.
(i) f(x) = 2x3 — 2x — 5,[1,2] up to three iterations
(i)  f(x) =x3—2x—5,[1.5,2.5] up to four iterations
(i)  f(x) =x3—x+1,[—2,—1] up to five iterations
(iv)  f(x) = cos x,[1,2] up to one decimal place (five iterations)
) f(x) =3x —e*,[0,1] up to three decimal places (eleven iterations)
(vi)  f(x) = 3x —+/1+sinx,[0,1] up to three decimal places (thirteen iterations)
2. Write MAPLE command fsolve to find numerical solution the following;:
() polynomial :3x*y? = 17,x%y — 5xy? — 2y =1
(i)  polynomial :3x3 — 27x + 3
(ili)  polynomial :3x3 + 9x + 3
(iv)  polynomial :2x3 + 4x + 2
e Regula Falsi method

This approach is also known as the false position method. It is an iterative method for
determining the real root of a nonlinear equation f(x) = 0. This method gives a better
approximation for the roots of the equation than bisection method.

e Algorithm of Regula Falsi method:

Let f(x) is a continuous function over the interval, to find the approximate root of f(x) =
0 by Regula Falsi Method following steps are taken.

Step 1. Find points a and b such thata < b and f(a).f(b) < O.

Step 2. Take the interval [a, b] and find next value using

formula: x; = —aﬁzg:?{gl)

Step 3. If f(x4) = 0 then x, is an exact root.

else if, f(x;).f(b) < 0 then approximate root lies in [x;, b]

else if, f(a).f(x;) < Othenletb = x; approximate root lies in [a , x;]
Step 4. Repeat steps 2 and 3 until desired accuracy is obtained.

Example 1. Find a root of an equation f(x) = x? — 3 using Regula Falsi Method up to four
iterations.

Solution:
here f(x) = x* -3

y
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so, f()=-2<0andf(2)=1>0

therefore, root lies betweena = 1 and b = 2

since f(1)f(2) <0
1% iteration
X = af (b) = bf(a)

fb) = f(a)

MDD -2(-2) 1+4

nETIC=) 3
f(x1) = f(1.6667) = (1.6667)?> — 3 = —0.2222 < 0

= 1.6667

2nd iteration:

Here f(1.6667) = —0.2222 < 0and f(2) =1>0

root lies between a = 1.6667 and b = 2
X, = af (b) — bf(a)

fb) = f(a)
(1.6667)(1) — 2(—0.2222)

Y2 = 1-(=02222)
f(xy) = f(1.7272) = (1.7273)2 =3 = —0.0165 < 0

=1.7273

3rd iteration:
Here f(1.7273) = —0.0165<0and f(2)=1>0
Root lies between a = 1.7273 and b = 2
Xy = af (b) = bf(a)
fb) = f(a)
(1.7273)(1) — 2(—0.0156)
¥ = 1—(—0.0156)
f(x3) = f(1.7317) = (1.7317)? =3 = —0.0012 < 0

=1.7317

4th iteration:
Here f(1.7317) = —0.0012 < 0and f(2) =1> 0
root lies between a = 1.7317 and b = 2
Xy = af (b) — bf(a)
fb) = f(a)
(1.7317)(1) — 2(—0.0012)
& = 1—(=0.0012)
f(xy) = f(1.732) = (1.732)2 =3 = —0.000176 < 0

Approximate rtoot of the equationx? —3 = 0using False Position method
is 1.732 (After 4 iterations).

=1.732
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Example 2. Find a root of the equation 2e* sin x = 3 using the false position method and
correct it up to two decimal places.
Solution:
Let f(x) =2e*sinx—3=0
50, f(0) =2e%sin0-3=0
f(0)=-3<0
also  f(1) = 2etsin(1) — 3
f(1) =1.574770
since  f(0)f(1) <0
therefore, root lies between 0 and 1.
First Iteration
X = af (b) — bf(a)
&)~ (@
here a=0and b =1
0% (1.5747) — 1 x (—3)
1= 15747 + 3
x; = 0.6557
Now f(x;) = f(0.6557) = 2e°6557 5in(0.6557) — 3
f(xy) =—-0.6507 <0
since  f(0.6557f)f(1) <0
Therefore, roots lie between 0.6557 and 1.
Second Iteration
a=0.6557and b =1
X, = af (b) — bf(a)
fb) = f(a)
0.6557(1.5747) — (0.6557)(—0.6507)
X2 = 1.5747 — (—=0.6507)

x, = 0.7563
Now  f(x,) = £(0.7563) = —0.0761 < 0
since  f(0.7563)f(1) <0
therefore, roots lie between 0.7563 and 1.
Third Iteration
(0.7563)(1.5747) — 1(—0.0761)
¥ = 1.5747 — (0.0761)

xg = 07675
Then the best approximation of the roots up to two decimal places is 0.768.
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Exercise 12.2 ’

Use Regula Falsi method to find a root of following equations:

1. x3 —2x —5=0,[2,3] up to three iterations.

2 sin(2x) — e*~1 = 0,[—2,—1] up to four iterations.

3 x* —x—10=0,[1,2] up to two decimal places.

4, 3x + sin(x) — e* = 0,[0,1] up to three decimal places.
5 f(x) =2cosx —x =0,[1,2] up to five decimal places.

e Newton’s Raphson method

The Newton Raphson Method is also commonly known as Newton's Method. It is
an iterative procedure for determining a better approximation for the root of a continuous,
differentiable function f(x) = 0 at x = x,

Algorithm
Step 1.

Let f(x) is differentiable function over (a, b) then to find the approximate root of
f(x) = 0 by Newton’s Rephson method, we have to take initial guess x, € (a, b) such that
f(x9) # 0. Following steps are taken to find approximate root by Newton’s Rephson method.

Step 2.

N (C
f (xo0)

Step 3.
B (C
f (0

Step 4.

By continuing this process, desired accuracy is obtained.

Example 1. Find a root of an equation x? — 3 = 0, using Newton Raphson method up to three

iteration.
Solution:
Let f(x)=x%2-3=0
fl(x)=2x

For our simplicity, we take initial guess x; = 1.5
1st iteration:
f(xo) = f(1.5) = (1.5)2 =3 = -0.75
f'(15)=2(15)=3
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o SO0
LT (%)
—0.75

x; =15 ——— = 1.75

2nd iteration:
f(x1) = f(1.75) = (1.75)* — 3 = 0.0625
f'(1.75) = 2(1.75) = 3.5

G
Y
0.0625
Xy =175 — =1.7321

3rd iteration:
f(x,) = f(1.7321) = (1.7321)?> — 3 = 0.0003
£(1.7321) = 2(1.7321) = 3.4643
S
P )
.0003
=1.7321 - =1.7321
*2 3.4643
Approximate root of the equation x? — 3 = 0, using Newton’s method is 1.7321 (After 3
iterations).

Example 2. Find a root of 3x — cosx — 1 = 0 by Newton’s Raphson method, correct up to 4
decimal places.

Solution:
Let f(x)=3x—cosx—1=0
f'(x) =3 +sinx
We take initial guess x, = 0
Here f(0) =3(0) —cos0—1

f(0)=-2
and  f'(0) = 3 +sin(0)
f(0)=3
1 iteration
i
D)
-2

x; = 0.6667



Introduction to Numerical Methods

2nd iteration:
f(x) = £(0.6667) = 3(0.6667) — cos 0.6667 — 1
f(x;) =0.000167
f(x1) =3+ sin(0.6667)
f(x;) =3.01163

Now
e 12
f(x1)
0.000167
x, = 0.6667 ~ 301163
x, = 0.6667 — 0.0000554
x, = 0.6666
£(0.6666) = 3(0.6666) — cos(0.6666) — 1
£(0.6666) = 0.000032
Hence 0.6666 is the approximate root correct up to four decimal places.
 rercise 123 )
Use Newton Raphson method to find a real root of following functions:
1. f(x) = 2x3 — 2x — 5 up to three iterations with initial guess xo = 2.
2. f(x) = x3 — x — 1 up to three iterations with initial guess xq = 1.
3. f(x) = x® — 2x — 5 up to two iterations with initial guess x, = 1.
4. f(x)=2cosx—x,xy=0 5. fx)=2*—-x—-17,xy=15
6. f(x)=3x—e*x,=0 7. f(x) =3x—V1+sinx,x,=1

12.2 Numerical Quadrature
Quadrature refers to any method for numerically approximating the value of a definite
integral

fbf(x)dx.

The estimated calculation of an integral using numerical technique is known as
numerical integration.
12.2.1 Define numerical quadrature. Use:

e Trapezoidal rule,

e Simpson's rule, to compute the approximate value of definite integrals

without error terms.

Trapezoidal Rule

The Trapezoidal rule is an integration rule that evaluates the area under the curve by
dividing the total area into smaller trapezoids rather than using rectangles.
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Trapezoidal Rule Formula
To prove the trapezoidal rule, consider a y
curve as shown in the figure 12.1 above and divide 4
the area under that curve into trapezoids.
Let f(x) be a continuous function on the y=1x)
interval [a, b]. Now divide the interval [a, b] into n
sub intervals with each of equal width A x.
We use here formula to calculate the width
A x = h of each subinterval. 0

» X

@ X1t X2X3X4----Xs--x, b

b—a
szhszuchthata=x0<x1 <xy;<x3<,...,<x,=b. Fig. 12.1

We see that the first trapezoid has a height Ax and length of parallel base is the sum
are f(xg) oryy and f(x;,) or y; respectively.
Thus, the area of the first trapezoid in the above figure can be given as,

1
S Ax[f (o) + F )]

The areas of the remaining trapezoids are

1 1
7 Ax[f Ca) + f(x2)] 5 Ax[f (x2) + f(x3)]
and so on.
Consequently,

b Ax Ax
[ F@dx = S (700 + £G) + 5 (G + £ ) + £ xo) +
Ax Ax
S (F00) + ot (Cnes) + ()

Ax
After taking out a common factor of 7 and combining like terms, we have,

b A
f f)dx = Tx[f(xo) +2(f () + f () f(xnm1)) + ()]

Then the Trapezoidal Rule formula for area approximating the definite integral f; f(x)dx is
given by:
If we take y = f(x) and Ax = h then, we have

b
h
f ydx = T, = E[Yo +2(1 + Y2t tYn-1) + Yl
a

Example 1. Approximate the area under the curve y = f(x) betweenx = 0 and x = 8
using Trapezoidal Rule with n = 4 subintervals. A function f(x) and x values
are given in the following table:
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X 0 2 4 6 | 8
f(x) 3 7 11 9 3
Solution: As f(x) and x are given in the table:

The Trapezoidal Rule formula for n = 4 subintervals is given as:
h
T, = 5 [f (xo) + 2f (1) + 2f (x2) + 2f (x3) + f(x4)]

h
Ty =5 [f (o) + 2(f (1) + f(x2) + £ (x3)) + f(x)]

b—a_8-0_
===
Now, substitute the values from the table to find the approximate value of the area

under the curve.

Here the subinterval width Ax = 2

[\]

A~T,==[3+2(7+11+9)+3]

A=T,=[6+2(27)]
A = T, = 60 unit square.

N

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 60.

Example 2. Evaluate f27 % dx using Trapezoidal rule, taking subintervals n = 5.

Solution:
1
£ ==
Herea = 2and b = 7, subintervalsn = 5
b—a 7-2
Now, h= =—— =1
n 5
The values of x and f(x) are given in the following table:
b 2 13| 4|5|6/|7
1|11 (1|1]1
X — — — — _ _
@) 2134|567
OR
x |2 3 4 |5 6 7
f(x)]0.5[0.3333(0.25|0.2|0.1667|0.1429
Using Trapezoidal Rule

h
Ts =S [f(xo) + 2(F Cer) + f(x2) + £ (x3) + f(xa)) + f (x5)]
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Ts = =[0.5+2(0.3333 + 0.25 + 0.2 + 0.1667) + 0.1429]

_ N e

Ts = 5[0.5 +2(0.95) +0.1429]

T; = 1.2714
2 1
Example 3. Evaluate f1 eX dx using Trapezoidal rule with subintervals n = 6.

Solution:
21

f(x) =f1 exdx

Herea = 1land b = 2, subintervalsn = 6
b—a 2-1
Now, h= =——=0.1667
n 6

The values of xand f(x) are given in the following table:

x 1 |1.1667|1.3333| 1.5 |1.6667|1.8333| 2

f(x)|2.7183|2.3564 | 2.117 {1.9477(1.8221|1.7254|1.6487

Using Trapezoidal Rule
h
Te =5 [f (xo) + 2(f(x1) + f(x2) + f(x3) + f(xa) + f(x5)) + f (%6)]
0.1667
Ty = — [2.7183 + 2(2.3564 + 2.117 + 1.9477 + 1.8221 + 1.7254) + 1.6487]
0.1667 .
Te == [2.7183 + 2(0.99687) + 1.6487] = 2.0254 unit square.

Simpson’s Rule
Simpson’s rule is an extension of Trapezoid rule. It contains two different schemes

1 3
Simpson’s 3 rule and Simpson’s s rule. Here, we discuss each one separately.

1
Simpson’s 5 Rule

1
Let f(x) be a continuous function on [a, b], then value of f: f(x) dx by Simpson’s 3

rule is calculated by

, 1 h
Slmpson’sg =3 [(y0 +y) 40, ty,+ oy, )+ 20, Hy, T +yn_2)]

Here h is the width of each interval and calculated by h = ?

Where n denotes number of subintervals.

Note: The method is only valid if n is the multiple of 2.
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Example 1. Evaluate foz 2x dx using Simpson's 1/3 rule withn = 6.

Solution:
Let f(x) = [ 2x dx,
Takea =0,b =2,andn = 6.

p=2m0 270 1 (3333
n 6 3
The values of f(x) atx are given in the following table:
1 2 3 4 5 6
x 0 - — — — Z —
3 3 3 3 3 3
f(x) [0] 0.6667 | 1.3333 (2| 2.6667 | 3.3333 |4

Use Simpson's 1/3 rule by taking y = f(x) forn = 6

h
S, = 3100 +6) + 401 +y3 +¥5) + 202 + )]

0.3333
Si,= 3 [(0+4)+4(0.6667 + 2 + 3.3333) + 2(1.3333 + 2.6667)]
Si,= 0'33333 [(0+4)+4(6) + 2(4)] = 4 square unit.
Example 2. Evaluate fol e* dx by Simpson's 1/3 rule withn = 6.
Solution:
Let  f(x) = [ e*dx,

Takea=0,b=1,andn = 6.

=" 170 1 667
S n 6 6
The values of f(x) atx are given in the following table:
1 2 3 4 5 6
x o] = il d x 2 d
6 6 6 6 6
f(x)|1]1.1814 |1.3956 |1.6487 |1.9477 |2.301 [2.7183

Use Simpson's 1/3 rule by taking y = f(x)

h
Si,= 3 (Vo +¥6) +4(y1 +y3 +y5) + 2(y2 + y4)]

0.1667
3

S, = [(1+2.7183) + 4(1.1814 + 1.6487 + 2.301) + 2(1.3956 + 1.9477)]
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0.1667

Sl/3 = 3

[(1+ 2.7183) + 4(5.1311) + 2(3.3433)]

S.,= 1.7183 square units.

Example 3. Evaluate | 12 e*’ dx using Simpson's 1/3 rule by takingn = 4.
Solution:

Let f(x)= ff e dx

Takea =1,b = 2,andn = 4.

= =——=—=0.2
h - 2 ) 0.25

The values of f(x) at x are given in the following table:

x 1 1.25 1.5 1.75 2

f(x) | 2.7183 | 7.0507 | 29.2243 | 212.592 | 2980.958

Use Simpson's 1/3 rule

h
Sy = 3 (Vo +y4) +4(y1 +y3) +2(32)]

0.25
Sy, = — [(2.7183 4 2980.958) + 4(7.0507 + 212.592) + 2(29.2243)]

0.25
Si = = [(2.7183 + 2980.958) + 4(219.6427) + 2(29.2243)]
S3, = 326.7246 square units.
3
Simpson’s 3 Rule

3
Let f(x) be a continuous function on [a, b] there values of f: f(x) by Simpson’s s

rule is calculated by

3
Sy, = 3[()}0 +Y) +30n Y2+ ya tyst AYn-1) + 2(vs + Yt tYn-3)]
b—a

Here h is the length of each interval and calculated by h = -

Where n is the number of subintervals. The formula is used when n is the multiple of 3.

Example 1. Evaluate fol e” dx by Simpson's 3/8 rule withn = 6.

Solution:
Let  f(x)= [, e*dx,
Takea =0,b=1,andn = 6.

y
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101 geer
6 6
The values of f(x) at x are given in the following table:
1 2 3 4 5 6
x |0 — — - - z —
6 6 6 6 6 6
f(x)|1]1.1814 | 1.3956 | 1.6487 | 1.9477 | 2.301 | 2.7183

Use Simpson's 1/3 rule by taking y = f(x)

3h
S; =5 [0o+76) +2(y3) + 301 +y2 4y +y5)]

3(0.1667)

S% R — [(1+2.7183) + 2(1.6487) + 3(1.1814 + 1.3956 + 1.9477 + 2.301)]
3(0.1667)

S% - — [(1+2.7183) + 2(1.6487) + 3(6.8257)]

S; = 1.7183 unit square

3
8
Example 2. Evaluate f: Tlxz dx by Simpson's 3/8 rule withn = 6.

Solution:
6

1
f(">=fomdx

Herea = Oand b = 6, Subintervalsn = 6

b—a_6—0_1
n 6

The values of x and f(x) are given in the following table:

x 0f 1 2 3 4 5 6

f) |1]05|02]01| 0058 | 0.0385 | 0.027

Using Simpson's 3/8 Rule

3
S; = 3[()}0 +¥6) +2(y3) +3(y1 + y2 + ¥4 + ys)]

olw

3x1

S% =5 [(1+0.027) +2(0.1) + 3(0.5+ 0.2 + 0.0588 + 0.0385)]
3x1

S% =5 [(1+0.027) + 2(0.1) + 3(0.7973)]

S% = 1.3571 unit space
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12.2.2 Use MAPLE command Trapezoid for trapezoidal rule and SIMPSON
for Simpson rule and demonstrate through examples

The trapezoidal rule to compute an approximation to a definite integral. The call
trapezoid (f(x),x,n) finds an approximation to the definite integral f: f (x)dx using n

subdivisions of the interval [a, b]. We use the trapezoidal rule with n =12 to find an
b 1

approximation to | ———=dx,

PP fa V1+xt

where, f(x) stands for an algebraic expression in x

x variable of integration

a lower bound on the range of integration

b upper bound on the range of integration

n stands for the number of trapezoids to use(optional)

| Note: All above operators should be taken from the Maple calculus palettes. |

Trapezoidal Rule
> with(Student[Calculus1]):

1
V14 ()4

An approximation of fol f(x)dx using

> Approximatelnt< ,x = 0..1, method = trapezoid, output = plot) ;

1 and the 08
1/x4+1 0.6

partition is uniform. The approximate value of the A
integral is 0.9264474916. Number of subintervals 0

Trapezoid rule, where f(x) =

used: 10. 0.2
> Approximatelnt
(1 + exp(x),x = 0..3, method = trapezoid,) 0
output = plot, partition = 10 Fig. 12.2

A
20

An approximation of f03 f(x)dx using

Trapezoid rule, where f(x) = 1 + e* and the partition
is uniform. The approximate value of the integral is
22.22846420. Number of subintervals used: 10.
> Approximatelnt 5
cos(x) — exp(—x),x = 0.5..3.5, method = trapezoid,
( output = plot, partition = 10 ) 0

10




An approximation of

3.5
j f(x)dx
0.5

using Trapezoid rule, where

f(x) =cos(x) —e™*
and the partition is uniform. The approximate value
of the integral is —1.404622147. Number of
subintervals used: 10.

Fig. 12.4

Simpson Rule 05
> Approximatelnt

1/(x? 4+ 3 xx + 2),x = 0..3, method = simpson,\ 0.4
( output = plot partition = 10 )

0.3
An approximation of f03 f(x)dx using

0.2

Simpson’s rule, where f(x) = and the

1
x%+3x+2 0.1
partition is uniform. The approximate value of the ™
integral is 0.4700185982. Number of subintervals 0 )

used: 10. Fig. 12.5

> Approximatelnt
(exp(xz),x = —1..1,method = simpson,)
output = plot, partition = 10
An approximation of f_ll f(x)dx using

Simpson’s rule, where f(x) = e*” and the partition
is uniform. The approximate value of the integral is
2.925362800. Number of subintervals used: 10.

Note: Before executing above commands, it
is important to write with (student [calculus1]).

Introduction to Numerical Methods
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Exercise 12.4 )

1. Evaluate the following integrals by Trapezoidal rule
@) fOZ e* dx with 6 intervals (ii) f. 13 \/% dx with 5 intervals
(iif) f(? sin x dx with 7 intervals (v)  J e ™ dx with 5 intervals
2. Evaluate the following integrals by Simpson g rule
() [(4x% + 6)dx, with 4 intervals i f; e—lx dx, with 6 intervals
(i) [ 0% Vsinx dx with 6 intervals i) 01 ﬁ dx with 8 intervals
3. Evaluate the following integrals by Simpson % rule
() J;Vx dx, with 6 intervals (i) fflr‘Tx dx, with three sub intervals

2x T
i) %dx with 9 sub intervals (iv) [ sinx dx with 6 sub intervals
+x

4. Write MAPLE Command Trapezoid for trapezoidal rule and SIMPSON for Simpson

rule
. x2-2
(1) ,x = 0..1 n = 10, method trapezoiadal rule
(i1) V9 + x?, x = 0..4 n = 10, method trapezoiadal rule
1
(iii) ... x=0.2n=10method simpson’s rule
x4“+4x+3
(iv) e™ ,  x=0..2n=10,method simpson’s rule
Review Exercise 12 )]
L. Select the correct option.
(1) If real root of an equation f(x) = 0 lies in the interval [a, b] then f (a)f (b) will be
(a >0 (b) <0 (¢) =0 (d) All of them
(i1) In bisection method, the approximate root is a/an _ of end point of an

interval in which actual root lies
(a) Arithmetic mean  (b) Geometric mean (¢) Sum  (d) Product
(iii)  Tterative formula for False Position Method to solve the equation f(x) = 0 at interval

[a, b] is
af(a)-bf(b) ®) af(b)-bf(a)
fla)=f(b) a-b

y
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af(a)-bf(b) af(b)-bf(a)

(d)

fb)-f(a) fb)-f(a)
(iv)  The fastest method to solve the nonlinear equation numerically is
(a) Bisection Method (b) False Position Method
(¢) Newton Raphson Method (d) Bothaandb
) Newton Raphson Method fails when derivative value of f(x) becomes
(a >0 (b) <0 () =0 (d) All of them
(vi)  TIterative formula of Newton Raphson method of solve f(x) = 0 is
(@) iy = 2 + D (®) Fngs = 2 = L0
(©) e = Xy + L2 (@) gy = 2, = L2
f f )

(vi))  Numerical integration comprises a broad family of algorithms for calculating the
numerical value of a?

(a) Definite integral (b) Indefinite integral
(c) Simple integral (d) Compound integral
(viii)  In Trapezoidal rule the number of sub interval is the multiple of:
(@ 0 (b) 1 (c) 2 d 3
(ix)  In Simpson One Third Method, the number of subinterval is the multiple of
(a) 4 (b) 1 (c) 2 d 3
(x) The fastest method to solve the definite integral numerically is
(a) Trapezoidal Rule (b) Simpson One Third Rule
(c) Simpson Three Eight Rule (d) Bothaandb
2. Using Bisection method find the root of cosx — xe* witha=0and b = 1, by taking 5
iterations.

Find a root for the equation 2e*sinx = 1 using the false position method and correct
it to three decimal places with three iterations, taking [1, 2] as an interval.
Find the cube root of 12 using the Newton Raphson method assuming x, = 2.5.

Solve | 01 cosx?dx using trapezoidal rule forn = 5.

Solve f_42 e dx using Simpson one Third as well as Simpson Three Eight rule for

n==~6.



Answers

| Exercisel )

1. () 23+ 3x%y + 3xy? +y3
(ii) cos(x) cos(y) — sin(x) sin(y) + sin(x) cos(y) — cos(x) sin(y)
(iii) 5a® + 2ab + 10b? (iv) 2e*y
V)x2—x—6 (vi)Jx +y
2. (i) (x—2)(x®>+2x+4) (i) (x = y)(x + ) (x% + y?)
(iii) (x — 2)(x + 2) (iv) 3x(x +5)(x—1)
V) 2(x+2y)(x +y) (vi) (x +2)2
. . (D (x-1)?
3. 1 x+1 (i1) T
3x24+2x—-1
(i) 1 2+1
-2 1
19 22
4. 05 5. [ 3 _%] [ ] 7. s eol
8 9.
204
101
:
4 ) i ix 4 -0.5
—104 -1

Exercise 2.1 )

1. (i) Domain =R ; Range ={y|y E RAy > 0} (ii) Domain=R ; Range =R
(ili)  Domain={x|x € RAx >0} ;Range={y|ly E RAy > 0}
(iv)  Domain={x|x € RAx # 0} ; Range={y|ly e RAy > 0}
v) Domain = {x|x € RAx # 0} ; Range={y|y e RAy # 0}
. (i) 10x2—13 (i) 50x% +40x +5 (iii) 25x + 12 (iv) 8x* — 24x% + 15
3. -8 4. 16 5. cos3x +1

6 (o)t =11 (gt =T
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Exercise 2.2 )

1. (1) algebraic (ii) inverse trigonometric (iii) exponential

(iv) logarithmic (v) trigonometric (vi) exponential
(vii) algebraic (viii) trigonometric (ix) logarithmic
(x) inverse trigonometric (xi) trigonometric (xii) algebraic
(xiii) hyperbolic (xiv) logarithmic
(xv) inverse hyperbolic function (xvi) inverse trigonometric function
2. (i) implicit function (i1) explicit function  (iii) implicit function
(iv) implicit function  (v) explicit function (vi) implicit function
3. (i) f(x)=e** (ii) f(x) = 3log,ox
3 —
o : ~
o | ! d

/




Answers
Exercise 2.3 )
1. (i) (2, ) (i) (-1,1) (iii) (5,6) (iv) {3,5}
(v) (3,10) (vi) [3,5)
2. (i) 0 (ii) 1 3 (i)% (ii) 3 (i) —1
4. 5 5. (i) 39 (ii) % (iii) 10 (iv) —32
6. (i) 125 (i) —1 (iii) 0 (iv) 14 ) %
(vi) 2v7 (vii) e: (viii) e%* (ix) e?” (x) e~ @
(xi) In17 (xii) 2! (xiii) —1 (xiv) e16 xv) In(3)
5 . 8
(xvi) 9 (xvii) =5 (xviii) e3 (xix) 3 (xx) -3
7. (i) a? (i) a (iii) 27 @iv) % ) s
(vi) —4 (vii) 180 (viii) 2 (ix) -
1 y L1 .3 g
8. (1) T @)1 (ii1) > (iv) > (v) (Ina)
(vi) (In2)(In 3) (vii) % (viii) 16 (ix) % (x)0
. 3 L1 1 3
(xi) e (xii) 3 (xiii) o3 (xiv) > (xv) 2
10. 1 (i) —4 (iii) Does not exist

(iv) lim f(x) = 3,lim f(x) = 5, lim f(x) = 4, lim f(x) = Does not exist
n-4 n-2 n-—3 n-4

Exercise 2.4 )

N\

1. (i1 (i) —4 (ii1) Does not exist
2. lin} f(x) =3, lirr% f(x) = Does not exist lin% f(x) =-4 and lirr}L f(x) = Does not exist
X— X— X— X—>
3. (1) Continuous (i1) Discontinuous (ii1) Discontinuous
4. (1) Discontinuous (i1) Discontinuous (ii1) Continuous
5. Continuous everywhere but not at x = 2 6. k=2
7. k=9 8. im=1n=3 (i)m=3
1
9. k= g

Review Exercise 2 )

1. i (i) ¢ Gii) d (iv) a v) a
vi) ¢ i) a (vii) b (ix) d x)

y




10.
11.

14.

15.
16.

Answers

(x1) (xii)) a (xiii)) ¢ (xiv) a (xv) d
(xvi) ¢ (xvil) ¢ (xviii) d (xix) d xx) b
() Vx* —4x2 + 7 (i) x2 +1 (i) Vxz +6  (iv) x* —4x? +2
16

(i) implicit function: y = 512 xS (ii) explicit function: y = 5¢°—3x
p Y= T3 p Y T3
(iii) implicit function: y = 2 _:j_ z (iv) implicit function: y = %
(i) [1, 0) apf{} @i 43) (@(v){2,3} W B9 ) [27)
0 12. -1 13. 0
8
(i) 116 (ii) -7 (iii) 20 (iv) —41 (v)2
1
(vi) - (vii) 0 (viii) 2In 3
(1) Discontinuous (i1) Discontinuous (iii) Continuous
Continuous at x = 2 ; Discontinuous at x = —2
Exercise 3.1 )
(1) 4.3 units (ii) 13.89 units (iii) 22.75 units
(1) 6.1 m square units  (i1) 47.8 cubic units
Inflation = Rs. 20.5 per year 4. (a)14.4m/s (b) 15.84m/s
Exercise 3.2 )
. .. 1 1 .
(1) 2 (i1) — NG (111) — VO (iv) —2x (v)2x +1
. .. . 1 6
vi) 2x vii) 3x? viii) 8x —3  (ix) — X) —
(vi) (vii) (viii) (ix) 12) (x) 22152
2 -1 3
H)—= (i) 3 (iii) 15(6x + 7)2
3(2x+1)3 (2x-1)2
_ -9
(iv) —s
2(3x-5)2
Exercise 3.3 )
(i) 25x* (ii) 7x8 (iii) 15x_g (iv) & (v) x?1
VX
. _101 2 L3 .3 2
(vi) —100x (vii) 2 (viii) 13 (ix) 7 x)——=
X3 x16 x4 x3



Answers

. 5x* x . ;
(1) 22152 + 2Z_p2 (1) 2 + 3x
9 5
V)x 5—x 2
4
(i) 6ax? — 2 (ii) 3x2 — x3
1 3

(iv) 10x° — 150x'*  (v)2x 3 — x %
(i) 3x% — 6x + 2 (ii) 4x3 — 6x + 2
(iv) 81x®+49x° +x*—x3+1

(111)3%+ x

(iv) x20 + x?1

2z 4
(iii) 3x 5—§x3

(iii) 6x° — 4x3 + 3x% + 1

) 205 — 11 ) 6x2+4 (i) 11x2+6x+5
i) 20x — i iii
V3x2+4 15(x+1)§(x2+1)%
_ 2
(i) Zevaaay (v BDEHD)
2 2x2
. ~17 L Ax . 2x(x—2)
O 2x—3) W) 21y W) ez x1)?
. 4x3(2b?%-x?) 1
R s
Exercise 3.4 )
1 3
(i) 3x(2x% + 5)(x* + 5x% + 6)2 (ii) —
2(x—1)4(x+1)4
1 n(x+\/x2—1)n —ox2
(i) ———3 (v ——= O e em—
2(24x)2(34x)2 x“-1 (x3+1)3 (x3-1)3
1 3 . y 3 .. —(x+2)
(1+x3)2 ’ 0 1-x—cosy (i) 3(1-y2) (i y+3
W) —[ycos(xy)+secxtan x] ) 1+y y+2 /(1+x)(1+y)
iv V) — /
x cos(xy) Iz (a0 1+y)
‘ (y%2+1)-2xy
vi) (x2+1)-2xy
L line =
o _bzu an P _azv . op of the tangent line = 7
(i) 4cos4x (if) —2sin4x (iii) %




Answers

—3csc3xcot 3x  (vi) —2csc?2x

v) 2 Jtane V)
7. (i) f'(x) = sinx + (x + 2) cosx

(ii) f'(8) = sec®Otan B (2sec?0 + 3 tan? Q)
(iii) f'(t) = 3cos?t(sin6t cost — sin?3t sint) (iv) f'(x) = ‘/%
(v) f(6) =sinB + cosH (vi) f'(x) = 2xcosx? + sin2x
2
5. (1-tan?x)?
1 1 _ —-xcos™1x
9. (1) E (i1) E (i) 1 (iv) sz
x+(1-x%)tan"1x _ 1
M a2 M) i
. t2 b(t2 1) 1
14. (i) —tan® (i1) 2 1 (1ii) (iv) 5

. —cos x = ,——CsC x =———=and—cot x =
dx J1—=x2 dx xJx2—1 dx 1+x2

Exercise 3.5 )

L. (i) 2x + 2*In2 (ii) 4*In4 4+ 5%In5  (iii) (sec?x — csc?x)etanxtcotx

iv) 2 2042 ptanx? 4(2 1 :

(iv) 2xsec*(x*)e (v) 42x+1) (vi) ZInio
(x-1)7e? i) 2x+ 2%In2 + 2a%*Ina, wh 0

Vi) =——=" x2+1)2 (viii)  2x + 2%In2 + 2a“*Ina, where a >

3 (e3¥—e73% 3
(ix) (Inx)* [ +ln(lnx)] (x) 2 (m) = Etanh (Bx)
_cot (Inx) B
(xi) Y (xii) secx

(1) D) m (i1) > (1i1) xsinx)e

. —2x . ex

(iv) —2xe 2*(x + 1) (v) Tror (vi) (1—ex)\/m
—x(3+x2) -1

3. O)——= i) — 71 —3
(1+x2)2 (1-x)2(1+x)2

Ccosx




Answers

Inx + In (sin_lx)

L X
1—x2 sin 1x

4. (i) xSt (% + cosxlnx) (i) (sin™1x)m*

(sinx+cosx)

iii tan‘lx Sinx+Cosx
(i) ) (1+x2)tan_1x

+ (cosx — sinx)In (tan™1x)

(iv) (Inx)Ccos* [ 95%

Inx —sinx In (lnx)] ) x*(1 + Inx) (vi)

-2
Vx2+1

s O-2ER) ) —X(sz‘l) (iii) —2 (i) —2—
yInx+x x\2y2-1 x(1-ylnx)
(v) # — sinxln(sin_lx) (vi) —%
Exercise 3.6 )
.. cosh[In(x+3)] 3 .
1. (i) B (i) 3e3*cosh(e3*)  (iii) (4x + 3)sinh(2x? + 3x)
~coshx sech? yx++/x sinh x tanhVx esinh ™ x sinh~Lx
(iv) 3 v ) Newe sec’ (e )
2v/x cosh? x
~ xy1-xZsech™ x +y1+x2sinh ™ x
™) xy1-x*(sech=1x)2
(vii) coth x2 sinh x — 2x cosh x cosech? x?
(viii) cosh x tanh x? + 2x sinh x sech? x?2
(ix) 2(x + 1) csch(x? + 2x + 1) sech(x? + 2x + 1)
3x+(1-9x2)tanh™1(3x) —Jy2+1
2. (i) cosh™ x (ii) ( ) > (ii) 4
1-9x Jx2—1cosh~1x
) 2 tanh-1 3x2 sec?(x?) _ 2yT-xsech™(Vx) -1
(iv) 2tanh™" x v) —tan2(x3) (vi) "
3. (i) > dif f(2x3 + 3x% + 6,[x]) (i)  >diff(sinQx +3),[x])
i) > diff((x + 1) +2),[x]) (v) > diff ((x 3x+2) . ]>
4, @) d_ (x*+5+3x+7) i > % sin(x?)
d Vx+1
(iii) d (x2+1)

y



Answers
Review Exercise 3 )
| G d  G) a G b v ¢ v) d
(vi) d  (vii) b (viii) b (ix) ¢ x) d
(xi) a (xii)) ¢ (xiii)) ¢ (xiv) b (xv) d
(xvi) ¢
—sinx secvxtanvx In(sin x)
; Inx
2. PVeosz’ x 3. (sinx) [ ” +cotx1nx]
d ax+h -2 d t
4 _y=_ Y 5. ;E 6. —y=—cot(—)
dx hx+by x%2+1°6 dx 2
; i —-6x? -6 (i 2x+3
. i = ii
(x3-1)2  (x2-x"1)2 (x2+1)%
—sinh(cos™1+x)
10. i il) —2 cosec 2x.
O e ®
Exercise 4.1 )
1. y'=-=sin2x , y" =-2cos2x , y"' =4sin2x
cosx
2. "(x) =————
/1) (1+sinx)2
. .. —-80 15 15
3. AW () = 2520t° — 144 D)= +—=
(i) R (1) (i) F70) = 530 26 16\/;
-15
4. i ii) cos x iii) 81sin3y + 16e~% — 6y~
) N (i) (iif) y y
—(x2+y? -3(3x2+y? —2x(x3+y3
. 3y) 6 ( 33’) - (sy)
y y y
dzy -2 Zy
N2 7 _ _ 3
@ x2 = 7ol (11) Cosec36
-3 — -7
r''(t)=6-2tz +et ; r"'(t) = 3t2 + et ; r®(t) = 2151:7 + et
d’y _ 25
dx? 27
3
(i)>d—33’ (x3+3x%+6x+8) (11)>— (cosV2x +3)
(iii) > — ( (x*+5x+3)) (iv) > — (ln\/3x +2)

(V) > % (esinx)



Answers
Exercise 4.2 )
xz  x* ..
1. (i) cosx =1- STt (ii) e* 1+x+2,+
i) In(1 4+ x) = __2+£_... i in2 y = 2__+2_x6_
(iii) In X)=x—>+3 (iv)sin“x = x Tt
. x2 3
v) esmx—1+x+7—--- (Vi)xe‘x=x—x2+x7—---
1
1) —— = 1 —_ + —_— e
(vii) 1 x4 x°
3 4
0 -1 =Y 1) TGt et
i1-x-1)+ (x - 12— (x — 13+
1 s 1 m\2 1 m\3
_.|__ ) e — (x—=) = — (x—=
m\ 1 m\3 1 m°> 1 T\’
- (x-3)+5(x -3) -5i(x-7) +7(x-2) -
3. No. Functions f and g are not defined at 0. Moreover, derivatives of all orders of f, g
and h do not exist at 0.
4, Use Maple Command to find Taylor’s Expression of the following functions:
(i) > taylor(e*,x = 1,10) (ii) >taylor(sin(x),x = m, 10)
(iii) > taylor(cos(x),x = m, 10) (iv) >taylor(In(1 + x),x = 0,10)
1 . 1
(v) > taylor (;,x = 1,5) (vi) > taylor (;,x = 2,5)
Exercise 4.3 )
) 27 5 2 -2
: . . T or T
3. (i) Equation of tangent 3x — 4y +4 =0
(i) Equation of Normal 8x + 6y —31 =0
4. 8~ 37° 6. (3,2) and (-1,2)
Exercise 4.4 )
3. (1) x =1 Minimum

(i1) Relative minimum at x = 5is —2; Relative maximum at x — 1 is 1

(iii) Relative minimum at x = 0is 0 ; Relative maximumat x = +1is+1

x 3x
(iv) Relative minimum at TS = 1550 Relut mumaty = 3L is S = 1,666
iv) Relative minimum at x = — is—= = 1.550 ; Relative maximumat x = —is—= = 1.
) 15 N

(v) Relative minimum at x = —0.3465 is 2.828 (vi) Relative maximum at x = 1is 1



10.

11.

12.
14.

Answers
The Dimension of the tank is: Length = a, breadth = a and height = %.
h2
o 6. Speed: u + at ; Acceleration: a
Review Exercise4 )]
i b i) ¢ (i) d (iv) ¢ v) b
vi) ¢ (vii) a (vii) a (ix) b x) ¢
p 2(1— d’y -5
Frex) = 2022 . =5
(1+X2) X 36U

(i) 6 (i) — cos( ) 8sin (1—2x) (i) —125e5* + 64x~3
() g"(x)=12x cos(2x —9x) — (6x2 — 9)? sin(2x3 — 9x)

_A2x—3xh
(if) 2" (x) = 23T

(7-x°)

(i) Q" (v) =16(6 + 2v —v?)™> + 40(2 — 2v)?(6 + 2v — v?)~°
(iv) H"(x) = 98sin?(7t) — 98 cos?(7t)
2
v) d—y =—6x(y+2)" —o*(y+2)7°
(vi) y”(x) =2y°(6 — 2xy)?[2 * xy(6 = 2xy)~*]

y'=—sinx; y'' =—cosx;y" =sinx ;y? = cosx
dzy _5 nl

= 8. T(x) = —— x™ ")
dx?2 16 cos3t f16) (n—n)!

x*+x—-2=5(x—-1)+6(x—-1)2?+4(x—-1)°3+ (x —1)*

3 4
(X — 1)ex = (x — 1)3 + (x _ 1)26 + (x_l) (x—61) o

in(122) - z(x+’;_3+§+-.-)—zzn 1’51"11
y=x—4 13. (%%)
Increasing at (%00) ; Decreasing at (_w'%)

Exercise 5.1 )

i) R — {0} (i) R — {ZEDT v € 7}
(iii) R* ()R = {nmVneZ)

1 N N
6v3 ’ +
(i) =20 -5k (i) 2 (iii) 100 + 5] + 4k (iv) 375i — 30



Answers

4, continuous 5. continuous

6. O {t|t >-3andt+1,t+#L 2,tER} m%ﬂt¢0th¢?JeR}
Exercise 5.2 )
1 )27+ 2647 + 4tk i) 7+ = ]
. (l)tl e’’j ()t 12/

(iii) (sect tan )7 — 2¢ sint? ] + (2t + Dk

2. () —i+2j -3k (ii) 4t (iii) 12ti — 6t] — 8tk
(iv) 6ti + 12t}

3. (a)8t] + k (b) 87

4, 3] =v2549 ; |d| = V404

5. Velocity component = 445 ; Acceleration component = 4

Review Exercise 5 )

L@ a G) b Gy a (v ¢ (v a
vi) a  (vii) ¢ (vii) b @ a () ¢
41+8j+k

(i) 48 (ii) 5 (i) 65+ 157+ 2k  (iv)30i—60]
continuous 5. {ftIteRA-4<t <6}

() f'(t) = 4t3et"{ + 3t%] — 2¢cosec t? cot t? k

(i) f(t) = Int i+ 622’ f + 3t?sec tan 3 k

7. |d@| = 12 8. b=-1+6j: d=5i+6]

Exercise 6.1 )
L@ %x6+C (ii)—%+€ (iii) 2aJ%+C

(lV)Eby3+C (V) x® —5x% +5x +C (V‘)ﬁ‘;”

SN

1 5
(vii) —x2+31nx+—2——+C (viil) sinx — 3 cosx + C
2 2x X

SEC2 X

(secx+tanx) 3
(secx+tanx)>

(IX) In cosecx—cotx

+C x)In

(xi) 9¢* —3sinx + 5cosx + C (xii) tanx — cotx + ¢

1 3
(i) 3 (ax’* +2bx +c)z2 + C

2 3
2. @) 5(3x2 +9x+3)2+C




(i) 2V3x2 +5x+ 2+ C

1
) Zx4 — 33 +13x* —24x + C
2 2
(vii) > (X -3x%+9)z2+¢C
2 5
(ix) = (cosx + sin x)Z +C

L1 2
3. (1)Eln|x +3| +C
(iii) In|x® + x* —x3 + x2| + €

1 3 2
(V);ln|5x —3x" + 6x + 9| +C

4. (i) e*sinx + C (i) e*sin"tx + C
(iv) e*tanx + C (v)e*Inx+C
1 i (x
5. (i) —tan —-)+C
3 3

1
(iii) =sec™* (Z) +C
3 3
1
W5 In[3x + Vox? + 16| + ¢

+x
= e
3—x

1 9 2x
(ix) Ex\/9 — 4x* + Zsin_1 (?) +C

o1
(V11)6 n

1
(xi)—tan " (X) +C
27 3

1. (i) 3Vx2+7+C
3
(iii) 2(1 —x)2-6V1—x+C
V) —V1—x2+C

1 7 9 5
(vii) (9 +x*)2 - c (0+x*)2+¢C

Answers

(iv) ——————+C
8(x%+4x+3)
N 3
(Vl)gx —4x" +9x + C

17 5 3

(V111);x —3x"+25x"—-125x4+C
1 2

x) > (tan x + sin x) +C

(i) In|tanx + sinx| + C
(iv) Inle* +Inx| + C
(vi)2In[vx + 1|+ C

(i) e*tan"lx + C

(i) sin™* () + €

1
(iv) =In | +C
6 2t+3

(vi) %ln|4x +V16x2 9| + ¢

o1 1 (X
(viii) — sec —)+C
4 2

(X)%x + V25 + 9x? +§1n|3x+ V25 + 9x2| +C

x—2
—| +C
x+2

N
(xii) e n

Exercise 6.2 )

6 (L 7 Z
(ii)—(a3 —x3) +C

49

1 5
(iV)E(ZxZ +4x+5)24+C
(vi)Invx?2+2x+5+C



Answers

2 2 6 7
(viti) (x**-9)z + - (x**-9)z2+c

1 12 3 7
(ix)E(x5+3)5 —;(x5+3)2+C x) In(x3+x2+5x—1)+C
1
2. () E(lnlxl)z +C (i) In|(Inx)| + €
(iii) —In|(Incos x)| + C (iv) In|sec(Inx)| + C
V) V1+e2X+C (vi) e5tanx 4 ¢
(vii) e* — tan~1(e¥) + C (viti) — g e(cosec2e+D) 1 ¢
3x .
t) —— sinx+cosx+3
(ix) n3 +C x)e +C
3 () —qycos82x+C (if) 2 In|sin Vx| + C
1
(if) > (2 + sin3)” + () — = cos(ax +b) +C
1
(v) In|sinx — cos x| + C (Vi)Etan ¥+ C
1

.. 1
C —51In|2 cot 3|+ C
(vii) 3b(atbcosec 31) + (viii) — 5 n|2 cotx + 3| +

1 1
(1x)§ln|3 tanx + 4| + € (X)gsm(3x -5)+¢C
LYy 1 1 1 5
4. (i) 2 + gsin 4y + C (11)—§cos(3x+ 5) +gcos Bx+5+C
32 7 1 1y 2,
(ili) —=sin2 x — =sin2 x + C (iv)=sin” x + —sin” x — =sin" x + C
3 7 5 9 7
5 1 1 1
(V) —2+/cosx + %cosZ x+C (vi) g sin® x + - sin x — Esin10 x+C
__sin*x  sin®x 1 1
(vii) e +C (v111)—ﬁcos6x+zc052x+C
N I 1. 1 1
(ix) e sin 8x + p sin 2x + C (x) ~50¢0s 10x + g cos 4x + C
(xi)tanx —x + C (xii)—%cot3x+cotx+x+6

_tan®x tan*x tan®x
(xiii) e " a + > +ln|cosx|+C

o1 1,
(x1v)5tan 2x+gtan 2x +C

1, 1 2
(xv) —sec” 3x + —sec” 3x — —sec 3x + C
21 9 15



Answers
1 1, y 3 o2 I
(xvi) — 3 cot 3x — g cot 3x+C (xvii) gtam2 x + ;tanZ x+C
R 1, . 2 5
(xv111)—zcot Zx—gcot 2x+C (xix) —2\/cotx—§cot2x+C
(xx) 2V2sing + C
Exercise 6.3 )
1 3
Lz (O-02-9o-x+c 23]+ ¢
81 X 9 1
3. Esin_1 (5) —gx\/9 -x* 4 ng Vo-xt+¢C
4 2t ‘l(sx)+c e ——,
.—tan " |— T
3 3 4/ 4+x2
5 3
1 3 2 2
6.Eln|x+\/x2+4| +C 725G -2+ (P -2+ C

x
8. In|lx +va2+x%|+C +C
| | 256 [w/16 x2 3(16- xz)%]

1 5
10. 81(r2 — 9)Z + 3 (x2 — 9)2 + 6(x% — 92 + ¢

11, tan~(x + 2) +C 12. sin 1( - )+C
— 1 x+1
13. sin™? (ZXT(’) +C 14. = sec ! (—) +C
4 4

1 x—4 -
15. < sec”! (T) +C 16. —2v8x — x2 + 3sin™1 ("T“) +C
Vet 2z r s+t ()¢ 183k 42— S5+ C
19.2/2(x? + 4x — 5) +Q1n|x+2+\/x2+4x—5|+6
20. =2V5 + 4x — xz—sm‘l( 3 )+C

Exercise 6.4 )

(i) (x?2=2x+2)e*+C (i) (x® = 3x2 + 6x — 6)e* + C
(iti) x sinx + cosx + C (iv)yx(Inx-1)+C
(v) 2(xsinx + cosx) —x%cosx + C (vi) In|sinx| — x cotx + C
(vii) x tanx + In|cos x| + C (viii) x(Inx)? + 2x(1 —Inx) + C

(i) %(x +1)*{In(x+1)* -1} +c (i) ixz(ln x*—1)+¢C



Answers

(iii —ﬁ(1+lnx2)+6 (iv)—g—)lﬁ(lnx6+2)+c

1 1
v) 1 sin® x {ln(sin x)2 - 1} +C (vi) Ztan2 X {ln(tan x)2 - 1} +C
1
(vil) — % cot? x {In(cotx)? — 1} + C (viii) 5 sec® x {In(secx)® — 1} + C
(ix) cosecx [1 — In|cosecx|] + C (x) —%(1 +Inx)+C

(x1) % secx tan x + lnm +C
(xii) —%cosecx cotx + Invcosecx — cotx + C
4, (i) xsin™1(3x) + %m +C
(ii)% (x5 tan ' x — ix‘l + %xz —InvV1+ xz) +C
(iii) xtan™12x — %ln(l +4x%)+C
(iv)%x2 cos tx — %x\/l —x% + %sin_1 x+C
(v) x3sin™13x + 2—17m - % 1- 9x2)% +C
(vi) x?sectx —Vx2—1+C (vii) 3x2 cosec™! 2x + %m +C

1
(Viii)g{sz cot tx + x* — 1n|1 + x2|} +C

3. (i)xsin3x+%cosBx+C (i) (2 —x?) cosx + 2xsinx + C
(iii) x tanx — Insecx — %xz +C (iv) x tanx + In|cos x| + C

5
) " [-2xcot 2x + Insin2x] + € (vi) 2vx sinVx + 2 cos Vx + C

1 1
(vii) " ¢ (sin 2x — cos 2x) + C (viii) S e *(2sin2x — cos 2x) + C

e

ax
2 1D2 (a sin bx — b cos bx) +C

5. (i)%{x\/9 —x% 4+ 9sin”? (g)} + C (ii) xV4 + x? +4ln|x+\/4+x2| +C
(iii)% [xV/x? =25 — 25In|x + Va? — 25|] + ¢

(ix)%x[sin(ln x) + cos(ln x)] +C (x)

Exercise 6.5 )

1—101n|(x—3)13(x+7)37| +C 2. In|(x —3)*(x— 43|+ C




Answers

a—x 2a x+a
13 5 |x-5
s (DD ¢ 6. =l|—|+c
X 8 3
7. —Eln(x—l)+i[17ln|x—5|+ln|x+3|]+C
16 32
9 xX—2 16
8. —In | - +C
25  |x+3 5(x-2)
9 iS x—6| + 182 4 31 s
) 27 " x-3 9(x—3) 3(x—3)2

1 — 1+t
0. — [141n]x = 3] = 7m|® + 1] - 2an" 2] +¢ 1. Wm|EE]+C
17 2x—1 19
12 Injv1+2tanx|+C B Sl | et
g Y8 13\Et - (i) +C
o e 11 V2
15. 2x —In|(x +2)(x + 3)*| + C
1, 1
16. Ex —5x+§[51n|x—2| +121ln|x+7|]+C
Exercise 6.6 )
, .78 1184+4/2+1329 , 22
1. (i) 34 (ii) - (iii) 120 (iv) 4V3 +In3 + 3
2
W3 (3V6-V2-4)
1 (59
2. (i) 5(125 — 4v10) (i) 7, In (R) (iii) V41 — V5
2
(iv) 2v/3 )3 (vi) =3
L2 .. ett-1 - 4243
(vii) 3 (viii) coZ (ix) (x) 1=
3, (i) 0 (ii) 0 (iii) 0 (iv) 0
n . T ... 352
(v) 3 (V)2 -~ (vii) =
3 T _ 3n—4
4. T 5. (\/§—1)+E;F(x)=x+tan 1x+T
(i) —4 (ii) 4 (i) =7 (iv) 0 (v) =3 (vi)3
In

. .. In3 o a0 2 .o
7. = (i) — (1ii) 10 3 @iv) Te



Answers
1 36 10,20 . 128In2
8. (i) Te (356 19e ) (i) 3 7
__7m—3+/3 ~ _m—-In4
(iii) 24 (iv) 2
Exercise 6.7 )
1. 9 2. 0.195 3. 1.2958 4. 0.6575
41t—3+/3
5. = 6. 30 7. 23 g Am-3V3
9 4
3
9. 3269017.372 10. 1—: 1. 4(3-1) 12, 119442
12—4+/3-T
13. 5.7396 14. 2.82658 15. T
16. 6) > int(e?*,x = 1..5) (>ii) > int(sin(x),x = 0..4m)
(iii) > int (cos(Zx) ,X = 0..% (iv) >int(In(1 + x),x = 0..3)
. 1
) > int (;,x = 2. .5)
Review Exercise 6 )
1. 6 d G) ¢ Gii) d ~vi) d ~v) b
(i) ¢ i) a (viii) a (x) b x) ¢
(xxi) a xii)) b (xiil)) a xiv) ¢ xv) d
(xvi) a (xvii) ¢ (xviil) a xix) b (xx) c
3 ..
2. ® ln|x'3(x2+ 1)2 | - % +4tan'x+ ¢ () In|tanx| +c
8
(iii) % tan’ (€™ + ¢ (iv) % +c
W) In |:$§t§| +c (vi)  xtanx + In |cosx| +c
3
1 2 _ 3
i) In|Sec 8| + ¢ (viii) 2T Xx+24/x —2In ({/x +1) +c
L
(ix) tan” (3tanx ) + ¢ (x) xcot ' 2x + 1n|(1+ 4x%)4 | +c
xi)  4y/x-x-InG/x +D'+c
.. 2 3 7 11
(xii) —§c052x +7c052x—ﬁc052x+6
Exercise 7.1 )
1. (i) 10 units (ii) V2 units  (iii) V65 (iv) 6 units
2. (1) (0,7); (0,-3) 3. (—11,0) or (—3,0) 4. Scalene triangle

6. () (—4,0) Gi) (2,0) (ii) (% —3) @(iv) (2_75)

y




Answers

(1,-3),(-57),(3,1) 9. Y(16,-19)

sk 13 9y 5V2
0. kEk2=25k=6 1. (02)and(-2,-3) 12. (,7)and ,
B (%) 4. (11,10)
(13 13 ..
5. O(57) Gy (=10 6. 5:2; 4:3
. (8 16 . 17 2
7. 0 (3%) (i) (—?,g) 18 (2,4)
Exercise 7.2 )
b
1. (i)—2 (i) —4 (i) 0 (iv) 2
2. (1) — % (i) — % (iii) undefined (iv) 0
3 ) 2 and — i) —and= (iii) ~1 and 1 iv) 4 and —
. (1) 3 an > (i1) > an - (ii1) —1 an (iv) 4 an 2
4. (i) Lines are neither parallel nor perpendicular. (i1) Lines are perpendicular.
(iii) Lines are parallel. (iv) Lines are parallel.
5. y=1 6. «x =‘T8 8 (85)
Exercise 7.3 )
1. y = —4andx = 3 2. y—2=0andx—-5=0
: y =5 4. x = -5
5. (1) 4 —y =22 =0 (ii) 2x+3y+14 =0
(i) 8x — 20y +17 =0 (ivyv mx—-y+b=0
(v) 4 + 11y + 5 =0 (vij 3x+4y+5=0
(vil) 2x—(t;+ty)y+2atit, =0 (vii) y = 2x + 3
() y=x-2 0  y=3x-5
(xi) y=0 (xit)  3x + 4y = 12
(xii) 5x —2y = -10 (xiv) x + 5y = =5
xv) x +V3y =6 (xvi) V3x —y = -3
: _3, 43 o XYoo 3,424,212
0 y=Tx () +3=1 @) cxtoy=-
7x+y—-11=0,x+3y+7=0and3x—-y+1=0
x+y—-11=0 9. x+4y+2=0;x+y—-1=0

4x—y+4=0x-2y—-6=0
2x+y—-16=0 12. 3x—2y—-43=0 13. 2x—=3y—-10=0



Answers

Exercise 7.4 )

1. (1) (10,1) is below the line, (—4, 6) is above the line and (5, 3) is above the line
(it) (—20,—15) is above the line, (5, 5) is below the line, and (100, 84) is below the

line
(iii) (0, 2) is above the line, (—3, —3) is above the line and (20, 30) is below the line.
2. (1) 1 unit (i1) 5.8 units (iii) 2.2 units
13
(iv) \/ﬁ units (v) 1 unit
3. () d = 2 units (ii) d =¥units (iii) d = 4.8 units
Exercise 7.5 )
(7 -
. @=tan! (Z) 2. 6=tan"1(3.69)
3. 8 =tan"1(0.636) 4. 45° 5. @=tan"! (22—9)
6. 3x —y—7=0and x + 3y — 9 = 0 are the required equations of line.
7. 6 =tan"1(11) = 84.8055 8. a2x+3y—-8)+b(x—y+1)=0
9. (1) 30x =23y — 37 =0 (i1) x—7y =0
(i) 6x + 13y — 25 =10 vy 5x—-1=0
(v) 5c+3y+8=0 (vi)  23x + 23y = 11
(vi) x+2y+4=0 (vi) x -5y +13 =0
10. (26.5650)°,(63.4349)°,90° 11. (145.3)°,(21.37)°,(13.33)°

12. 90°,45°,45°

Exercise 7.6 )

1. (i))5x+y—-15=0 (i)2x—3y+15=0 (iii)4x—6y+35=0

. .. (ab ab
2. (i) (2,-4) (i) (m,m) (iii) (=2,-1)
Exercise 7.7 )
1. (1) 57 square units (i1) 29 square units
(iti)  52.5 square units (vi)  ab square units
1
(v) Eab{sin(el —0,) +sin(6, — 6,) +sin(6, — 6,)}
2. (1) 26 square units (i1) 14.5 square units
25 , . : ... 338 .
4. (1) 22 square units (i1) c? square units (i) ETH square units

y



Answers

Exercise 7.8 )

1. )] x — 3y = 0,x — 2y = 0. Two real and distinct lines passing through origin.
(i1) 4x — 5y = 0,x + y = 0. Two real and distinct lines passing through origin.
(i)  3x —y = 0,3x — y = 0. Two coincident and real lines passing through origin.
(vi) 2x —y = 0,5x + y = 0. Two real and distinct lines passing through origin.

v) y= % Yy = 3_1—_013136. Two imaginary lines passing through origin.
2. @) x2+5xy+2y?=0 (i) 6x2+13xy+6y?>=0
4. 1 tan~?! % (ii) 45° (i)  116°34’ (iv)  108°26'

Review Exercise 7 )

L. (1) d (i1) b (i) a (iv) a W) a
(vij b (vi)) b (viii) ¢ (ix) c x) a

2. 1,-5 3. (8,13) 4, (-2,1)
5 1,3 6 ( z 2) (E E) 7 4,-5
. ( ) ) . 3) 3 ) 3 l3 N ( ’ )
-1 x
8. — 9. 2.2 =1
4 6 5

10. (a) slope = 12 and y-intercept is —6.  (b) slope = —2 and y-intercept is 5.
(c) slope = 4 and y-intercept is 13. (d) slope = 4 and y-intercept is 0.
-~ -1
11. x-intercept is > and y-intercept is >+ 12. k=09

13. (a) neither (b) parallel (c) perpendicular

14, k=2

15. (i)a = 3andb ER (i)a = 3andb = 2
(i)a == andb € R (iv)a=3and b # 2
(i)4x + 3y — 10 = 0 (i)3x + 2y — 7 = 0

. 13
(i1) \/%

Exercise 8.1 )

(i) cutting plane is perpendicular to the axis of the cone and does not contain vertex.
(ii) cutting plane is parallel to a generator of the cone and cuts only one nappe.

(1ii) cutting plane is slightly tilted and cuts only one nappe.

(iv) plane intersects both nappes but does not contain the vertex.

(v) cutting plane passes through the vertex of the cone.

(i) x%? +y2 =50 (i) x> + y?2 + 10x — 14y + 38 =0

(i) x2+y2+2x—4y—29=0 (iv) x? +y2 =61

(i) —1 and the point is below the line



Answers
WMxt+y2—4x—6y—12=0 (vi)x?2 +y%2—2px—2qy =0
3. (@ (0,0);5 (ii) (=3,5); 7 (iii) (3, —4); V15
. . 3\. V17 _ 190
(iv) (4,0);V7 (v) (_Z’E) R 4. k=——
5. x2 + y? — 6x + 8y — 11 = 0 and given circle is the outer circle.
Exercise 8.2
1. x> +y?+4x—3y=0 (i) x2 + y% = 100
(iii)) x> + y2 —10x — 6y +9 =0 (iv)x2+y?—4x—9y—-57=0
V) x?2+y?2—13x—5y+16=0
2. ()x>+y?—8x+3=0 (i) x?+y2—8y+11=0
3. x2+y?—4x—2y+4=0 4. x2+y2—-3x+y=0
5. x24+y2-2x=0 6. x2+y2—-3x—-5y+8=0
7. 11x2 + 11y? + 16x — 42y — 155 =0
8. x2+y?+10x+20y+25=0andx?+y2—6x+4y+9=0
9. 3(x2+y?) —34x—14y+96=0 1. x2+y2—6x—8y=0
Exercise 8.3 )
1. (1) secant (i1) tangent (ii1) neither
2. k2% = 625 — 5c and k2 < 625 — 5¢ 3. y =+3x+12
4, (1) Tangent: x — 4y = 17 and Normal: 4x +y =0
(i1) Tangent: x +y = 5 and Normal: x —y = 3
5. (i)+/33 (i) V13 6.(mh—k+c)=r2(1+m? 7.(1,1)
8. (1)3x+4y =25;3x—4y =25 (i)3x—4y=25; 3x+4y+25=0
(i) 3x+4y+25=0;3x+4y—-25=0
(iv)4x —3y+25=0;4x—3y—25=0
_ .12 9
9. 3x—4y—0,y—0,(?.§):(3:0)
. c . cm? k2 k2
11. (1) 1+m2 (11) 1+m2 12. (T ,T)
13. c=32,-8 14. Given line is not tangent.
Review Exercise 8 )
1. (1) b (ii) c (i) d iv) b V) c
(vi) d (vii) b (viii)) a (ix) a x) b
(xi) d (xii)) b (xiii) b (xiv) ¢ xv) d
(xvi) a (xvii) ¢ (xviii) b (xix) ¢ (xx) b
2. (i) 2x2 +2y2—-39x +52=0 (i) x> +y%2—13y+26=0
3. x+3y=0 4. k=1+2V2;k?—2k-7=0;k=1

y



Answers

Exercise 9.1 )

(i) (0,0),(=2,0),8,x—2=0,y =0 (ii) (0,0),(0,—4),16,y —4 =0,x =0
(iii) (2,-3),(5,-3),12,x+1 =0,y +3 =0
(iv) (=5,3),(=5,5),8,y —1=0,x +5=0
W (-2,1,(-23).1, 4y-3=0x+2=0
(vi) (4,3),(2,3),8x—6=0,y—3=0

9y? + 12x + 36y +20 =0
x2+y2—2xy—10x — 14y +49=0

(i) y? = 20x (i) x2 = —8x

(iv) (y —4)? = 4(x - 2)
y*+4x—-16=0
(iii) x2 +8x+ 6y —11 =0
(i) y? = 24x (i) x2 = =20y (iii) (y — 4)? = —8(x — 3)
(i) 4x? = 9y ;3y? = 16x (i) 6(x —5)2 =y;y%? = -36(x —5)
(x=2)2=10y—4);(y —4)* =10(x — 2)

x%+y?—6y2—27=0 1. (0,0);(90,30)

Exercise 9.2 )

¢ = —am?; 2am,am?); y = mx — am?

. 5 (5 5 5
(e=-7 (g-3)y=-2c-%
oo 3x 27

.. 27 9 27

() p=-TFi(-71)7=—F T
(i) ¢ = +v2; (2, £V2);4x £V2y -6 =0
Hx—y+2=0;x+y—6=0 i{)3x+y+9=0;x—3y+33=0
(1) 3x—2y—1=0;2x+3y—18=0

(iii) (x — 1)? = 20(y + 3)

(i) x2 =20y —20=10

4x +V2y—6=0

1
zﬁm
x2 =100 (y — 5); 105 8.

. x 2a
My -y =55 -2y =y =530n-2 5.

9
at a distance of g m from vertex 7. 15 feet

Exercise 9.3 )

@A) a=5,b=3;e=%;fociare(O,i4)

Vertices: (0, £5); covertices: (3, 0),% ;Y= i24—5
(i) a=4b=+10;e= @; foci: (+v6,0)
Vertices: (+4,0); covertices: (0, i‘\/ﬁ),



Answers

Latus rectum = 5, Directrices: x = + 16

J6
(i) a=5b=4;e=3;foci (6~4),(0,~4)
Vertices: (8, —4), (—2,—4); covertices: (3,0), (3,—8)

Latus rectum = 32 Directrices: 3x —34=0,3x+16 =0

5 B
(iv) a=4,b=3,;e=g;foci:(—1,21\/7)
Vertices: (—1, 6),(—1,—2); covertices: (2, 2),(—4,2)

9 16
Lat tum: —; Directrices: y —2 = +—
atus rec s Directrices: y 7
) a=5,b=3,;e=%;foci:(i4,0)
Vertices: (15, 0); covertices: (0, £3)

8 25
Latus rectum: ?; Directrices: x = iT

(vi) a=5b=2;e=
Foci: (2 ++/21, —4) ; vertices: (—3,—4),(7,—4)
Covertices: (2,—6), (2, —2) ; Latus rectum: = %; directrices: x — 2 = +£

qu
—_

~V21
L x2y? s L X2 y?
2. (1)36+16—1 (i1) 2+3 =1 (111)25+16—1
2 2 xZ 2 9x2 2
(iv)—+y—=1 (V)_+y_=1 (Vi)_+y_=1
9 25 61 36 256 16
x2 2 x2 2
wil) —+ L =1 (vil) — + 2= = 1
34 9 16 25
x—5)2 +3)2
3. x2yr=l 4. Outside P G- Vg )
25 9
6. (i) 4 (i) 2v13 (iii) 6
7 (i)e=g (ii)e=%
8. 2x2+2y?—-5x—18=0
9. 7,13 ;x 4+ 43y — 24v/3 = 0 and 11x — 43y — 243 = 0
x2 -1 2
10. —+ S 1

3. c? =a%+b*m?



Answers

(i) a?cos?a + b?sin? a = p?

(iii) a?1? + b*m? = n?

5. y=3x+7

6 i T t.3_x+4_y_ 1

. (1) angen.25 s =

Normal: 100x — 45y — 192 =0
(11) 7xcosa+ 8ysina = 56;16xsina — 14y cosa = 15sina
7. Tangent: x +V3y—3=0;x++v3y—3 =0
Normal: 3x —vV3y—1=0;3x++V3y—1=0
8. x+3y—-5=0;x—3y+3=0
Exercise 9.5 )

1 (i)—z—ﬁ—l (ii) 16x2 — 9y? = 144 (iii)y—z—ﬁ—l
64 36 Y= 16 64
x2  y? x2  y2? 9x2  9y2
———=1 ——-—=1 )— —-———=1

(iv) 16 2 ) 10 15 Vi) 64 512
2 2
(VH)E_Ez
-3)2 (x-1)2
2. H6(x—1)?2-3(y—3)?2=2 (ii)(yz) —( 2) =1
3. ) e =% ; Foci: (£5,0) ; vertices: (£3,0); %

(iv) e = 122 ; Foci: (+vI3,0)  vertices: (+2,0); 9

i) centre: (5,—3) ; Foci: (10, —3), (0,—3)
5 . . . 16 34
e =3 ; vertices: (8,—3), (2, —3); Directrices: x = T X=F

(i) e = % ; Foci: (0,43) ; vertices: (0, +V5); %
(i) e = @ ; Foci: (0, i@) ; vertices: (0, £1); %
V13

(ii) centre: (—5,4) ; Foci: (—5,14),(-5,—6); e = 2

3
vertices: (—5, 10), (=5, —2); Directrices: y = 3—58 Y = %
Vi3

(iii) centre: (—2,1) ; Foci: (—2, +v13, 1) ;e =5

vertices: (0,1),(—4,1); x = -2 + J%

(iv) centre: (3,4) ; Foci: (3, 4+ \/34-) ;e =g

2



Answers
vertices: (3,—-1),(3,9);y =4+ \/_
5. x2—y2=16;y? —x?2=16;y = +x 6.
Exercise 9.6 )
1
1. -+ 2 2 _ p22 _ 2 . — 3+
k=+ T c2=b*m?*-a 3 y =3x++33
ale bzy1
4. Tangent: y —y; = —— (x — x;) ; Norma: y — y; = ——(x; — x1)
b%y4 anxy
5. Tangent: 14v/5x — 5v7y — 105 = 0 ; Normal: y — /7 = 14\/_(2\/3— )
X% Y?
6. —+—=1
25 16
3V3+2 3= 23 13 1
7. ( ) 1( ) iii) (3 —2v3, 2+ 3V3
(i) : i (7 7 (i) ( )
8. New origin: (—6,5)
X-axis: x —V3y + 6+ 5vV3 =10
Y-axis: V3x +y + 63 -5=0
9 <2J§+3 5J§—8)
' 2 72
10. X2 —Y? =18 This is equation of rectangular hyperbola with centre at origin and
rotation of 45°. 11. 0= arc tan 152
Review Exercise 9 )
1. (1) c (i) d Gii) d (iv) d (v) b
(vip b (vii) ¢ (viii) a (ix) b (x) d
xi) ¢ (xi)) ¢ (xiii) b (xiv) d xv) b
(xvi) a (xvii) d (xviii) ¢ (xix) b (xx) b
2. (i) Foci: (8,—3), (2, —3); Vertices: (10,—3),(0,—3)andx — 5 = +%5
(ii) Foci: (1,-7),(=9,—7); Vertices: (—1,-7),(—=7,—7) and x + 4 = ig
. Me=3 (i) c = +V5 (iii) ¢ = +vZ
X% Y? 9 5
R 5. (—ﬁ,ﬁ)
Exercise 10.1 )
1. (1) Order =2 (i) Order =1 (iii))  Order=2
Degree =1 Degree =1 Degree =2




Answers

@iv) Order=3 ) Order =4
Degree =1 Degree =2
2

4 'u+ =0 02— 5 cot +1
: O Tz+ty= (i) = = ycot(x + 1)

d2
(iii) x%y, —2xy; +2y =0 (iv) Ty +—-2y=

5. (1) 5—2y1+4+cosy=x (ii) 3y = 4e?* —e™*

Exercise 10.2 )

1. (i) secy = Cx (ii) siny = CVxZ +1
(i) (y + x) + In(xy) = C i)y = %ln(l +x3+C
V) (x+y)—In(x+xy)=C (vi)—%=(3x+cosx)+C
(vii) y + % =224 C (viii) tan?y = —x2 + C

2. ()x2=—2xy—y?2=C (i) y+2x)2y —3x)=C
(iii) x% + y? = Cx3 (iv) x? —y% = Cx

) cosec% — cot (%) =Cx

3. (i) tan™* @iii)—ln\/xz +y2 +x+y+%= C

() 2x+y)+In@2x+y—-3)=x+C (i) (x+y—2)=c(x—1y)3

5
(iv)§(2x+y) +;ln(6x+3y+4) =x+C

(i) 322K (i) 79 minutes 6. Q= % + %e‘wt ; 1 = —48e710t

(1) 66860 (1) 14.92 years

Exercise 10.3 )

—y2
M) y*=5-+C  (iDy*-x*=C (Gii) y2 + 2x2 = C

. 1 1 2 2 .5 5
(lV)—§=—E+C (v)eY” = Ccos*x (vi)ys—x3=C

Review Exercise 10 )]

G b ) ¢ (i) a (iv) b v) a
vi) b (vi) b (vii) a

(i tan(“2) =y +c (i) tan™1 L = Inx + ¢



Answers

(iii)§ = In(cy) (iv) y = x cos~1(Cx)

W3(-F) + (e D) - F) +3(+ ) =0

v)ln@2x+y—-1D+x+2y)=c (vii) secy + tan— Cx
(vii) —e™ =e*+C
4, y = (2 +9x)e ¥

. ay 9 o ,
5. (1)a=—x—2 () y"—=2y"+2y=0
(i) y" =1+ (y")? i) x%y" +xy ' +y=0
6. v=2Vt+19;att = 20sec, v = 45 + 19
_ _y 1 sin 2x
7. 3y=4x+C 8. ey—z(x+ > )

Exercise 11 )
of
P)

)
x=9x2—6,—f=2y+2 (11)—f—2x+y 2—y=x—2y—2

1. (i) P

0 of _
(iii) Pl cos(x +y), ay cos(x +y)

0
(IV)_£=e cosy,—fz —¢*siny (V)———,—=

oy x2+y2' 0y  x2+y?
) v 2mrh OV mr?
' ar 3 '0h 3
3. (1) Homogeneous, degree = 0 (i1) Not a homogeneous function
(iii) Homogeneous, degree = 3 (iv) Homogeneous, degree = 0
(v) Not a homogeneous function (vi) Homogeneous, degree = 4
(vii) Not a homogeneous function (viii) Not a homogeneous function
0] ad
4. 1) xa£+y f_ 2f (11)xa];+ya§ 0
.. 0
(1i1) xa£+yay f (11)xa—£+ 6{/ 0

7. () > dif f(x%y + xy + xy?,x) ;> dif f(x%y + xy + xy%,y)
(i) > dif f(y + xcos(y),x); > dif f(y + xcos(y),y)

iy > diff (550) 5 > aif (575.)

Review Exercise 11 )

TP ) W (i) a (i) a Gv) d v d
vi) ¢ (vii) ¢ (vili) d (ix) ¢ x d




Answers

Yesf+g9,f—g fgand 5 are homogeneous functions.

Degree of f + g is 2, degree of f — g is 2, degree of f g is 4, degree of gis 0.

dy 0z _
xﬁ+y@—z

Exercise 12.1 )

(i) 1.6250 (ii) 2.0625 (iii)) —1.34375
(iv) 1.59375 (v) 0.61865 (vi) 0.39197
@) [> fsolve({3x*y? = 17,x%y — 5xy? — 2y = 1}, {x,y})
x = 3.155009739,y = 0.2391456167
(i) [> fsolve(polynomial) — 3.054084215,0.1112641576,2.942820058

(iii)  [> fsolve(polynomial) —0.3221853546
(iv)  [> fsolve(polynomial) —0.4533976515
Exercise 12.2 )
2.0896 2. —-1.6077 3. 1.8554 4. 0.3604
1.02986
Exercise 12.3 )
1.600612 2. 1.325200 3. 4.765517
1.0298665 (4 iterations) 5. 1.812497 (4 iterations)
0.619061 (4 iterations) 7. 0.391847 (4 iterations)
Exercise 12.4 )
(i) 6.448105 (if) 1469424 (iii) 0.995800 (iv) 0.841370
(i) 31.3333 (ii) 0.864723 (iii) 0.680676 (iv) 1.570796
(i) 2.797389759 (ii) 1.51075995 (iii) 8.777054 (iv) 0.292894
—-333
) Zog (ii) 14.9544232 (iii) 0.2938949
(iv) 0.88208098
Review Exercise 12 ]
G b (i) (i) d (v) ¢ v) ¢

a
(vi) d (vi)) a (viii)) ¢ (ix) ¢ (x) b
0.53125 3. 0.38156 4. 2.289
0.898914 6. 3341495.53
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