Digital Computer

Electronics

- An Introduction to
Microcomputers

Second Edition

Albert Paul Malvino, Ph.D.

Gregg Division
McGraw-Hill Book Company

New York Atlanta Dallas St. Louis San Francisco

Auckland Bogota Guatemala Hamburg Johannesburg
Lisbon London Madrid Mexico Montreal New Delhi
Panama Paris San Juan Sao Paulo Singapore Sydney

Tokyo Toronto

ALSO BY ALBERT P. MALVINO

Electronic Principles

Experiments for Electronic Principles‘
(with G. Johnson) ‘

Transistor Circuit Approximations

Experiments for Transistor Circuit
Approximations

Resistive and Reactive Circuits
Electronic Instrumentation Fundamentals

Digital Principles and Applications
(with D. Leach)

Sponsoring Editor: Paul Berk

Editing Supervisors: Tim Perrin and Larry Goldberg

Design and Art Supervisors: Nancy Axelrod and Meri Shardin
Production Supervisor: Priscilla Taguer

Text Designer: Ampersand Studio
Cover Designer: Ampersand Studio
Cover Illustrator: Jon Weiman
Technical Studio: Fine Line, Inc.

Library of Congress Cataloging in Publication Data

Malvino, Albert Paul.
Digital computer electronics.

Includes index.
'1. Electronic digital computers.
2. Microcomputers. 3. INTEL 8085 (Computer)

- L Title.

TK7888.3.M337 1982 621.3819'58 82-8952
ISBN 0-07-039901-8 AACR2

Digital Computer Electronics:
An Introduction to Microcomputers, Second Edition

Copyright © 1983, 1977 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright
Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored.in a data base or retricval system, without the
prior written permission of the publisher.

1234567890SEMSEM 898765432

ISBN 0-07-039901-8

To my wife, Joanna, who encourages me to write.
And to my daughters, Joanna, Antonia, Lucinda,
Patricia, and Miriam, who keep me young.

CONTENTS

PREFACE ix

CHAPTER 1. NUMBER SYSTEMS AND
CODES 1

1-1. Decimal Odometer 1-2. Binary Odometer

1-3. Number Codes 1-4. Why Binary Numbers Are
Used 1-5. Binary-to-Decimal Conversion

1-6. Microprocessors 1-7. Decimal-to-Binary
Conversion 1-8. Hexadecimal Numbers

1-9. Hexadecimal-Binary Conversions

1-10. Hexadecimal-to-Decimal Conversion

1-11. Decimal-to-Hexadecimal Conversion

1-12. BCD Numbers 1-13. The ASCII Code

CHAPTER 2. GATES 19

2-1. Inverters 2-2. OR Gates 2-3. AND Gates
2-4. Boolean Algebra

CHAPTER 3. MORE LOGIC GATES 32

3-1. NOR Gates 3-2. De Morgan’s First Theorem
3-3. NAND Gates 3-4. De Morgan’s Second Theorem
3-5. EXCLUSIVE-OR Gates 3-6. The Controlled
Inverter 3-7. EXCLUSIVE-NOR Gates

CHAPTER 4. TTL CIRCUITS 48

4-1, Digital Integrated Circuits - 4-2. 7400 Devices
4-3. TTL Characteristics 4-4. TTL Overview

4-5. AND-OR-INVERT Gates 4-6. Open-Collector Gates
4-7. Multiplexers

CHAPTER 5. BOOLEAN ALGEBRA AND
KARNAUGH MAPS 64

5-1. Boolean Relations 5-2. Sum-of-Products Method
5-3. Algebraic Simplification 5-4. Karnaugh Maps
5-5. Pairs. Quads, and Octets 5-6. Karnaugh
Simplifications 5-7. Don’t-Care Conditions

CHAPTER 6. ARITHMETIC-LOGIC ’
UNITS 79 :

6-1. Binary Addition 6-2. Binary Subtraction

6-3. Half Adders 6-4. Full Addefs 6-5. Binary
Adders 6-6. Signed Binary Numbers 6-7. 2’s
Complement 6-8. 2’s-Complement Adder-Subtracter

CHAPTER 7. FLIP-FLOPS 90
7-1. RS Latches 7-2. Level Clocking 7-3. D Latches

7-4. Edge-Triggered D Flip-Flops 7-5. Edge-Triggered
JK Flip-Flops 7-6. JK Master-Slave Flip-Flop

‘CHAPTER 8. REGISTERS AND

COUNTERS 106

8-1. Buffer Registers 8-2. Shift Registers

8-3. Controlled Shift Registers 8-4. Ripple Counters
8-5. Synchronous Counters 8-6. Ring Counters

8-7. Other Counters 8-8. Three-State Registers

8-9. Bus-Organized Computers

CHAPTER 9. MEMORIES 130

9-1. ROMs 9-2. PROMs and EPROMs 9-3. RAMs
9-4. A Small TTL Memory 9-5. Hexadecimal
Addresses

CHAPTER 10. SAP-1 140

10-1. Architecture 10-2. Instruction Set

10-3. Programming SAP-1 10-4. Fetch Cycle

10-5. Execution Cycle 10-6. The SAP-1
Microprogram 10-7. The SAP-1 Schematic Diagram
10-8. Microprogramming

CHAPTER 11. SAP-2 173

11-1. Bidirectional Registers 11-2. Architecture
11-3. Memory-Reference Instructions 11-4. Register
Instructions 11-5. Jump and Call Instructions

11-6. Logic Instructions 11-7. Other Instructions
11-8. SAP-2 Summary

CHAPTER 12. SAP-3 195

:2-1. Programming Model 12-2. MOV and MVI
12-2. Arithmetic Instructions 12-4. Increments,
Decrements, and Rotates 12-5. Logic Instructions
12-6. Arithmetic and Logic Immediates 12-7. Jump
Instructions 12-8. Extended-Register Instructions
12-9. Indirect Instructions 12-10. Stack Instructions

CHAPTER 13. THE 8085 213

13-2. Pinout Diagram

13.3. Driving the X, and X, Inputs 13-4. New
Instructions 13-5. The DAA Instruction 13-6. The
Minimum System 13-7. Fetching and Executing
Instructions 13-8. 8085 Timing Diagrams

13-1. Block Diagram

CHAPTER 14. 1/0 OPERATIONS 239

14-1. Programmed /O 14-2. Restart Instructions

14-3. Interrupts 14-4. Interrupt Circuits

14-5. Interrupt Instructions 14-6. Serial Input and Serial
‘Output 14-7, Extending the Interrupt System

14-8. Direct-Memory Access

CHAPTER 15. SUPPORT CHIPS 254
15-1. The 8156 15-2. Port Numbers for the 8156

15-3. Programming the /O Ports 15-4. Programming
the Timer ~ 15-5. The 8355 15-6. Fully Decoded

viil Contents

~ Software

15-7. Creating and Addressing New
15-8. Expanding the Memory with Static
15-9. Dynamic RAMs

Minimum System
1/0 Ports
RAMs

CHAPTER 16. THE ANALOG
INTERFACE 281

16-1. Op-Amp Basics 16-2. A Basic D/A Converter
16-3. The Ladder Method 16-4. The DAC0808
16-5. The Counter Method of A/D Conversion

16-6. Successive Approximation 16-7. The
ADCO0801 16-8. Successive Approximation with
16-9. Voltage-Controlled Oscillator

16-10. Sample-and-Hold Circuits '

5

APPENDIXES 308

1. Binary-Hexadecimal-Decimal Equivalents 2. 7400
Series TTL 3. Pinouts and Function Tables 4. SAP-1
Parts List 5. 8085 Instructions 6. Memory Locations:
Powers of 2 7. Memory Locations: 16K and 8K
Intervals 8. Memory Locations: 4K Intervals

9. Memory Locations: 2K Intervals 10. Memory
Locations: 1K Intervals

ANSWERS TO ODD-NUMBERED
PROBLEMS 325

INDEX 331

PREFACE

Textbooks on microprocessors and microcomputers are very
often hard to understand. Sometimes it seems as if something
important had been left out of the discussion; this book is
my attempt at putting everything back in.

The early chapters of Digital Computer Electronics,
Second Edition, cover digital theory and devices. In later
chapters this information is applied to microprocessors, and
finally, you will learn about the construction and operation
of microcomputer systems. The only prerequisite to using
this textbook is an understanding of diodes and transistors.

I have featured the 8085 microprocessor (an enhanced
version of the 8080) because this 8-bit device is an ideal
subject of study for a fundamental microcomputer textbook.
Once you understand the 8085, you pass a major hurdle
and things begin to make sense in the microcomputer world.

To help you master -the 8085, you will first study
an educational computer called SAP (simple-as-possible).
This computer has three generations: SAP-1, SAP-2, and
SAP-3. SAP-1 is a bare-bones computer built with TTL
chips. You will see every wire, every signal, and every
circuit used in this elementary computer. This will reinforce
your grasp of digital electronics and prepare you to under-
stand the more advanced computer concepts in SAP-2 and
SAP-3. Many of the operational details of the 8080 and

8085 microprocessors are covered in SAP-2 and SAP-3,

After studying these you will have learned almost the entire
8080/8085 instruction set.

The later chapters discuss advanced microcomputer topics
such as handshaking, interrupts, memory shadows, and
D/A and A/D conversion. When finished with this -book,
you will have a deep and solid understanding of microcom-
puter basics. With that kind of foundation you will find it
relatively easy to branch out to systems that use other 8-
bit, as well as 16-bit, microprocessors.

A correlated laboratory manual. Experiments for Digital
Computer Electronics by Michael A. Miller, is available
for use with this textbook. Early experiments cover the
basics of digital electronics: gates, adders, flip-flops, and
more. Later experiments are about program counters, in-
struction decoders, and accumulators. In the final experi-
ments you assemble and program a SAP-1 computer.

During the preparation of this textbook, many people
made valuable suggestions. I want to thank Charles Counts
of Intel Corporation, Michael A. Miller of the DeVry
Institute of Technology, William H. Murray of Broome
Community College, Richard Raines of Shasta College.
Michael Slater of Logical Services Incorporated, and the
staff of the Sylvania Techical School.

Albert Paul Malvino

A man of true science uses but few hard words,

and those only when none other will answer his purpose;

whereas the smatterer in science thinks that

by mouthing hard words he understands hard things.
Herman Melville

Digital Computer
Electronics

Number

Systems

and Qdes

Modern computers don’t work with decimal numbers.
Instead, they process binary numbers, groups of Os and Is.
Why binary numbers? Because electronic devices are most
reliable when designed for two-state (binary) operation.
This chapter discusses binary numbers and other concepts
needed to understand computer operation.

1-1 DECIMAL ODOMETER

René Descartes (1596-1650) said that the way to learn a
new subject is to go from the known to the unknown, from
the.simple to the complex. Let’s try it.

The Known

Everyor: hap seen an odometer (miles indicator) in action.
When a car is new, its odometer starts with

00000

After | mile the reading becomes
00001

Successive miles produce 00002, 00003, and so on, up to
00009

A familiar thing happens at the end of the tenth mile.

When the units wheel turns from 9 back to 0, a tab on this

wheel forces the tens wheel to advance by 1. This is why
the numbers change to

00010

Reset-and-Carry

The units wheel has reset to 0 and sent a carry to the tens
wheel. Let’s call this familiar action reset-and-carry.

The other wheels also reset and carry. After 999 miles
the odometer shows

00999

What does the next mile do? The units wheel resets and
carries, the tens wheel resets and carries, the hundreds
wheel resets and carries, and the thousands wheel advances
by 1, to get

01000

Digits and Strings

The numbers on each odometer wheel are called digirs.
The decimal number system uses ten digits, O through 9.
In a decimal odometer, each time the units wheel runs out
of digits, it resets to O and sends a carry to the tens wheel.
When the tens wheel runs out of digits, it resets to 0 and
sends a carry to the hundreds wheel. And so on with the -
remaining wheels. ‘

One more point. A string is a group of characters (either
letters or digits) written one after another. For instance,
734 is a string of 7, 3, and 4. Similarly, 2C8A is a string
of 2, C, 8, and A.

1-2 BINARY ODOMETER

Binary means two. The binary number system uses only
two digits, 0 and 1. All other digits (2 through 9) are
thrown away. In other words, binary numbers are strings
of Os and Is. :

An Unusual Odometer

Visualize an odometer whose wheels have only two digits,
0 and 1. When each wheel turns, it displays O, then 1, then

1

back to 0, and the cycle repeats. Because each wheel has
only two digits, we call this device a binary odometer.
In a car a binary odometer starts with

0000 (zero)
After 1 mile, it indicates
0001 (one)

The next mile forces the units wheel to reset and carry; so
the numbers change to

0010 (two)

The third mile results in

0011 (three)

What happens after 4 miles? The units wheel resets and
carries, the second wheel resets and carries, and the third
wheel advances by 1. This gives

0100 (four)
Successive miles produce

0101 (five)
0110 (six)
. 0111 (seven)
After 8 miles, the units wheel resets and carries, the
second wheel resets and carries, the third wheel resets and
carries, and the fourth wheel advances by 1. The result is

- 1000 (eight)

The ninth mile gives

1001 (nine)
and the tenth mile produces
1010 (ten)

(Try working out a few more readings on your own.)

You should have the idea by now. Each mile advances
the units wheel by 1. Whenever the units wheel runs out
of digits, it resets and carries. Whenever the second wheel
runs out of digits, it resets and carries. And so for the other
wheels.

Binary Numbers
A binary odometer displays binary numbers, strings of Os

and 1s. The number 0001 stands for 1, 0010 “or 2, 0011

2 Digital Computer Electronics

for 3, and so forth. Binary numbers are long when large
amounts are involved. For instance, 101010 represents
decimal 42. As another example, 111100001111 stands for
decimal 3,855.

Computer circuits are like binary odometers; they count
and work with binary numbers. Therefore, you have to

. learn to count with binary numbers, to convert them to

decimal numbers, and to do binary arithmetic. Then you
will be ready to understand how computers operate.

A final point. When a decimal odometer shows 0036,
we can drop the leading Os and read the number as 36.
Similarly, when a binary odometer indicates 0011, we can
drop the leading Os and read the number as 11. With the
leading Os omitted, thc binary numbers are 0, 1, 10, 11,
100, 101, and so on. To avoid confusion with decimal
numbers, read the binary numbers like this: zero, one, one-
Z€1o, one-one, One-zero-zero, one-zero-one, etc.

1-3 NUMBER CODES

People used to count with pebbles. The numbers 1,2, 3
looked like @, @@, @@®. Larger numbers were worse:
seven appeared as 000 000©.

Codes

From the earliest times, people have been creating codes
that allow us to think, calculate, and communicate. The
decimal numbers are an example of a code (see Table
1-1). It’s an old idea now, but at the time it was as
revolutionary; 1 stands for @, 2 for @@, 3 for 00@®,
and so forth.

Table 1-1 also shows the binary code. 1 stands for @, 10
for @@, 11 for @@@®, and so on. A binary number and a
decimal number are equivalent if each represents the same
amount of pebbles. Binary 10 and decimal 2 are équivalent
because each represents @@. Binary 101 and decimal 5 are
equivalent because each stands for 0 @ @@ ®

TABLE 1-1. NUMBER CODES

Decimal Pebbles Binary
0 None 0
1 o 1
2 (1) 10
3 000 11
4 0000 100
5 00000 101
6 000000 - 110
7 0000000 1
8 00000000 1000
9

000000000 1001

Equivalence is the common ground between us and
computers; it tells us when we're talking about the same
thing. If a computer comes up with a binary answer of 101,
equivalence means that the decimal answer is 5. As a start
to understanding computers, memorize the binary-decimal
equivalences of Table 1-1.

EXAMPLE 1-1

Figure 1-la shows four light-emitting diodes (LEDs). A
dark circle means that the LED is off: a light circle means
it’s on. To read the display. use this code:

00O ©O00O0

(a) (b)
Fig. 1-1 LED display of binary numbers.

LED Binary

Off 0
On 1

What binary number does Fig. 1-la indicate? Fig. [-1h?

SOLUTION

Figure 1-1a shows off-off-on-on. This stands for binary
0011, equivalent to decimal 3.

Figure 1-1b is off-on-off-on, decoded as binary 0101 and
equivalent to decimal 5.

EXAMPLE 1-2

A binary odometer has four wheels. What are the successive
binary numbers?

SOLUTION

As previously discussed, the first eight binary numbers are
0000, 0001, 0010, 0011, O100. 0101. 0110, and O111. On
the next count, the three wheels on the right reset and carry:
the fourth wheel advances by one. So the next eight numbers
are 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111.
The final reading of 1111 is equivalent to decimal 15. The
next mile resets all wheels to 0. and the cycle repeats.
Being able to count in binary from 0000 to 1111 is
essential for understanding the operation of computers.

TABLE 1-2. BINARY-TO-DECIMAL

EQUIVALENCES :
Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1ot
6 0110 14 : 1110
7 orir 15 1111

Therefore, you should memorize the equivalences of Table
1-2. ‘

1-4 WHY BINARY NUMBERS
ARE USED

The word *‘computer’” is misleading because it suggests a
machine that can solve only numerical problems. But a
computer is more than an automatic adding machine. It can
play games, translate languages, draw pictures,-and-so on
To suggest this broad range of application, a computer is
often referred to as a dara processor.

Program and Data

Data means names, numbers, facts, anything needed to
work out a problem. Data goes into a computer. where it
is processed or manipulated to get new information. Before
it goes into a computer, however, the data must be coded
in binary form. The reason was given earlier: a computer’s
circuits can respond only to binary numbers.

Besides the data, someone has to work out a program,
a list of instructions telling the computer what to do. These
instructions spell out each and every step in the data
processing. Like the data, the program must be coded in
binary form before it goes into the computer.

So the two things we must input to a computer are the -
program and the data. These are stored inside the computer
before the processing begins. Once the computer run starts,
each instruction is executed and the data is processed.

Hardware and Software

The electronic, magnetic, and mechanical devices of a
computer are known as hardware. Programs are called
software. Without software, a computer is a pile of *‘dumb”’
metal.

Chapter 1 Number Systems and Codes 3

An analogy may help. A phonograph is like hardware
and records are like software. The phonograph is useless
without records. Furthermore, the music you get depends
on the record you play. A similar idea applies to computers.
A computer is the hardware and programs are the software.

The computer is useless without programs. The program-

stored in the computer determines what the computer will
do; change the program and the computer processes the
data in a different way.

Transistors

Computers use integrated circuits (1Cs) with thousands of
transistors, either bipolar or MOS. The parameters (B,..
Ico, &m» €tc.) can vary more than 50 percent with temperature
change and from one transistor to the next. Yet these
computer ICs work remarkably well despite the transistor
variations. How is it possible?

The answer is rwo-state design, using only two points
on the load line of each transistor. For instance. the common
two-state design is the cutoff-saturation approach: each
transistor is forced to operate at either cutoff or saturation.
When a transistor is cut oft or saturated, parameter variations
have almost no eftect. Because of this. it's possible to
design reliable two-state circuits that are almost independent
of temperature change and transistor variations.

Transistor Register

Here’s an example of two-state design. Figure [-2 shows
a transistor register. (A register is a string of devices that
store data.) The transistors on the left are cut off because
the input base voltages are O V. The dark shading symbolizes

the cutoff condition. The two transistors on the right have

base drives of 5 V.

The transistors operate at either saturation or cutoff. A
base voltage of 0 V forces each transistor to cut off. while
a base voltage of 5 V drives it into saturation. Because of
this two-state action. each transistor stays in a given state
until the base voltage switches it to the opposite state.

Another Code

Two-state operation is universal in digital electronics. By
deliberate design. all input and output voltages are either
low or high. Here’s how binary numbers come in: low
voltage represents binary 0, and high voltage stands for
binary 1. In other words. we use this code:

Voltage Binary
Low 0
High 1

For instance. the base.voltages of Fig. 1-2 are low-low-
high-high. or binary 001 1. The collector voltages are high-
high-low-low. or binary 1100. By changing the base voltages
we can store any binary number from 0000.to 1111 (decimal
0 to 15).

Bit .

Bit is an abbreviation for binary digit. A binary number
like 1100 has 4 bits; 110011 has 6 bits: and 11001100 has
8 bits. Figure 1-2 is a 4-bit register. To store larger binary
numbers, it needs more transistors. Add two transistors and
you get a 6-bit register. With four more transistors, you'd
have an 8-bit register.

k-4
Nonsaturated Circuits

Don't get the idea that all two-state circuits switch between
cutoff and saturation. When a bipolar transistor is heavily
saturated. extra carriers are stored in the base region. If the
base voltage suddenly switches from high to low. the
transistor cannot come out of saturation until these extra
carriers have a chance to leave the base region. The time
it takes for these carriers to leave is called the saturation
delay timie 1,. Typically. t, is in nanoseconds.

In most applications the saturation delay time is too short
to matter. But some applications require the fastest possible

1kQ

+5V

10k

av
Fig. 1-2 Transistor register:

4 Digital Computer Electronics

10k

+5V

* 0 +5V
1k2 1k
Y ov
(Approx.) (Approx.)

+5V

switching time. To get this maximum speed, designers have
come up with circuits that switch from cutoff (or near
cutoff) to a higher point on the load line (but short of
saturation). These nonsaturated circuits rely on clamping
diodes or heavy negative feedback to overcome transistor
variations. ‘
Remember this: whether saturated or nonsaturated circuits
are used, the transistors switch between distinct points on
the load line. This means that all input and output voltages
are easily recognized as low or high, binary O or binary 1.

jofofo)28

/ 1 o /
fa)
b)
Fig. 1-3 Core register.

Magnetic Cores

In some digital computers, magnetic cores store binary
data. Figure 1-3a shows a 4-bit core register. With the
right-hand rule, you can see that conventional current into
a wire produces a clockwise flux; reversing the current
gives a counterclockwise flux. (The same result is obtained
if electron-flow is assumed and the left-hand rule is used.)

The cores have rectangular hysteresis loops; this means

that flux remains in.a core even though the magnetizing

current is removed (see Fig. 1-3b). This is why a core
register can store binary data indefinitely. For instance,
~ let’s use the following code:

Flux Binary

Counterclockwise 0
Clockwise 1

Then, the core register of Fig. 1-3b stores binary 1001,
equivalent to decimal 9. By changing the magnetizing
currents in Fig. 1-3a we can change the stored data.

To store larger binary numbers, add more cores. Two
cores added to Fig. 1-3a result in a 6-bit register; four more
cores give an 8-bit register. '

The memory is one of the main parts of a computer.
Some memories contain thousands of core registers. These
registers store the program and data needed to run the
computer. ‘

Other Two-State Examples

The simplest example of a two-state device is the on-off
switch. When this switch is closed, it represents binary 1;
when it’s open, it stands for binary 0. o

Punched cards are another example of the two-state
concept. A hole in a card stands for binary 1, the absence
of a hole for binary 0. Using a prearranged code, a card-
punch machine with a keyboard can produce a stack of
cards containing the program and data needed to run a
computer.

"Magnetic tape can also store binary numbers. Tape
recorders magnetize some points on the tape (binary 1);
while leaving other points unmagnetized (binary 0). By a
prearranged code, a row of points represents either a coded
instruction or data. In this way, a reel of tape can store
thousands of binary instructions and data for later use in a
computer.

Even the lights on the control panel of a large computer
are binary; a light that’s on stands for binary 1, and one
that’s off stands for binary 0. In a 16-bit computer, for
instance, a row of 16 lights allows the operator to see the.
binary contents in different computer registers. The operator
can then monitor the overall operation and, when necessary,
troubleshoot.

In summary, switches, transistors, cores, cards, tape,
lights, and almost all other devices used with computers
are based on two-state operation. This is why we are forced
to use binary numbers when analyzing computer action.

EXAMPLE 1-3

Figure 1-4 shows a strip of magnetic tape. The black circles
are magnetized points and the white circles unmagnetized
points. What binary number does each horizontal row
represent?

"
OO0OOOCeeee
®e000O0Cee®O
[ol N NoN N N
OOceeoOcCOe®
00000 OQGO
OeOOO@®@OO0CE®
[ool N NoN]
m

Fig. 1-4 Binary numbers on magnetic tape.

SOLUTION

The tape stores these binary numbers:

Row 1 00001111 Row 5 11100110
Row 2 10000110 Row 6 01001001
Row 3 10110111 Row 7 11001101
Row 4 00110001

Chapter 1 Number Systenis and Codes 5

(Note: these binary numbers may represent either coded
instructions or data.)

A string of 8 bits is called a byre. In this example. the
magnetic tape stores 7 bytes. The first byte (row 1) is
00001111. The second byte (row 2) is l()OOOl 10. The third
byte is 10110111. And so on.

A byte is the basic unit of data in computers. Most
computers process data in strings of 8 bits or some multiple
(16, 24, 32, and so on). Likewise, the memory stores data
in strings of 8 bits or some multiple of 8 bits.

1-5 BINARY-TO-DECIMAL
CONVERSION

You already know how. to count to 15 using binary numbers.
The next thing to learn is how to convert larger binary
numbers to their decimal equivalents.

5 7 o | 3 4 1 1 0 0, | 1
10* 10° 102 10" 100 24 283 22 v 0
fal)

Fig. 1-5 (a) Decimal weights: (b) binary weights.

Decimal Weights

The decimal number system is an example of positional
notation: each digit position has a weight or value. With
decimal numbers the weights are units. tens. hundreds.
thousands, and so on. The sum of all digits multiplied by
their weights gives the total amount being represented.
For instance, Fig. 1-5q¢ illustrates a decimal odometer.
Below each digit is its weight. The digit on the right has a
weight of 10" (units). the second digit has a weight of 10!
(tens). the third digit a weight of 10 (hundreds). and so
forth. The sum of all units multiplied by their weights is

(5 x 10 4+ (7 x 10%) + (0 x 10% + (3 x 10"
+ (4 X 10" = 50.000 + 7000+ 0 + 30 + 4
= 57.034

Binary Weights

Positional notation is also used with binary numbers because
each digit position has a weight. Since only two digits are
used, the weights are powers of 2 instead of 10. As shown
_in the binary odometer of Fig. 1-5b. these weights are 20
(units). 2! (twos). 2° (fours), 2% (eights). and 2+ (sixteens).
If longer binary numbers are involved. the weights continue
in ascending powers of 2.

The decimal equivalent of a binary number equals the
sum of all binary digits multiplied by their weights. For
instance. the binary reading of Fig. [-5b has a decimal
equivalent of

6 Digital Computer Electronics

(I X2 + (1 X2 + (0 X 2) + () x 29

+ (I xX2=16+8+0+0+1=25

Binary 11001 is therefore equivalent to decimal 25.
As another example. the byte 11001100 converts to
decimal as follows:

(1 X 27y + (1 X 20 4+ (0 X 25) + (0 x 2%
+ (I X2 + (1 X 2) 4+ (0 x 2 + (0 X 29
=128+64+0+0+8+4+0+0=204

So, binary 11001100 is equivalent to decimal 204.

Fast and Easy Conversion

Here’s a streamlined way to convert a binary number to its
decimal equivalent:

1. Write the binary number,

2. Write the weights | 2, 4 8,
digits.

3. Cross out any weight under a 0.

4. Add the remaining weights.

. under the binary

For instance. binary 1101 converts to decimal as follows:

1. 1 | 0 1 (Write binary number) .
2. 8 4 2 1 (Write weights)

3.8 4 0 1 (Cross out weights)

4. 8+4+0+1=13 (Add weights)

You can compress the steps even further: -

I 1 01 (Steph
8 4 2 1—13 (Steps 2 to 4)

As another example. here’s the conversion of binary
1110101 in compressed form:

1
11— 117

I 1 1 010
64 32 16 § 4 2

Base or Radix

The base or radix of a number system equals the number
of digits it has. Decimal numbers have a base of 10 because
digits O through 9 are used. Binary numbers have a base
of 2 because only the digits 0 and 1 are used. (lm terms of
an odometer, the base or radix is the number of dlglfs on
each wheel.) S

A subscript attached to a number indicates the base of
the number. 100.. means binary 100. On the other hand,
100,, stands for decimal 100. Subscripts help clarify equa-
tions where binary and decimal numbers are mixed. For
instance, the last two examples of binary-to-decimal con-
version can be written like this:

11101015 = 1174

In this book we w1ll use subscnpts when necessary for
clarity.

1-6 MICROPROCESSORS

What is inside a computer? What is a microprocessor? What
is a microcomputer?

Computer

The five main sections of a computer are input, memory,
arithmetic and logic, control, and output. Here is a brief
description of each.

Input This consists of all the circuits needed to get
programs and data into the computer. In some computers
the input section includes a typewriter keyboard that converts
letters and numbers into strings of binary data..

Memory This stores the program and data before the
computer run begins. It also can store partial solutions
during a computer run, similar to the way we use a scratchpad
while working out a problem.

Control This is the computer’s center of gravity, analo-
gous to the conscious part of the mind. The control section
directs the operation of all other sections. Like the conductor
of an orchestra, it tells the other ‘sections what to do and
when to do it.

Arithmetic and logic This is the number-crunching sec-
tion of the machine. It can also make logical decisions.

With control telling it what to do and with memory feeding

it data, the arithmetic-logic unit (ALU) grinds out answers
to number and logic problems.

Output This passes answers and other processed data to
the outside world. The output section usually includes a
video display to allow the user to see the processed data.

Microprocessor

The control section and the ALU are often combined.
physically into a single unit called the central processing

unit (CPU). Furthermore, it’s convenient to combine the -

input and output sections into a single unit called the input-
output (UO) unit. In earlier computers, the CPU, memory,
and I/O unit filled an entire room.

With the advent of integrated circuits, the CPU memory,
and /O unit have shrunk dramatically. Nowadays the CPU
can be fabricated on a single semiconductor chip called a
microprocessor. In other words, a microprocessor is nothing
more than a CPU on a chip.

Likewise, the 1/O circuits and memory can be fabricated

on chips. In this way, the computer circuits that once filled
a room now fit on a few chips. - '

Microcomputer

As the name implies, a microcomputer is a small computer.
More specifically, a microcomputer is a computer that uses
a microprocessor for its CPU. The typical microcomputer

_ has three kinds of chips: microprocessor (usually one chip),

memory (several chips), and I/O (one or more chips).

If a small memory is acceptable, a manufacturer can
fabricate all computer circuits on a single chip. For instance, .
the 8048 from Intel Corporation is a one-chip microcomputer
with an 8-bit CPU, 1,088 bytes of memory, and 27 1/O
lines. |

Powers of 2

Microprocessor design started with 4-bit devices, then

" evolved to 8- and 16-bit devices. In our later discussions

of microprocessors, powers of 2 keep coming up because
of the binary nature of computers. For this reason, you
should study Table 1-3. It lists the powers of 2 encountered
in microcomputer analysis. As shown, the abbreviation K
stands for 1,024 (approximately 1,000).T Therefore, 1K
means 1,024, 2K stands for 2,048, 4K for 4,096, and so
on.

Some personal microcomputers have 64K memories that
can store.up to 65,536 bytes.

TABLE 1-3. POWERS OF 2

Powers of 2 Decimal equivalent Abbreviation
20 1
2! 2
22 4
2 8
2¢ 16
25 32
26 64
27 : 128
28 256
20 512
210 1,024 1K
2u 2,048 2K
212 4,096 4K
213 8,192 8K
214 " 16,384 . 16K
o2 32,768 32K
-2 65,536 64K

T The abbreviations 1K, 2K, and so on, became established
before K- for kilo- was in common use. Retaining the capital K -
serves as a useful reminder that K only approximates 1,000.

Chapter 1 Number Systems and Codes ‘4

1-7 DECIMAL-TO-BINARY
CONVERSION

Next, you need to know how to convert from decimal to
binary. After you know how it’s done, you will be able to
understand how circuits can be built.to convert decimal
numbers into binary numbers.

Double-Dabble

Double-dabble is a way of converting any decimal number
~to its binary equivalent. It requires successive division by
2, writing down each quotient and its remainder. The
remainders are the binary equivalent of the decimal number.
The only way to understand the method is to go through
an example, step by step.
Here is how to convert decimal 13 to its bmary equivalent.
Step 1. Divide 13 by 2, writing your work like this:

6 1 — (first remainder)
2)13

The quotient is 6. with a remainder of 1.
Step 2. Divide 6 by 2 to get

3 0 — (second remainder) -
2)6 1
2)13

This division gives 3 with a remainder of 0.
Step 3. Again you divide by 2:

1 1 — (third remainder)
2)3 0
2)6 1
2)13 |

Here you get a quotient of 1 and a remainder of 1.
Step 4. One more division by 2 gives

Read
down
0 1

271
2)3 0
2)6 1
2)13

—

8 Digital Computer Electronics

In this final division, 2 does not divide into 1; therefore,
the quotient is O with a remainder of 1.

Whenever you arrive at a quotient of 0 with a remainder
of 1, the conversion is finished. The remainders when read
downward give the binary equivalent. In. this example,
binary 1101 is equivalent to decimal 13.

Double-dabble works with any decimal number. Pro-
gressively divide by 2, writing each quotient and its
remainder. When you reach a quotient of 0 and a remainder
of 1, you are finished; the remainders read downward are
the binary equivalent of the decimal number.

Streamlined Double-Dabble

There’s no need to keep writing down 2 before each division
because you're always dividing by 2. From now on, here’s
how to show the conversion of decimal 13 to its binary
equivalent:

P = s e

EXAMPLE 1-4

Convert decimal 23 to binary.

SOLUTION

The first step in the conversion looks like this:

11 1

2)23

After all divisions, the finished work looks like this:

= e M [R

2)23

This says that binary 10111 is equivalent to decimal 23.

1-8 HEXADECIMAL NUMBERS

Hexadecimal numbers are extensively used in micropro-
cessor work. To begin with, they are much shorter than
binary numbers. This makes them easy to write and
remember. Furthermore, you can mentally convert them to
binary form whenever necessary.

An Unusual Odometer

Hexadecimal means 16. The hexadecimal number system
has a base or radix of 16. This means that it uses 16 digits
to represent all numbers. The digits are O through 9, and
A through F as follows: 0, 1, 2,3,4,5,6,7,8,9, A, B,
C, D, E, and F. Hexadecimal numbers are strings of these
digits like 8AS, 4CF7, and ECS58.

An easy way to understand hexadecimal numbers is to
visualize a hexadecimal odometer. Each wheel has 16 digits
on its circumference. As it turns, it displays O through 9
as before. But then, instead of resetting, it goes on to
display A, B, C, D, E, and F.

The idea of reset and carry applies to a hexadecimal
odometer. When a wheel turns from F back to 0, it forces
the next higher wheel to advance by 1. In other words,
when a wheel runs out of hexadecimal digits, it resets and
carries.

If used in a car, a hexadecimal odometer would count
as follows. When the car is new, the odometer shows all
Os:

0000 (zero)

The next 9 miles produce readings of

0001 (one) .
0002 (two)
0003 (three)
0004 (four)
0005 (five)
0006 (six)

0007 (seven)
0008 (eight)
0009 (nine)

The next 6 miles give

000A (ten)
000B (eleven)
000C (twelve)
000D (thirteen)
000E = (fourteen)
000F (fifteen)

At this point the least significant wheel has run out of
digits. Therefore, the next mile forces a reset-and-carry to
get ‘

0010 (sixteen)

The next 15 miles produce these readings: 0011, 0012,
0013, 0014, 0015, 0016, 0017, 0018. 0019, 001A, 001B, -
001C, 001D, OOlE, and OOIF. Once again, the least
significant wheel has run out of digits. So, the next mile .
results in a reset-and-carry:

0020 (thirty-two)
Subsequent readings are 0021, 0022, 0023, 0024, 0025,
0026, 0027, 0028, 0029, 002A, 002B, 002C, 002D, 002E,
and 002F.
You should have, the idea by now. Each mile advances
the least significant wheel by 1. When this wheel runs out

of hexadecimal digits, it resets and carries. And so on for
the other wheels. For instance, if the odometer reading is

835F

the next reading is 8360. As another example, given
SFFF

the next hexadecimal number is 6000.

Equivalences

Table 1-4 shows the equivalences between hexadecimal,
binary, and decimal digits. Memorize this table. It’s essential
that you be able to convert instantly from one system to
another.

TABLE 1-4. EQUIVALENCES

Hexadecimal Binary Decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 I8
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Chapter 1 Number Systems and Codes 9

1-9 HEXADECIMAL-BINARY
CONVERSIONS

After you know the equivalences of Table 1-4, you can
mentally convert any hexadecimal string to its binary
equivalent and vice versa.

Hexadecimal to Binary

To convert a hexadecimal number to a binary number,
convert each hexadecimal digit to its 4-bit equivalent, using
Table 1-4. For instance, here’s how 9AF converts to binary:

9 A F
Lol
1001 1010 1111

As another example, C5E2 converts like this:
C -5 E 2

ool
1100 0101 (110 0010

Incidentally, for easy reading it’s common practice to leave

a space between the 4-bit strings. For example, instead of
writing

C5E2,, = 1100010111100010,
we can write

CSE2,, =-1100 0101 1110 0010,

Binary té Hexadecimal

To convert in the opposite direction. from binary to
hexadecimal, you again use Table I-4. Here are two
examples - The byte 1000 1100 converts as follows:

1000 1100
Lo
8 C

The 16-bit number 1110 1000 1101 0110 converts like this:

1110 1000 1101 0110

S T S
E 8 D 6

In both these conversions, we start with a binary number
and wind up with the equivalent hexadecimal number.

10 Digital Computer Electronics

EXAMPLE 1-5

Solve the following equation for x:

Xie = 1111 1111 1111 1111,

SOLUTION

This is the same as asking for the hexadecimal equivalent
of binary 1111 1111 1111 1111. Since hexadecimal F is
equivalent to 1111, x = FFFF. Therefore,

FFFF,, = 1111 1111 1111 1111,

EXAMPLE 1-6

As mentioned earlier, the memory contains thousands of
registers (core or semiconductor) that store the program and
data needed for a computer run. These memory registers
are known as memory locations. A typical microcomputer
may have up to 65,536 memory locations. each storing 1
byte.

Suppose the first 16 memory locations contain these
bytes:

0011 1100
1100 1101
0101 0111
0010 1000
1111 0001
0010 1010
1101 0100
0100 0000
01110111
1100 0011
1000 0100
0010 1000
0010 0001
0011 1010
0011 1110
0001 1111

Convert these bytes to their hexadecimal equivalents.

SOLUTION

Here are the stored bytes and their hexadecimal equivatents:

Memory Contents Hex Equivalents

0011 1100 3C
1100 1101 CD
0101 0111 57
0010 1000 28
1111 0001 Fl

0010 1010 2A
1101 0100 . D4
0100 0000 40
0111 0111 77
1100 0011 C3
1000 0100 84
0010 1000 28
0010 0001 ' 21
0011 1010 3A
0011 1110 3E
0001 1111 IF

What’s the point of this example? When talking about
the contents of a computer memory, we can use either
binary numbers or hexadecimal numbers. For instance, we
can say that the first memory location contains 0011 1100,
or we can say that it contains 3C. Either string gives the

same information. But notice how much easier it is to say,

write, and think 3C than it is to say, write, and think 0011
1100. In other words, hexadecimal strings are much easier
for people to work with. This is why everybody working
with microprocessors uses hexadecimal notation to represent
particular bytes.

What we have just done is known as chunking, replacing
longer strings of data with shorter ones. At the first memory
location we chunk the digits 0011 1100 into 3C. At the
second memory location we chunk the digits 1100 1101
into CD, and so on.

EXAMPLE 1-7

The typical microcomputer has a typewriter keyboard that
allows you to enter programs and data; a video screen
displays answers and other information.

Suppose the video screen of a microcomputer displays
the hexadecimal contents of the first eight memory locations
as

A7
28
C3
19
5A
4D
2C
F8

What are the binary contents of the memory locations?

SOLUTION

Convert from hexadecimal to binary to get

1010 0111
0010 1000

1100.0011
10001 1001
0101 1010
0100 1101
0010 1100
1111 1000

The first memory location stores the byte 1010 0111, the
second memory location stares the byte 0010 1000, and so
on.

This example emphasizes a widespread industrial prac-
tice. Microcomputers are programmed to display chunked
data, often hexadecimal. The user is expected to know
hexadecimal-binary conversions. In other words, acomputer
manufacturer assumes that you know that A7 represents
1010 0111, 28 stands for 0010 1000, and so on.

One more point. Notice that each memory location in
this example stores 1 byte. This is typical of first-generation
microcomputers because they use 8-bit microprocessors.

1-10 HEXADECIMAL-TO-DECIMAL
CONVERSION

You often need to convert a hexadecimal number to its
decimal equivalent. This section discusses methods for
doing it.

Hexadecimal to Binary to Decimal

One way to convert from hexadecimal to decimal is the
two-step method. of converting from hexadecimal to binary
and then from binary to decimal. For instance, here’s how
to convert hexadecimal 3C to its decimal equivalent.

Step 1. Convért 3C to its binary equivalent:

3 C -
! l
0011 1100

Step 2. Convert 0011 1100 to its decimal equivalent:

o 0 1 1 1 100
128 64 32 16 8 4 2 I—60

Therefore, decimal 60 is equivalent to hexadecimal 3C. As
an equation,

3C, = 0011 1100, = 60,,

Positional-Notation Method

Positional notation is also used with hexadecimal numbers
because each digit position has a weight. Since 16 digits
are used, the weights are the powers of 16. As shown in

Chapter 1 .Number Systems and Codes - 11

F 8 E 6

180 1682 16" 10
Fig. 1-6 Hexadecimal weights.

i

'

«

the hexadecimal odometer of Fig. 1-6, the weights are 16°,
16!, 16%, and 16 'If longer hexadecimal numbers are
involved, the. weights continue in ascending powers of 16.

The decimal equivalent of a hexadecimal string equals
- the sum of all hexadecimal digits multiplied by their weights.
(In processing hexadecimal digits A through F, use 10
through 15.) For instance, the hexadecimal reading of Fig.
1-6 has a decimal equivalent of

l

(F x 16% + (8 X 16%) + (E X 16") + (6 x 16°
= (15 x 16% + (8 x 16%) + (14 X 16') + (6 x 169
= 61,440 + 2,048 + 224 + 6
= 63,718

In other words,

F8E6,, = 63,718,

0000 ac] 0000]
0001 | CD

0002 57

0003 28

0004 F1

0005 2A

0006 D4

0007 | 40 16 65,536
0008 77 locations locations
0009 c3

000A 84

000B 28

000C 21

000D 3A

000E 3E

000F AF FFFF |

(a) b)

Fig. 1-7 (a) First 16 words in memory; (b) 64K memory.

Memory Locations and Addresses

As mentioned earlier, a microcomputer may have a 64K
memory, meaning 65,536 memory locations, each able to
store 1 byte. The different memory locations are identified
by hexadecimal numbers called addresses. For instance,
Fig. 1-7a shows the first 16 memory locations; their
addresses are from 0000 to OOOF.

The address of a memory location is different from its
stored contents, just as a house address is different from

12 Digital Computer Electronics

the people living in the house: Figure 1-7a emphasizes the
point. At address 0000 the stored contents are 3C (equivalent
to 0011 1100). At address 0001 the stored contents are CD,
at address 0002 the stored contents are 57, and so on.

Figure 1-7b shows how to visualize a 64K memory. The
first address is 0000, and the last is FFFF.

Table of Binary-Hexadecimal-Decimal
Equivalents

A 64K memory has 65,536 hexadecimal addresses from
0000 to FFFF. The equivalent binary addresses are from

0000 0000 0000 0000

to
1111 1111 1111 1111

The first 8 bits are called the upper byte (UB); the second
8 bits are the lower byte (LB). If you have to do a lot of
binary-hexadecimal-decimal conversions, use the table of
equivalents in Appendix 1, which shows all the values for
a 64K memory.

Appendix 1 has four headings: binary, hexadecimal, UB
decimal, and LB decimal. Given a 16-bit address, you
convert the upper byte to its ‘decimal equivalent (UB
decimal), th¢ lower byte to its decimal equivalent (LB
decimal), and then add the two decimal equivalents. For
instance, suppose you want to convert

1101 0111 1010 0010.

to its decimal equivalent. The upper byte is 1101 0111, or
hexadecimal D7; the lower byte is 1010 0010, or A2. Using
Appendix 1, find D7 and its UB decimal equivalent

D7 — 55,040
Next, find A2 and its LB decimal equivalent |
A2 — 162 |
Add the UB and LB decimal equivalents to get
55,040 + 162 = 55,202

This is the decimal equivalent of hexadecimal D7A2 or
binary 1101 0111 1010 0010. :

Once familiar with Appendix 1, you will find it enor-
mously helpful. It is faster, more accurate, and less tiring
than other methods. The only calculation required is adding
the UB and LB decimal, easily done mentally, with pencil
and paper, or if necessary, on a calculator. Furthermore, if
you are interested in converting only the lower byte, no
calculation is required, as shown in the next example.

EXAMPLE 1-8

Convert hexadecimal 7E to its decimal equivalent.-

SOLUTION

EXAMPLE 1-9

Convert decimal 141 to hexadecimal.

SOLUTION

When converting only a single byte, all you are dealing
with is the lower byte. With Appendix 1, look up 7E and
its LB decimal equivalent to get

7E — 126

In other words, Appendix 1 can be used to convert single
bytes to their decimal equivalents (LB decimal) or double
bytes to their decimal equivalents (UB decimal + LB
decimal).

1-11 DECIMAL-TO-HEXADECIMAL
CONVERSION

One way to perform decimal-to-hexadecimal conversion is
to go from decimal to binary then to hexadecimal. Another
way is hex-dabble. The idea is to divide successively by
16, writing down the remainders. (Hex-dabble is like double-
dabble except that 16 is used for the divisor instead of 2.)

Here’s an example of how to convert decimal 2,479 into
hexadecimal form. The first division is

154 1S F
16) 2,479
The next step is
9 10 A
) 154 15 F
16)2.479
The final step is
Read
down
0 9 9
Jo 10 A
) 154 15 F

16) 2.479

Notice how similar hex-dabble is to double-dabble. Also.
remainders greater than 9 have to be changed to hexadecimal
digits (10 becomes A 15 becomes F. etc.).

If you prefer. use Appendix 1 to look up the decimal-
hexadecimal equivalents. The next two examples show
how.

Whenever the decimal number is between 0 and 255, all
you have to ¢ is look up the decimal number and its
hexadecimal equivalent. With Appendix 1, you can see at
a glance that

8D <141

EXAMPLE 1-10

Convert decimal 36,020 to its hexadecimal equivalent.

SOLUTION

If the decimal number is between 256 and 65,535, you
need to proceed as follows. First, locate the largest UB
decimal that is less than 36,020. In Appendix 1, the largest
UB decimal is

UB decimal = 35,840
which has a hexadecimal equivalent of
8C « 35,840

This is the upper byte.
Next, subtract the UB decimal from the original decimal
number:

36,020 — 35,840 = 180
The difference 180 has a hexadecimal equivalent
B4 <« 180

This is the lower byte.

By combining the ‘upper and lower bytes, we get the
complete answer: 8CB4. This is the hexadecimal equivalent
of 36.020.

After a little practice, you will find Appendix 1 to be
one of the fastest methods of decimal-hexadecimal conver-
sion.

1-12 BCD NUMBERS

A nibble is a string of 4 bits. Binarv-coded-decimal (BCD)
numbers express each decimal digit as a nibble. For instance,
decimal 2.945 converts to a BCD number as follows:

Chapter 1 Number Systems and Codes 1 3

2 9 4 5
ol Ll
0010 1001 0100 0101

As you see, each decimal digit is coded as a nibble.
Here’s another example: 9,863, converts like this:

9 & 6 3

Lol
1001 1000 0110 0011

Therefore, 1001 1000 0110 0011 is.the BCD equivalent of
9,863 ;. '
. The reverse conversion is similar. For instance, 0010
1000 0111 0100 converts as follows: ’

0010 1000 0111 0100

S T A
2 8 1 4

Applications

BCD numbers are useful wherever decimal information is
transferred into or out of a digital system. The circuits
inside pocket calculators, for example, can process BCD
numbers because you enter decimal numbers through the
keyboard and see decimal answers on the LED or liquid-
crystal display. Other examples of BCD systems are elec-
tronic counters, digital voltmeters, and digital clocks; their
circuits can work with BCD numbers.

BCD' Computers

BCD numbers have limited value in computers. A few
early computers processed BCD numbers but were slower
and more complicated than binary computers. As previously
mentioned, a computer is more than a number cruncher
because it must handle names and other nonnumeric data.
In other words, a modern computer must be able to process
alphanumerics (alphabet letters, numbers, and other sym-
bols). This why modern computers have CPUs that process
binary numbers rather than BCD numbers.

Comparison of Number Systems

Table 1-5 shows the four number systems we have discussed.
Each number system uses strings of digits to represent
quantity. Above 9, equivalent strings appear different. For
instance, decimal -string 128, hexadecimal string 80, binary
string 1000 0000, and BCD string 0001 0010 1000 are
equivalent because they represent the same number of
pebbles.

Machines have to use long strings of binary or BCD
numbers, but people prefer to chunk the data in either
decimal or hexadecimal form. As long as we know how to

14 Digital Computer Electronics

TABLE 1-5. NUMBER SYSTEMS

Decimal Hexadecimal Binary BCD

0 0 00000000 0000 0000 0000

1 1 0000 0001 0000 0000 0001

2 2 0000 0010 0000 0000 0010

3 3 0000 0011 0000 0000 0011

4 4 0000 0100 0000 0000 0100

5 5 0000 0101 0000 0000 0101

6 6 0000 0110 0000 0000 0110

7 7 0000 0111 0000 0000 0111
8 8 0000 1000 0000 0000 1000
9 9 0000 1001 0000 0000 1001
10 A 0000 1010 0000 0001 0000
11 B 0000 1011 0000 0001 0001
12 C 0000 1100 0000 0001 0010
13 D 0000 1101 0000 0001 0011
14 E 0000 1110 0000 0001 0100
15 F 0000 1111 0000 0001 0101
16 10 0001 0000 0000 0001 0110
32 20 0010 0000 0000 0011 0010
64 40 0100 0000 0000 0110 0100
128 80 1000 0000 0001 0010 1000
255 FF 1111 1111 0010 0101 0101

convert from one number system to the next, we can always
get back to the ultimate meaning, which is the number of
pebbles being represented.

1-13 THE ASCII CODE

.To get information into and out of a computer, we need to

use numbers, letters, and other symbols. This impl_ies' some
kind of alphanumeric code for the I/O unit of a computer.
At one time, every manufacturer had a different code,
which led to all kinds of confusion. Eventually, industry
settled on an input-output code known as the American
Standard Code for Information Interchange (abbreviated
ASCII). This code allows manufacturers to standardize
1/0 hardware such as keyboards, printers, video displays,
and so on.

The ASCII (pronounced ask’-ee) code is a 7-bit code
whose format (arrahgement) is

X XsXaX3 XX Xo
where each X is a 0 or a 1. For instance, the letter A‘ is
coded as
1000001

Sometimes, a space is inserted for easier reading:

100 0001

TABLE 1-6. THE ASCII CODE

A | XXX,

XXXXo 50 o1 100 101 10 111
0000 sSP 0 @ P P
0001 ! I ~A Q a g
0010 » 2 B R b 1
0011 # 3 C S ¢ s
000 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V. f v
ot > 7 G - W g w
1000 (8 H X h " x

1001)y 9 1 Y i oy
1010 * : J Z j z

1011 S k
1100 , < L 1
ot~ - = M m

1110 . > N n
11t " 2 0 0

Table 1-6 shows the ASCII code. Read the table the
same as a graph For instance, the letter A has an XXX,
of 100 and an X;X,X;X, of 0001. Therefore, its ASCII
code is

100 0001 (A)
Table 1-6 includes the’ ASCII code for lowercase letters.
. The letter a is coded as
110 0001 - (a)

-More examples are

1100010 (b)
1100011 (c)
1100100 (d)

and so on.
Also look at the punctuation and mathematical symbols.
Some examples are

0100100 ($)
0101011 (+)
0111101 (=)

In Table 1-6, SP stands for space (blank). Hitting the space’ .
bar of an ASCII keyboard sends this into a microcomputer:

010 0000 (space)

EXAMPLE 1-11

" With an ASCII keyboard, each keystroke produces the

ASCII equivalent of the designated character. Suppose you
type .

PRINT X

What is the output of an ASCII keyboard?

SOLUTION

P (101 0000), R (101 0010), I (100 1001), N (100 1110,

~ T (101 0100), space (010 0000), X (101 .1000).

GLOSSARY

address Each memory location has an address, analogous
to a house address. Using addresses, we can tell the computer
where desired data is stored.

alphanumeric Letters, numbers, and other symbols.
base The number of digits (basic symbols) in a number
‘'system. Decimal has a base of 10, binary a base of 2, and
hexadecimal a base of 16. Also called the radix.

bit An abbreviation for binary digit.

byte A string of 8 bits. The byte is the basic unit of binary
information. Most computers process data with a length of
8 bits or some multiple of 8 bits.

central processing unit The control section and the arith-
metic-logic section. Abbreviated CPU.

chip An integrated circuit.

chunking Replacing a longer string by a shorter one.
data Names, numbers, and any other information needed
to solve a problem.

digital Pertains to anything in the form of digits, for
example, digital data.

hardware The electronic, magnetlc and mechanical de-
vices used in a computer.

hexadecimal A number system with a base of 16. Hexa-
decimal numbers are used in microprocessor work.
input-output Abbreviated 1/0. The input and output sec-
tions of a computer are often lumped into one unit known
as the I/O unit.

microcomputer A computer that uses a microprocessor
for its central processing unit (CPU).

microprocessor A CPU on a chip. It contains the control
and arithmetic-logic sections. Sometimes abbreviated MPU
(microprocessor unit).

nibble A string of 4 bits. Half of a byte.

program A sequence of instructions that tells the computer
how to process the data. Also known as software.
register A group of electronic, magnetic, or mechanical
devices that store digital data.

software Programs.

string A group of digits or other symbols.

Chapter 1 Number Systems and Codes 18

SELF-TESTING REVIEW

Read each of the following and provide the missing words. 7. (4,096, 65,536) The hexadecimal number system is
Answers appear at the beginning of the next question. widely used in analyzing and programmin
8 q prog g
1. Binary means Binary numbers h The hexadecimal digits are 0 to 9 and A to
: Y . . Ty numbers have a The main advantage of hexadecimal numbers is the
base of 2. The digits used in a binary number case of conversion from hexadecimal to
system are and and vice versa.

2. (two, 0, I) Names, numbers, and other information 8. (microprocessors, F, binary) A typical microcom-
,'}izded to solve aisp ;osie[;:z f;“'?\gtruct'o th t puter may have up to 65,536 registers in its mem-

q ! tons tha ory. Each of these registers, usually called a s
tells the computer how to process the data. stores 1 byte. Such a memory is specified as a 64-

3. (data, program) Computer ICs work reliably be- kilobyte men.]ory or simply a memory
cause t.h ey are based on de§1gn. When . 9. (memory location, 64K) Binary-coded-decimal
a transistor is cut off or saturated, transistor (BCD) numbers express each decimal digit as a

4. (two-stat ha.vet.alm)o S/: no effect. . ¢ BCD numbers are useful whenever ___ in-

) fi oS a[:l, tvatrta ll:;.ls. tal dat s @ group 0 formation is transferred into or out of a digital
ﬁ;lces. t‘a sforz 1Bra di éta' A byte i t1§ an ¢ system. Equipment using BCD numbers includes
abbrevia 1onbc:r tnary Gigtt. yle 15 a sinng o pocket calculators, eiectronic counters, and dlglta]
1S voltmeters.

5. (regtster Bit, 8) The control and arithmetic- loglc 10. (nibble, decimal) The ASCII code is a 7-bit code
sections are cdlled the (CPU). A micro- for (letters, numbe rs, and other sym-
processor is a CPU on a chip. A microcomputer bols).

Is a computer 'th.at uses a — for its CPU. 11. (alphanumerics) With the typlcal microcomputer,

6. (centlra‘l processing unit, microp rocess.or) The ab- you enter the program and data with typewriter
breviation K indicates units of approximately 1,000 keyboard that converts cach character into ASCII
or precisely 1,024. Therefore, 1K means 1,024, 2K code.
means 2,048, 4K means , and 64K
means

PROBLEMS

1-1. How many bytes are there in each of these num- O . O . O Q . .

bers? . . .

a. 1100 0101 Fig. 1-8 An 8-bit LED display.

2' i?ii :8(1)1 81 i(l) (1){(1)8 1010 1-7. Figure 1-8 shows an 8-bit LED display. A light
’ . . circle means that a LED is ON (binary 1) and a

1-2. What are the equivalent decimal numbers for each dark circle means a LED is OFF (binary 0). What
of the following binary numbers: 10, 110, 111,) . ; . 5 o
1011, 1100, and 1110? :];Ihzqt:;ir:/aizrigmber being displayed? The deci-

) . o nt?
1-3. ;Nha;iss the base for each of thege numbers’ 1-8. Convert the following binary numbers to decimal
. 10 .
b. 1100 0101, Z“mg%rlsi]
c. 2312 b. 11001
d. FiC3 c. 10110
1-4. Write the equation)
d. 11110
242 = 1-9. Solve the following equation for x:
x1o = 11001001,
using binary numbers.

1-5. What is the decimal equivalent of 2'°? What does 1-10. An 8-bit transistor register has this output:
4K represent? Express 8,192 in K units.

1-6. A 4-bit register has output voltages of high-low- low-high-low-high-low-high-low-high
high-low. What is the binary number stored in the What is the equivalent decimal number bemg
register? The decimal equivalent? stored?

16 Digital Computer Electronics

1-11.

PO EE

Fig. 1-9 An 8-bit core register.

In Fig. 1-9 clockwise flux stands for binary I and
counterclockwise flux for binary 0. What is the
binary number stored in the 8-bit core register?
Convert this byte to an equivalent decimal
number.

B 4 9—O+5V

10k 10k

1

10kQ

Fig. 1-10 A 5-bit switch register.

1-12.

1-13.
1-14,
1-15.
1-16.
1-17.

1-18.

1-19.

1-20.

Figure 1-10 shows a 5-bit switch register. By
opening and closing the switches you can set up
different binary numbers. As usual, high output
voltage stands for binary 1 and low output voltage
for binary 0. What is the binary number stored in
the switch register? The equivalent decimal num-
ber? '

Convert decimal 56 to its binary equivalent.
Convert 72,4 to a binary number.

An 8-bit transistor register stores decimal 150.
What is the binary output of the register?

How would you set the switches of Fig. 1-10 to
get a decimal output of 27?

A hexadecimal odometer displays F52A. What are
the next six readings?

The reading on a hexadecimal odometer is 27FF.
What is the next reading? Miles later, you see a
reading of 8AFC. What are the next six readings?
Convert each of the following hexadecimal num-
bers to binary:

a. FF

b. ABC

c. CD42

d. F329

Convert each of these binary numbers to an
equivalent hexadecimal number:

a. 1110 1000

b. 1100 1011

c. 101011110110

d. 1000 1011 1101 0110

1-21.

1-22.

1-23.

1-24.

1-25.

10 kQ

10kQ
Yy

1

|||——_o/ o—I—w»-«

Here is a program written for the 8085 micro-

processor:
Address Hex Contents

2000 3E

2001 OE

2002 D3

2003 20

2004 76

Convert the hex contents to equivalent binary
numbers.

Convert each of these hexadecimal numbers to its
decimal equivalent:

a. FF
b. A4
c. 9B
d. 3C

Convert the following hexadecimal numbers to
their decimal equivalents:

a. OFFF
b. 3FFF
c.. TFE4
d. B3D8

A microcomputer has memory locations from
0000 to OFFF. Each memory location stores 1
byte. In decimal, how many bytes can the micro-
computer store in its memory? How many kilo-
bytes is this?

Suppose a microcomputer has memory locations
from 0000 to 3FFF, each storing 1 byte. How

Chapter 1 Number Systems and Codes 17

1-26.

1-27.

1-28.

1-29.

many bytes can the memory store? Express this in
kilobytes.

A microcomputer has a 32K memory. How many
bytes does this represent? If 0000 stands for the
first memory location, what is the hexadecimal
notation for the last memory location?

If a microcomputer has a 64K memory, what are
the hexadecimal notations for the first and last
memory locations?

Convert the following decimal numbers to hexa-
decimal:

a. 4,095

b. 16,383
c. 32,767
d. 65,535

Convert each of the following decimal numbers to
hexadecimal numbers:
a. 238

18 Digital Computer Electronics

1-30.

1-31..

1-32.

1-33.

b. 7,547

c. 15,359

d. 47,285

How many nibbles are there in each of the fol- -
lowing:

a. 10000111

b. 1001 0000 0100 0011

.c. 0101 1001 O111 0010 0110 0110

If the numbers in Prob. 1-30 are BCD numbers,
what are the equivalent decimal numbers?

What is the ASCII code for each of the following:
a. .7

b. W
c. f
d vy

Suppose you type LIST with an ASCII keyboard.
What is the binary output as you strike each
letter?

"For centuries mathematicians felt there was a connection
between mathematics and logic, but no one before George
Boole could find this missing link. In 1854 he invented
symbolic logic, known today as boolean algebra. Each
variable in boolean algebra has either of two values: true
or false. The original purpose of this two-state algebra was
to solve logic problems.

Boolean algebra had no practical application until 1938,
when Claude Shannon used it to.analyze telephone switching
circuits. He let the variables represent closed and open
relays. In other words, Shannon came up with a new

. application for boolean algebra. Because of Shannon’s
work, engineers realized that boolean algebra could be
applied to computer electronics.

This chapter irtroduces the gate, a circuit with one or
more input signals but only one output signal. Gates are
digital (two-state) circuits because the input and output
signals are either low or high voltages. Gates are often
called logic circuits because they can be analyzed with
boolean algebra.

2-1 INVERTERS

An inverter is a gate with only one input signal and one
output signal; th output state is always the opposite of the
input state.

Transistor Inverter

Figure 2-1 shows a transistor inverter. This common-emitter
amplifier switches between cutoff and saturation. When Vy
is low (approximately 0 V), the transistor cuts off and Voyr
is high. On the other hand, a high V,y saturates the transistor,
forcing Vour to go low. ')

Table 2-1 summarizes the operation. A low input produces
a high output, and a high input results in a low output.
Table 2-2 gives the same information in binary form; binary
0 stands for low voltage and binary 1 for high voltage.

An inverter is also called a NOT gate because the output
is not the same as the input. The output is sometimes called
the complement (opposite) of the input.

5V

Vour
VIN ﬂdc > 10
(Oor+5V)
Fig. 2-1 Example of inverter design.
TABLE 2-1 TABLE 2-2
Vin Vour ‘ Vi Vour
Low High - 0
High Low |

|
0
YN |>O' Vout Yin 4> Vout

(a) g (b)

VlN‘DO‘DO“VouT Yn ‘I >— Vour

(c) . (d)

Fig. 2-2 Logic symbols: («) inverter: (b) another inverter symbol:
(¢) double inverter: () buffer.

Inverter Symbol

Figure 2-2a is the symbol for an inverter of any design.
Sometimes a schematic diagram will use the alternative
symbol shown in Fig. 2-2b; the bubble (small circle) is on

19

the input side. Whenever you see either of these symbols,
remember that the output is the complement of the input.

Noninverter Symbol

If you cascade two inverters (Fig. 2-2¢), you get a nonin-
verting amplifier. Figure 2-2d is the symbol for a nonin-
verting amplifier. Regardless of the circuit design, the action
is always the same: a low input voltage produces a low
output voltage, and a high input voltage results in a high
output voltage.

The main use of noninverting amplifier is buffering
(isolating) two other circuits. More will be said about
buffers in a later chapter. :

EXAMPLE 2-1

1 1 0
aAp— A——| >o——

0 1

Y N Y L S
6-bit 6-bit

register 1

0 1

E‘—O E—D:——

£ 1 F 1 D 0

(a) (b)
Fig. 2-3 Example 2-1.

Figure 2-3a has an output, A to F, of 100101. Show how
to complement each bit. '

SOLUTION

Easy. Use an inverter on each signal line (Fig. 2-3b). The
final output is now 011010. ‘

A hex inverter is a commercially available IC containing
six separate inverters. Given a 6-bit register like Fig. 2-3a,
we can connect a hex inverter to complement each bit as
shown in Fig. 2-3b.

One more point. In Fig. 2-3a the bits may represent a
coded instruction, number, letter, etc. To convey this variety
of meaning, a string of bits is often called a binary word
or simply a word. In Fig. 2-3b the word 100101 is

. complemented to get the word 011010.

2-2 oR GATES

The OR gate has two or more input signals but only one
output signal. If any input signal is high, the output signal
is high.

20 Digital Computer Electronics

register 1 0
P — o2 .

Ao———|>|-—< Y

Bo—PDH——
Fig. 2-4 A 2-input diode ORr gate.

Diode OR Gate

Figure 2-4 shows one way to build an OR gate. If both
inputs are low, the output is low. If either input is high,
the diode with the high input conducts and. the output is
high. Because of the two inputs, we call this circuit a 2-
input OR gate.

Table 2-3 summarizes the action; binary 0 stands for low
voltage and binary 1 for high voltage. Notice that one or
more high inputs produce a high output; this is why the
circuit is called an OR gate.

A o—Dp——
8 o—PD+— Y
co—PD+—

Fig. 2-5 A 3-input diode OR gate.

More than Two Inputs

Figure 2-5 shows a 3-input OR gate. If all inputs are low,
all diodes are off and the output is low. If 1 or more inputs
are high, the output is high.

Table 2-4 summarizes the action. A table like this is
called a truth table; it lists all the input possibilities and
the corresponding outputs. When constructing a truth table,
always list the input words in a binary progression as shown
(000, 001, 010, . . ., 111); this guarantees that all input
possibilities will be accounted for. '

An OR gate can have as many inputs as desired; add one
diode for each additional input. Six diodes result in a 6-

TABLE 2-3. TABLE 2-4. THREE-
TWO INPUT INPUT or GATE
OR GATE
_ A B C Y
A B Y
— -0 0 0 0
0 o0 0 0 0 1 1
0 1 1 0 1 0 1
1 0 1 0 1 1 1
1 1 1 1 0 0 1
— 1 0 1 1
1 1 0 1
1 1 1 1

input OR gate, nine diodes-in a 9-input OR gate. No matter
how many inputs, the action of any OR gate is summarized
like this: one or more high inputs produce a high output.

. Bipolar transistors and MOSFETs can also be used to
build OR gates. But no matter what devices are used, OR
gates always produce a high output when one or more
inputs are high. Flgure 2-6 shows the loglc symbols for
2-, 3-, and 4-input OR gates.

(a) b) fc)

* Fig. 2-6 or-gate symbols.

EXAMPLE 2-2
Show the truth table of a 4-input OR gate.

SOLUTION

Let ¥ stand for the output bit and A, B, C, D for input bits.
Then the truth table has input words of 0000, 0001, 0010,
, 1111, as shown in Table 2-5. As expected, output Y
is O for input word 0000; Y is- 1 far all other input words.
As a check, the number of input words in a truth table
always equals 2", where n is the number of input bits. A
2-input OR gate has a truth table with 22 or 4 input words;
a 3-input OR gate has 23 or 8 input words and a 4-input
OR gate has 2* or 16 input words.

TABLE 2-5. FOUR-INPUT oORr

GATE
A B C D |vY
0o 0 o0 0] 0
0 0 0 1 1
0 o0 1 0 1
0 0 1 1 1
0 i 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 i
1 0 1 1|1
1 1 0 0 1
1 1 0. 1 1
1 1 1 0 1
1 1 1 1 1

EXAMPLE 2-3

How many inputs words are in the truth table of an 8-input
OR gate? Which input words produce a high output?

SOLUTION

The input words are 0000 0000, 0000 0001, . .., 1111
1111. With the formula of the preceding example, the total
number of input words is 27 = 28 = 256. :

In any OR gate, 1 or more high inputs produce a high
output. Therefore, the input word of 0000 0000 results in
a low output; all other input words produce a high output..

EXAMPLE 2-4

+5V
o

o._L
——o o—
1 -1
l —

2 -l
>r—e &
3 -1l

[
4 _L_

5_L._
. 6_1_
>0
7._L._

g —l—
¢—o o
9 L

Y3 Y " Yo
Fig. 2-7 Decimal-to-binary encoder.

The switches of Fig. 2-7 are push-button switches like those
of a pocket calculator. The bits out of the OR gates form a
4-bit word, designated Y;Y,Y,Y,. What does the circuit
do?

SOLUTION

Figure 2-7 is a decimal-to-binary encoder, a circuit that
converts decimal to binary. For instance, when push button
3 is pressed, the Y, and Y, OR gates have high inputs;
therefore, the output word is

Y]YzY]YO = 0011

Chapter 2 Gates 21

If button 5 is keyed, the Y, and Y, OR gates have-high
inputs and the output word becomes

Y;Y,Y Y, = 0101
When switch 9 is pressed,

1001

1

Y3Y2Y|Y0

Check the other input switches to convince yourself that
the output word always equals the binary equivalent of the
switch being pressed.

2-3 AND GATES

The AND gate has two or more input signals but only one
output signal. All inputs must be high to get a high output.

Ao——}Q—-——;

so—¢——

(a)

+5v +5v

fc) (d)

1

(b)

_Fig. 2-8 A 2-input AND gate. («) circuit; (b) both inputs low: ()1
low input, | high; (d) both inputs high.

Diode AND Gate

Figure 2-8a shows one way to build an AND gate. In this
circuit the inputs can be either low (ground) or high (+5
V). When both inputs are low (Fig. 2-8b), both diodes
conduct and pull the output down to a low voltage. If one
of .the inputs is low and the other high (Fig. 2-8¢), the
diode with the low input conducts and this pulls the output
down to a low voltage. The diode with the high input, on
the other hand, is reverse-biased or cut off, symbolized by
the dark shading in Fig. 2-8c.

When both inputs are high (Fig. 2-84), both diodes are
cut off. Since there is no current in the resistor, the supply
voltage pulls the output up to a high voltage (+5 V).

22 Digital Computer Electronics

TABLE 2-6. TWO-
INPUT AND GATE

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 2-6 summarizes the action. As usual, binary zere
stands for low voltage and binary 1 for high voltage. As
you see, A and B must be high to get a high output; this is
why the circuit is called an AND gate.

+5V

A o—i—
8 o—44—4 y

co——
Fig. 2-9 A 3-input AND gate.

More than Two Inputs

Figure 2-9 is a 3-input AND gate. If all inputs are low, al
diodes conduct and pull the output down to a low voltage
Even one conducting diode will pull the output down to :
low voltage; therefore, the only way to get a high outpu

" is to have all inputs high. When all inputs are high, al

diodes are nonconducting and the supply voltage pulls th
output up to a high voltage.

Table 2-7 summarizes the 3-input AND gate. The outpu
is 0 for all input words except 111. That is, all inputs mus
be high to get a high output.

AND gates can have as many inputs as desired; add on
diode for each additional input. Eight diodes, for instance
result in an 8-input AND gate; sixteen diodes in a 16-inpt

TABLE 2-7. THREE-
INPUT aND GATE

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 -0
1 1 1 1

- 40 =~

(a) - (b) fc)
Fig. 2-10 AND-gate symbols.

AnD gate. No matter how many inputs an AND gate has,
the action can be summarized like this: All inputs must be
high to get a high output.

Figure 2-10 shows the logic symbols for 2-, 3-, and 4-
input AND gates.

EXAMPLE 2-5

Describe the truth table of an 8-input AND gate.

SOLUTION

The input words are from 0000 0000to 1111 1111, following
the binary progression. The total number of input words is

2" = 28 = 256
The first 255 input words produce a 0 output. Only the last

word, 1111 1111, results in a 1 output. This is because all
inputs must be high to get a high output.

EXAMPLE 2-6

6-bit register

ENABLE

A Y, Y, Y, Y, Yo

Fig. 2-11 Using AND gates to block or transmit data.

The 6-bit register of Fig. 2-11 stores the word ABCDEF.
The ENABLE input can be low or high. What does the
circuit do?

SOLUTION

One use of AND gates is to transmit data when certain
conditions are satisfied. In Fig. 2-11 a low ENABLE blocks
the register contents from the final output, but a high
ENABLE transmits the register contents.

For instance, when
ENABLE =

each AND gate has a low ENABLE input. No matter what

the register contents, the cutput of each AND gate must be

low. Therefore, the final word is
YsY, Y3 Y,Y, Y, = 000000

As you see, a low ENABLE blocks the register contents

from the.final output.
On the other hand, when

ENABLE =
the output of each AND gate depends on the data inputs (A,
B, C, . . .); alow data input results in a low output, and
a high data input in a high output. For example, if ABCDEF
= 100100, a high ENABLE gives
Y5Y4Y3Y2Y]Y0 = 100100

In general, a high ENABLE transmits the register contents
to the final output to get :

Y5Y4Y3Y2Y|YO = ABCDEF

2-4 BOOLEAN ALGEBRA

As mentioned earlier, Boole invented two-state algebra to
solve logic problems. This new algebra had no practical
use until Shannon applied it to telephone switching circuits.
Today boolean algebra is the backbone of computer circuit
analysis and design.

Inversion Sign

In boolean algebra a variable can be either a 0 or a 1. For
digital circuits, this means that a signal voltage can be
either low or high. Figure 2-12 is an example of a digital
circuit because the input and output voltages are either low
or high. Furthermore, because of the inversion, Y is always
the complement of A.

a—>o—~

A word equation for Fig. 2-12 is

Fig. 2-12 Inverter.

Y = NOT A (2-1)

Chapter 2 Gates 23

IfAis O,

I
—

Y = NoT O
On the other hand, if A'is 1,

Y=NoT1l =0

- . In boolean algebra, the overbar stands for the NoOT -

operation. This means that Eq. 2-1 can be written

Y=A (2-2)

Read this as *‘Y equals NOTA’’ or ‘Y equals the complement
of A.”” Equation 2-2 is the standard way to write the output

* of an inverter.

. Using the equation is easy. Given the value of A, substitute
and solve for Y. For instance, if A is 0,

because NOT 1 is 0.

Fig. 2-13 or gate.

OR Sign

A word equation for Fig. 2-13 is’
Y=AO0RB (2-3)

Given the inputs, you can solve for the output. For instance,
ifA=0andB =0,

Y=00r0=0

because 0 comes out of an OR gate when both inputs are
Os.
As another example, if A = Oand B = 1, -

Y=00r1=1

because 1 comes out of an OR gate when either input is'1..

Similarly, if A = 1and B = 0,

1
—

Y=10rO0

IfA=1andB = 1,

1

Y=10r1

24 Digital Computer Electronics

In boolean algebra the + sign stands for the OR operation.
In other words, Eq. 2-3 can be written

" Y=A+B (2-4)

Read this as ‘Y equals A OR B.”’ Equation 2-4 is the
standard way to write the output of an OR gate.

Given the inputs, you can substitute and solve for the

output. For instance, if A = 0and B = 0,

0+0=0

Y=A+B
IfA=0andB =1,
Y=A+B=0+1=1

because 0 ored with 1 results in 1. IfA=1adB =0,

I
—

Y=A+B=1+0

If both inputs are high,

Il
—

Y=A+B=1+1-:

because 1 ored with 1 gives 1.

Don’t let the new meaning of the + sign bother you.
There’s nothing unusual about symbols having more than
one meaning. For instance, ‘‘pot’’ may mean a cooking
utensil, a flower container, the money wagered in a card
game, a derivative of cannabis sativa and so forth; the
intended meaning is clear frbm the sentence it’s used in.
Similarly, the + sign may stand for ordinary addition or
OR addition; the intended meaning comes across in the way
it’s used. If we’re talking about decimal numbers, + means
ordinary addition, but when the discussion is about logic
circuits, + stands for Or addition.

A ——
8 — i 4

Fig. 2-14 AND gate.

AND Sign
A word equation for Fig. 2-14 isv

Y = AANDB (2-5

In boolean algebra the multiplication sign stands for th
AND operation. Therefore, Eq. 2-5 can be written

"Y=A'B
or simply

Y=AB (-t

"Read this as *¥ equals A AND B.’’ Equation 2-6 is the
standard way to write the output of an AND gate.
Given the inputs, you can substitute and solve for the
output. For instance, if both inputs are low,
Y=AB=0:-0=0
because 0 ANDed with O gives 0. If A is low and B is high,
Y=AB=0:1=0

because 0 comes out of an AND gate if any input is 0. If A
is 1 and B is 0,

1
o‘

Y=AB=1:0

When both inputs are high,‘

I
—

Y=AB=1"1

because 1 ANDed with 1 gives 1.

Decision-Making Elements

The inverter, OR gate, and AND gate are often called
decision-making elements because they can recognize some
input words while disregarding others. A gate recognizes a
word when its output is high; it disregards a word when its
output is low. For example, the AND gate disregards all
words with one or more Os; it recognizes only the word
whose bits are all 1s.

Notation

In Jater equations we need to distinguish between bits that
are ANDed and bits that are part of a binary word. To do
this we will use italic (slanted) letters (A,-B, Y, etc.) for
ANDed bits and roman (upright) letters (A, B, Y, etc.) for
bits that form a word.

For example, Y,Y,Y,Y, stands for the logical product
(anNDing) of Y3, Y,, Y, and ¥, If V3 = 1, Y, =0, Y, =
0, and Y, = 1, the product Y,Y,Y,Y, will reduce as follows:

Y. Y,¥,Yo=1-0-0-1=0

In this case, the italic letters represent bits that are being
ANDed. .

On the other hand, Y,Y,Y,Y, is our notation for a 4-bit
word. With the Y values just given, we can write

Y;Y,Y, Y, = 1001
In this equation, we are not dealing w h bits that are

ANDed; instead, we are dealing with bits that are part of a
word.

The distinction between italic and roman notation
become clearer when we get to computer analysis.

Positive and Negative Logic

A final point. Positive logic means that 1 stands for tue
more positive of the two voltage levels. Negative logic
means that 1 stands for the more negative of the two voltage
levels. For instance, if the two voltage levels are 0 and —5
V, positive logic would have 1 stand for 0 V and 0 for —5

"V, whereas negative logic would have 1 stand for —5 V

and O for O V.

Ordinarily, people use positive logic with positive supply
voltages and negative logic with negative supply voltages.
Throughout this book, we will be using positive logic.

EXAMPLE 2-7

. (b)
Fig. 2-15 Logic circuits.

What is the boolean equation for Fig. 2-15a? The output if
both inputs are high? ’

SOLUTION

A is inverted before it reachei the OR gate; therefore, the
upper input to the OR gate is A. The final output is -

Y=A+B

This is the boolean equation for Fig. 2-15a.

To find the output when both inputs are high, either of
two approaches can be used. First, you can substitute
directly into the foregoing equation and solve for Y

Alternatively, you can analyze the operation of Fig. 2-154
like this. If both inputs are high, the inputs to the OR gate
are 0 and 1. Now, O ored with 1 gives 1. Therefore, the
final output is high.

EXAMPLE 2-8

What is the boolean equation for Fig. 2-156? If both inputs
are high, what is the output?

Chapter 2 Gates 25

SOLUTION

The AND gate forms the logical product AB, which is
inverted to get

Y = AB

Read this as ‘Y equals NOT AB’’ or ‘‘Y equals the
complement of AB.”’

If both inputs are high, direct substltutlon into the equation
gives

Y=AB=1-1=1=0

Note the order of operations: the ANDmg is done first, then
the inversion.

Instead of using the equation, you can analyze Fig. .

2-15b as follows. If both inputs are high, the AND gate has
a high output. Therefore, the final output is low.

EXAMPLE 2-9

A—o"

8—

fa)

S eans

(b)

Fig. 2-16 Logic circuits.

What is the boolean equation for Fig. 2-16a? The truth
table? Which input words does the circuit recognize?

SOLUTION

The upper AND gate forms the logical product AB, and the

lower AND gate gives CD. ORing these products results in
Y = AB + CD
Read this as ‘Y equals AB OR CD.”
Next, look at Fig. 2-16a. The final output is high if the
OR gate has one or more high inputs. This happens when

ABis 1, CD is 1, or both are Is. In turn, AB is 1 when

A=i and B =1

28 Digital Computer Electronics

TABLE 2-8. TRUTH TABLE
FORY = AB + CD

S

\

._.._.-..---.——-ooooooo.o

.--—o§oo—~—-»—oooo -]
.—-—oo—-—oo‘—-—oo»f—-—-oo a
—_ O~ OO OO = O =0 =0 |
___;.;-ooo—ooo~ooo ~

CD is 1 when

Both products are 1s when
A=1 B =1 C =1 and D=1

Therefore, the final output is high when A and B are ls,
when C and D are 1s, or when all inputs are 1s.
Table 2-8 summarizes the foregoing analysis. From this
it’s clear that the circuit recognizes these input words: 0011,
0111, 1011, 1100, 1101, 1110, and 1111. e

EXAMPLE 2-10

Write the boolean equation for Fig. 2-16b. If all mputs are
high, what is the output?

SOLUTION

The or gate forms the logical sum B + C. This sum is
ANDed with A to get

Y =AB + O)

(Parentheses indicate ANDing.)
One way to find the output when all inputs are hlgh is
to substitute and solve as follows:
Y=AB + C) =

I(r+0n=11=1

Alternatively, you can analyze Fig. 2-16b like this. If all
inputs are high, the OR gate has a high output; therefore,
both inputs to the AND gate are high. Since all high inputs
to an AND gate result in a high output, the final output is
high.

EXAMPLE 2-11

4-bit register

A 8 c 1%

vIvivly

Fig. 2-17 A 1-of-10 decoder.

What is the boolean equation for each Y output in Fig.
2-17?

SOLUTION

Each AND gate forms the logical product of its input signals.

The inputs to the top AND gate are A, B, C and D; therefore,
Yo = ABCD

The inputs to the next AND gate are A, B, C and D; this
means that

Y, = ABCD

Analyzing the remaining gates gives

Y, = ABCD
Y; = ABCD
Y, = ABCD
Ys = ABCD
Y¢ = ABCD
Y, = ABCD
Yy = ABCD
Yo = ABCD

EXAMPLE 2-12
What does the circuit of Fig. 2-17 do?

SOLUTION

This is a binary-to-decimal decoder, a circuit that converts
from binary to decimal. For instance, when the register
contents are 0011, the Y; AND gate has all high inputs;
therefore, Y is high. Furthermore, register contents of 001 1
mean that all other AND gates have at least one low input.
As a result, all other AND gates have low outputs. (Analyze
the circuit to convince yourself.)

If the register contents change to 0100, only the Y, AND
gate has all high inputs; therefore, only Y, is high. If the
register contents change to 0111, Y; is the only high output.

In general, the subscript of the high output equals the
decimal equivalent of the binary number stored in the
register. This is why the circuit is called a binary-to-decimal
decoder. ’

The circuit of this example is also called a 4-line-to—10-
line decoder because there are 4 input lines and 10 output
lines. Another name for it is a 1-of-10 decoder because
only 1 of 10 output lines has a high voltage.

GLOSSARY

AND gate A logic circuit whose output is high only when
all inputs are high.

boolean algebra Originally known as symbolic logic, this
modern algebra uses the set of numbers 0 and 1. The

Chapter 2 Gates 27

operations OR, AND, and NOT are sometimes called union,
intersection, and inversion. Boolean algebra is ideally suited
to digital circuit analysis. . _

complement The output of an inverter.

gate A logic circuit with one or more input signals but
only one output signal. ’

inverter A gate with only 1 input and 1 output. The output
is always the complement of the input. Also known as a
NOT gate. : : '

logic circuit A circuit whose input and output signals are

two-state, either low or high voltages, The basic logic
circuits are OR, AND, and NOT gates.

OR gate A logic circuit with 2 or more inputs and only 1
output; 1 or more high inputs produce a high output.
truth table A table that shows all input and output
possibilities for a logic circuit. The input words are listed
in binary progression.

word A string of bits that represent a coded instruction
or data.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. A gate is a logic circuit with one or more input
signals but only output signal. These
signals are either ______"___ or high.

2. (one, low) An inverter is a gate with only
input; the output is always in the opposite state from
the input. An inverter is also calleda
gate. Sometimes the output is referred to as the
complement of the input.

3. (1, Not) The OR gate has two or more input signals.
If any input is , the output is high. The
number of input words in a truth table always equals

—, where n is the number of input bits,

4. (high, 2") The gate has two or more

N

input signals. All inputs must be high to get a high
output.
5. (anD) In boolean algebra, the overbar stands for the
NOT operation, the plus sign stands for the
operation, and the times sign for the
operation.
(or, AND) The inverter, OR gate, and AND gate are
called decision-making elements because they can
recognize some input while disregarding
others. A gate recognizes a word when its output is

7. (words, high) A binary-to-decimal decoder is also
called a 4-line-to—10-line decoder because it has 4
input lines and 10 output lines. Another name for it
is the 1-of-10 decoder because only 1 of its 10 output
lines is high at a time.

PROBLEMS

2-1. How many inputs signals can a gate have? How
many output signals?

2-2." If you cascade seven inverters, does the overall
circuit act like an inverter or noninverter?

2-3. Double inversion occurs when two inverters are
cascaded. Does such a connection act like an
inverter or noninverter?

2-4. The contents of the 6-bit register in Fig. 2-3b
change to 101010. What is the decimal equivalent
of the register contents? The decimal equivalent
out of the hex inverter?

2-5. An ORr gate has 6 inputs. How many input words
are in its truth table? What is the only input word
that produces a 0 output?

2-6. Figure 2-18 shows a hexadecimal encoder, a cir-
cuit that converts hexadecimal to binary. Press-
ing each push-button switch resuits in a differ-
ent output word Y,Y,Y,Y,. Starting with switch
0, what are the output words? (NOTE: The new
symbol in Fig. 2-18 is another way to draw an OR
gate.

28 Digital Computer Electronics

2-7. In Fig, 2-18 what switches would you press to
produce

0011 1001 1100 1111

(Work from left to right.)
2-8. What is the 4-bit output in Fig. 2-18 when switch
A is pressed? Switch 4? Switch E? Switch 6?
2-9. An AND gate has 7 inputs. How many input
words are in its truth table? What is the only
input word that produces a 1 output?

2-10. Visualize the register contents of Fig. 2-19 as the
word A,Aq - -+ Ay, and the final output as the
word Y,;Y, - -+ Yo. What is the output word for
each of the following conditions:

a. A,As- - A, = 1100 1010, ENABLE = 0.
b. A,A¢- - Ay = 0101 1101, ENABLE = 1.
c. A;A¢- - A, = 1111 0000, ENABLE = 1.
d. AA¢- - A, = 1010 1010, ENABLE = 0.

Y3 Y2 1] Yo
-“Fig. 2-18 Hexadecimal encoder.
8-bit register
DD
14
A, Ay Ay AL Ay A, A Ay B
(a)
» * v - * ENABLE
A
= D>
c
A Ys Ys Y, Yy- Y, Y, A : (b)
Fig. 2-19 Fig. 2-20
2-11. The 8-bit register of Fig. 2-19 stores 59,,. What 2-13. What is the boolean equation for Fig. 2-20a? The
is the decimal equivalent of the final output word output if both inputs are high?
if ENABLE = 0? If ENABLE = 1? 2-14. If all inputs are high in Fig. 2-20b, what is the
2-12. Answer these questions: ‘output? The boolean equation for the circuit?
a. What input words does a 6-input OR' gate What is the only ABC input word the circuit
recognize? What word does it disregard? recognizes?
b. What input word does an 8-input AND gate 2-15. If you constructed the truth table for Fig. 2-20b,

recognize? What words does it disregard?

how many input words would it contain?

Chapter 2 Gates 29

Fig. 2-21

Fig. 2-22

Fig. 2-23

A
8

C
D
Fig. 2-24

(b)

A —A
e '
C ——i

Y
D_—-
£ —
F—

(b)

\{ |

Y

30 Digital Computer Electronics

Instruction register

.

Fig. 2-25 Ay 1-of-16 decoder.

SSSSEEEUINSNIeE

~
]
>

ADD
sus
STA
LDB
LDX
IMP
JAM
JAZ
um
"z
MS
DSZ
182
MixX

OPR

2-16.

2-17.
2-18.

2-19.
2-20.

221,

2-22.

" What is the boolean equation for Fig. 2-21a? The

output if both inputs are high?
If all inputs are high in Fig. 2-21b, what is the
output? What is the boolean equation of the cir-
cuit? What ABC input words does the circuit -
recognize? What is the only word it disregards?
What is the. boolean equation for Fig. 2-22a? The
output if all inputs are 1s? If you were to con-
struct the truth table, how many input words
would it have?
Write the boolean equation for Fig. 2-22b. If all
inputs are 1s, what is the output?
If both inputs are high in Fig. 2-23, what is the
output? What is th¢ boolean equation for the cir-
cuit? Describe the truth table.
What is the boolean equation for Fig. 2-24? How
many ABCD input words are in the truth table?
Which input words does the circuit recognize?
Because of the historical connection between bool-
ean algebra and logic, some people use the words
“true’’ and ‘‘false’ instead of ‘‘high’’ and
“‘low’’ when discussing logic circuits. For in-
stance, here’s how an AND gate can be described.
If any input is false, the output is false; if all
inputs are true, the output is true.
a. If both inputs are false in Fig. 2-23, what is
the output? :

2-23.

2-24.

2-25.

b. What is the output in Fig. 2-23 if one input is

- false and the other true?

c. InFig. 2-23 what is the output if all inputs are
true?

Figure 2-25 shows a 1-of-16 decoder. The signals

coming out of the decoder are labeled LDA,

ADD, SUB, and so on. The word formed by the 4

{eftmost register bits is called the OP CODE. As

an equation,

. OP CODE = I|5I|4113[|2

a. If LDA is-high, what does OP CODE equal?
. If ADD is high, what does it equal? ,

c. When OP CODE = 1001, which of the output
signals is high?

d. Which output signal is high if OP CODE =
11117 :

In Fig. 2-25, list the OP CODE words and the

corresponding high output signals. (Start with

0000 and proceed in binary to 1111.)

In the following equations the equals sign means

*“is equivalent to.”’ Classify each of the following

‘as positive of negative logic:

a. 0=0Vandl = +5V.
+5Vandl =0V.
—5Vandl =0V.

b. 0
c. 0
d 0=0Vandl = —-5V.

Chapter 2 Gates 31

More Logic Gates

This chapter introduces NOR and NAND gates, devices that
are widely used in industry. You will also learn about De
Morgan’s theorems; they help you to rearrange and simplify
logic circuits.

3-1 NOR GATES

The NOR gate has two or more input signals but only one
output signal. All inputs must be low to get a high output.
In other words, the NOR gate recognizes only the input
word whose bits are all Os.

fa) b)
Fig. 3-1 nNor gate: (a) logical meaning; (b) standard symbol.

Two-Input Gate

Figure 3-la shows the logical structure of a NOR gate,

which is an OR gate followed by an inverter. Therefore,

the final output is NOT the OR of the inputs. Originally
‘called a NOT-OR gate, the circuit is now referred to as a
NOR gate. 4 '

Figure 3-1b is the standard symbol for a NOR gate. Notice
that the inverter triangle has been deleted and the small
circle or bubble moved to the OR-gate output. The bubble
is a reminder of the inversion that follows the ORring.

With Fig. 3-la and b the following ideas are clear. If
both inputs are low, the final output is high. If one input
is low and the other high, the outpnut is low. And if both
inputs are high, the output is low.

Table 3-1 summarizes the circuit action. As you see, the
NOR gate recognizes only the input word whose bits are all
0Os. In other words, all inputs must be low to get a high
output.

32

TABLE 3-1. TWO-
INPUT NoR GATE

A B|A+B
0 0 1
o 1| 0
10 0
[l 0

Incidentally, the boolean equation for a 2-input NOR gate
is

Y=A+8B (3-1)

Read this as ‘Y equals NOT A OR B.”” If you use this
equation, remember that the ORing is done first, then the
inversion.

=

fa) (b)
Fig. 3-2 NOR gates: (a) 3-input; (b) 4-input.

O >
O O >

Three-Input Gate

Regardless of how many inputs a NOR gate has, it is still
logically equivalent to an OR gate followed by an inverter.
For instance, Fig. 3-2a shows a 3-input NOR gate. The 3
inputs are ored, and the result is inverted. Therefore, the

- boolean equation is

"Y=A+B+C (3-2)

The analysis of Fig. 3-2a goes like this. If all inputs are
low, the result of ORing is low; therefore, the final output

TABLE 3-2. THREE-INPUT

NOR GATE
A B C| A+B+C
0 0 O 1
0 0 1 0
0 1 o0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

is high. If one or more inputs are high, the result of oRing
is high; so the final output is low.

Table 3-2 summarizes the action of a 3-input NOR gate.
As you see, the circuit recognizes only the input word
whose bits are Os. In other words, all inputs must be low
to get a high output.

Four-Input Gate

Figure 3-2b is the symbol for a 4-input NOR gate. The

inputs are ORed, and the result is inverted. For this reason,
the boolean equation is

Y=A+B+C+D (3-3)

The corresponding truth table has input words from 0000
to 1111. Word 0000 gives a 1 output; all other words
produce a 0 output. (For practice, you should construct the
truth table of the 4-input NOR gate.)

3-2 DE MORGAN'S FIRST THEOREM

Most mathematicians ignored boolean algbebra when it first
appeared; some even ridiculed it. But Augustus De Morgan
saw that it offered profound insights. He was the first to
acclaim Boole’s great achievement.

Always a warm and ‘likable man, De Morgan himself
had paved the way for boolean algebra by discovering two
important theorems. This section introduces the first theo-
rem.

The First Theorem

Figure 3-3a is'a 2-input NOR gate, analyzed earlier. As you
recall,*the boolean equation is

Y=A+8B

and Table 3-3 is the truth table.

(a)

oD

Fig. 3-3 De Morgan’s first theorem: (a) NOR gate; (b) AND gate
with inverted inputs.

A

8

Figure 3-3b has the inputs inverted before they reach the
AND gate. Therefore, the boolean equation is

Y=AB

If both inputs are low in Fig. 3-3b, the AND gate has high
inputs; therefore, the final output is high. If one or more
inputs are high, one or more AND-gate inputs must be low
and the final output is low. Table 3-4 summarizes these
ideas.

TABLE 3-3 TABLE 3-4

A B| A+B A B| AB
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
11 0 11 0

Compare Tables 3-3 and 3-4. They’re identical. This
means that the two circuits are logically equivalent; given
the same inputs, the outputs are the same. In other words,
the circuits of Fig. 3-3 are interchangeable.

De Morgan discovered the foregoing equivalence long
before logic circuits were invented. His first theorem says .

A+ B =AB ’ (3-4)

The left member of this equation represents Fig. 3-3a; the
right member, Fig. 3-3b. Equation 3-4 says that Fig. 3-3a
and b are equivalent (interchangeable).

Bubbled AND Gate

Figure 3-4a shows an AND gate with inverted inputs. This
circuit is so widely used that the abbreviated logic symbol .
of Fig. 3-4b has been adopted. Notice that the inverter
triangles have been deleted and the bubbles moved to the

Chapter 3 More Logic Gates 33

—>
B_Dof}

(a)

A—0
8 — Y
fb)

Fig. 3-4 AND gate with inverted inputs: (@) circuit; (b) abbreviated
symbol. :

" AND-gate inputs. From now on, we will refer to Fig.
3-4b as a bubbled AND gate; the bubbles are a reminder of
the inversion that takes place before ANDing.

= > -

Fig. 3-5 De Morgan’s first theorem.

Figure 3-5 is a graphic summary of De Morgan’s first
theorem. A NOR gate and a bubbled AND gate are equivalent.
As shown later, because the circuits are interchangeable,
you can often reduce complicated logic circuits to simpler
forms.

More than Two Inputs

When 3 inputé are involved, De Morgan’s first theorem is
written

A+ B+ C=ABC (3-5)
For 4 inputs

A+B+C+D=ABCD (3-6)

In both cases, the theorem says that the complement of a
sum equals the product of the complements.

3 > -=
-

(a) »

-

A4

(b)

Fig. 3-6 De Morgan’s first theorem: (a) 3-input circﬁits; b) 4-

input circuits;

34 Digital Computer Electronics

Here’s what really counts. Equation 3-5 says that a 3-

input NOR gate and a 3-input bubbled AND gate are equivalent
(see Fig. 3-6a). Equation 3-6 means that a 4-input NOR
gate and a 4-input bubbled AND gate are equivalent (Fig.
3-6b). Memorize these equivalent circuits; they are a visual
statement of De Morgan’s first theorem.
" Notice in Fig. 3-6b how the input edges of the NOR gate
and the bubbled AND gate have been extended. This is
common drafting practice when there are many input signals.
The same idea applies to any type of gate.

EXAMPLE 3-1

Prove that Fig. 3-7a énd ¢ are equivalent.

fa) b)

fc)
Fig. 3-7 Equivalent De Morgan circuits.

SOLUTION

The final NOR gate in Fig. 3-7a is equivalent to a bubbled
AND gate. This allows us to redraw the circuit as shown in

Fig. 3-7b.

Double inversion produces noninversion; therefore, each
double inversion in Fig. 3-7b cancels out, lggving the
simplified circuit of Fig. 3-7c. Figure 3-7a and c are
therefore equivalent.

Remember the idea. Given a logic circuit, you can replace
any NOR gate by a bubbled AND gate. Then any double
inversion (a pair of bubbles in a series path) cancels out.
Sometimes you wind up with a simpler logic circuit than
you started with; sometimes not.

But the point remains. De Morgan’s first theorem enables
you to rearrange a logic circuit with the hope of finding a
simpler equivalent circuit or perhaps getting more insight
into how the original circuit works.

3-3 NAND GATES

The NAND gate has two or more input signals but only one
output signal. All input signals must be high to get a low
output.

A
8

| A [

DD T
(a) (b)

Fig. 3-8 NaND gate: (a) logical meaning; (b) standard symbol.

Two-Input Gate

Figure 3-8a shows the logical structure of a NAND gate, an
AND gate followed by an inverter. Therefore, the final
output is NOT the AND of the inputs. Originally called a
NOT-AND gate, the circuit is now referred to as a NAND
gate. :

Figure 3-8b is the standard symbol for a NAND gate. The
inverter triangle has been deleted and the bubble moved to
the AND-gate output. If one or more inputs are low, the
result of ANDing is low; therefore, the final inverted output
is high. Only when all inputs are high does the ANDing
produce a high signal; then the final output is low.

Table 3-5 summarizes the action of a 2-input NAND gate.
As shown, the NAND gate recognizes any input word with
one or more Os. That is, one or more low inputs produce
a high output. The boolean equation for a 2-input NAND
gate is , : '

Y =AB (3-7)

Read this as ‘Y equals NOT AB.’’ If you use this equation,
remember that the ANDing is done first then the inversion.

A
A — —
=D Y
c— ¢
b—
fa (b)
Fig. 3-9 NaND gates: (a) 3-input; (b) 4-input.

Three-Input Gate

Regardless of how many inputs a NAND gate has, it’s still
logically equivalent to an AND gate followed by an inverter.
For example, Fig. 3-9a shows a 3-input NAND gate. The
inputs are ANDed, and the product is inverted. Therefore,
the boolean equation is

Y = ABC (3-8)

Here is the analysis of Fig. 3-9a. If one or more inputs
are low, the result of ANDing is low; therefore, the final
output is high. If all inputs are high, the ANDing gives a
high signal; so the final output is low.

Table 3-6 is the truth table for a 3-input NAND gate. As
indicated, the circuit recognizes words with one or more
0Os. This means that one or more low inputs produce a high
output.

TABLE 3-5. TABLE 3-6. THREE-

TWO-INPUT INPUT NAND GATE
NAND GATE
A B C| ABC
A B| AB
' 0 0 O 1
0 0 1 0 0 1 1
0 1 1 01 0 1
1 0 1 0 1 1 1
1 1 0 1 0 O 1
1 0 1 1
1 1 0 1
1 1 1 0

Four-Input Gate

Figure 3-9b is the symbol for a 4-input NAND gate. The
inputs are ANDed, and the result is inverted. Therefore, the
boolean equation is

Y = ABCD (3-9)

If you construct the trutl'1 table, you will have input words
from 0000 to 1111. All words from 0000 through 1110
produce a 1 output; only the word 1111 gives a 0 output.

3-4 DE MORGAN'’S SECOND
THEOREM

The proof of De Morgan’s second theorem is similar to the
proof given for the first theorem. What follows is a brief
explanation.

The Second Theorem

When two inputs are used, De Morgan’s second theorem
says that

AB=A+B (3-10)
In words, the complement of a product equals the sum of
the complements. The left member of this equation repre-
sents a NAND gate (Fig. 3-10a); the right member stands

A }

Y Y
B ——
(a) b)

A ﬁ
—Y
8

. fc) .
Fig. 3-10 De Morgan’s second theorem: (a) NAND gate; (b) OR
gate with inverted inputs; (c) bubbled or gate.

Chapter 3 More Logic Gates 35

for an OR gate with inverted inputs (Fig. 3-10b). Therefore,
De Morgan’s second theorem boils down to the fact that

Fig. 3-10a and b are equivalent.

Fig. 3-11 De Morgan's second theorem.

Bubbled OR Gate

The circuit of Fig. 3-10b is so widely used that the
abbreviated logic symbol of Fig. 3-10c has been adopted.
From now on we will refer to Fig. 3-10c as a bubbled Or
gate; the bubbles are a reminder of the inversion that takes
place before oring.

Figure 3-11 is a visual statement of De Morgan’s second
theorem: a NAND gate and a bubbled OR gate are equivalent.
This equivalence allows you to replace one circuit by the
other whenever desired. This may lead to a simpler logic
circuit or give you more insight into how the original c1rcu1t
works.

More than Two Inputs

When 3 inputs are involved, De Morgan’s second theorem
is written

ABC=A+B+C (3-11)
If 4 inputs are used,
ABCD=A+B+C+D (3-12)

These equations say that the complement of a product
equals the sum of the complements.

=D =D

TSN

Fig. 3-12 De Morgan’s second theorem (a) 3-input circuits; (b)
4-input circuits.

Figure 3-12 is a visual summary of the second theorem.
Whether 3 or 4 inputs are involved, a NAND gate and a
bubbled OR gate are equivalent (interchangeable).

886 Digital Computer Electronics

EXAMPLE 3-2

Prove that Fig. 3-13a and ¢ are equivalent. ;

D
S

(a) (b)

|11

111

il
[

[

1

fc
Fig. 3-13 Equivalent circuits.

SOLUTION

Replace the final NAND gate in Fig. 3-13a by a bubbled orR
gate. This gives Fig. 3-13b. The double inversions cancel
out, leaving the simplified circuit of Fig. 3-13¢. Figure
3-13a and c are therefore equivalent. Driven by the same
inputs, either circuit produces the same output as the other.
So if you’re loaded with NAND gates, build Fig. 3-13a. If
your shelves are full of AND and OR gates, build Fig.
3-13c.

Incidentally, most people find Fig. 3-13b easier to analyze
than Fig. 3-13a. For this reason, if you build Fig. 3-13a,
draw the circuit like Fig. 3-136. Anyone whe sees Fig.
3-13b on a schematic diagram knows that the bubbled OR
gate is the same as a NAND gate and that the built-up circuit
is two NAND gates working into a NAND gate.

EXAMPLE 3-3

Figure 3-14 shows a circuit called a control matrix. At first,
it looks complicated, but on closer inspection it is relatively
simple because of the repetition of NAND gates. De Morgan’s
theorem tells us that NAND gates driving NAND gates are
equivalent to AND gates driving OR gates.

The upper set of inputs T, to T are called timing signals;
only one of them is high at a time. T, goes high first, then
T,, then T, and so on. These signals control the rate and
sequence of computer operations.

The lower set of inputs LDA, ADD, SUB, and OUT are
computer instructions; only one of them is high at a time.
The outputs Cp, Ep, Ly, ..., to L, control different
registers in the computer.)

Answer the following questions about the control matrix:

a. Which outputs are high when T is high?
b. If T, and LDA are high, which outputs are high?
c¢. When T and SUB are high, which outputs are high?

T, T, T3 Ty Ts Tg

LDA

ADD

SuB
ouTt

_______|—|

Cp Ep Ly Eg

Fig. 3-14 Control matrix.

SOLUTION

a. Visualize T, high. You can quickly check out each
gate and realize that £, and L, are the only high
outputs.

b. This time T, and LDA are high. Check each gate and
you can see that L,, and E, are the only high outputs.

c. When T and SUB are high, the high outputs are L,,
Sy, and Ey.

3-5 EXCLUSIVE-OR GATES

An OR gate recognizes words with one or more Is. The
EXCLUSIVE-OR gate is different; it recognizes only words
that have an odd number of 1s.

Two Inputs

Figure 3-15a shows one way to build an EXCLUSIVE-OR
gate, abbreviated XOR. The upper AND gate forms the
product AB, and the lower AND gate gives AB. Therefore,
the boolean equation is

Y = AB + AB (3-13)

>

©

fa)

A
8 Y

(b)
Fig. 3-15 (a) EXCLUSIVE-OR gate. (b) A 2-input EXCLUSIVE-OR
gate.

Here’s what the circuit does. In Fig. 3-15a two low
inputs mean both AND gates have low outputs; so the final
output is low. If A is low and B is high, the upper AND
gate has a high output; therefore, the final output is high.
Likewise, a high A and low B result in a final output that -
is high. If both inputs are high, both AND gates have low
outputs and the final output is low.

Table 3-7 shows the truth table for a 2-input EXCLUSIVE-
OR gate. The output is high when A or B is high but not
both; this is why the circuit is known as an EXCLUSIVE-OR
gate. In other words, the output is a 1 only when the inputs
are different. :

Chapter 3 More Logic Gates 37

TABLE 3-7. TWO-
INPUT x0R GATE

A B| AB + AB
0 0 0
0 1 1
1 0 1
1 1 0

Logic Symbol and Boolean Sign

Figure 3-15b is the standard symbol for a 2-input XOR gate.
Whenever you see this symbol, remember the action: the
inputs must be different to get a high output.
A word equation for Fig. 3-15b is

Y = AXorR B (3-14)
In boolean algebra the sign @ stands for xOR addition.
This means that Eq. 3-14 can be written

Y=A®B (3-15)
Read this as ‘'Y equals A XOR B.”’

Given the inputs, you can substitute and solve for the
output. For instance, if both inputs are low,

Y=0®0=0

because 0 xORed with O gives 0. If one input is low and
the other high,

Y=0®1=1

because 0 xOred with 1 produces 1. And so on.
Here’s a summary of the four possible XOR additions:

0D0=0
01 =1
1®0=1
1®1=0

Remember these four results; we will be using XOR addition
when we get to arithmetic circuits.

Four Inputs

In Fig. 3-16a the upper gate produces A @ B, while the
lower gate gives C @ D. The final gate XORs both of these
sums to get

Y=A®B ®CDD) (3-16)

38 Digital Computer Electronics

»

o o

(a)

O O ™ >

(b)

Fig. 3-16 A 4-input EXCLUSIVE-OR gate: (a) circuit with 2-input
XOR gates; (b) logic symbol.

It’s possible to substitute input values into the equation and
solve for the output. For instance, if A through C are low
and D is high,

Y=000®20®1D
0®1
=1
One way to get the truth table is to plow through all the

input possibilities.
Alternatively, you can analyze Fig. 3-16a as follows. If

“all inputs are Os, the first two gates have O outputs; so the

final gate has a O output. If A to C are Os and D is a 1, the

upper gate has a 0 output, the lower gate has a 1 output,

and the final gate has a 1 output. In this way, you can
analyze the circuit action for all input words.

Table 3-8 summarizes the action. Here is an important
property: each input word with an odd number of Is
produces a 1 output. For instance, the first input word to
produce a 1 output is 0001; this word has an odd number
of 1s. The next word with a | output is 0010; again an odd
number of Is. A 1 output also occurs for these words:
0100, Of11, 1000, 1011, 1101, and 1110, all of which
have an odd number of Is.

The circuit of Fig. 3-16a recognizes words with an odd
number of Is; it disregards words with an even number of

" 1s. Figure 3-16a is a 4-input XOR gate. In this book, we

will use the abbreviated symbol of Fig. 3-16b to represent
a 4-input XOR gate. 'When you see this symbol, remember
the action: the circuit recognizes words with an odd number
of 1s. '

Any Number of Inputs

Using 2-input XOR gates as building blocks, we can make
XOR gates with any number of inputs. For example, Fig.

TABLE 3-8. FOUR-INPUT
XOR GATE o

Comment

Even
Odd
Odd
Even
Odd
Even
Even

- 0dd
0Odd

" Even
Even
0Odd
Even
0Odd
Odd
Even

’ a) (b)

[t
Fig. 3-17 xor gates: (a) 3-input; (b) 6-input.

e === R E=R=N=E =T S
—_—_—_—0 00O~~~ —~—0O0O0O0 |
—__—_0 O~ — 00—~ —00~==00 |0
—_ O~ O~ 0O~ 0O —~0—0~0=0 |
©OC—-—0—~00—~—~0O0—O0~ =0 |~

3-17a shows the abbreviated symbol for a 3-input XOR gate,
and Fig. 3-17b is the symbol for a 6-input XOR gate. The
final output of any XOR gate is the XOR sum of the inputs:

Y=APBPDC:--- 3-17)
What you have to remember for practical work is this:

an XOR gate, no matter how may inputs, recognizes only
words with an odd number of 1s. '

Parity

Even parity means a word has an even number of 1s. For
instance, 110011 has even parity because it contains four
1s. Odd parity means a word has an odd number of Is. As
an example, 110001 has odd parity because it contains
three 1s. :

Here are two more examples:

11110000 1111 0011
111100001111 0111

(Even parity)
(Odd parity)

The first word has even parity because it contains ten 1s;
the second word has odd parity because it contains eleven
Is. .

XOR gates are ideal for testing the parity of a word. XOR
gates recognize words with an odd number of 1s. Therefore,
even-parity words produce a low output and odd-parity
words produce a high output.

EXAMPLE 3-4

What is the output of Fig. 3-18 for each of these input
words?

a. 1010 1100 1000 1100

b. 1010 1100 1000 1101

16 bits

00D
Fig. 3-18 Odd-parity tester.

SOLUTION

a. The word has seven 1s, an odd number. Therefore,
the output signal is

ODD =1
b. The word has eight 1s, an even number. Now
OoDD = 0
This is an example of an odd-parity tester. An even-

parity word produces a low output. An odd-parity word
results in a high output.

EXAMPLE 3-5

The 7-bit register of Fig. 3-19 stores the letter A in ASCII
form. What does the 8-bit output word equal?

Chapter 3 More Logic Gates 39

7-bit register
Ag A5 Ay Ay A, A A
i %
Odd-parity b M g

bit Instruction or data bits

8-bit word wvith odd parity
Fig. 3-19 Odd-parity generator.

SOLUTION

The ASCII code for letter A is
100 0001

(see Table 1-6 for the ASCII code). This word has an even
parity, which means that the XOR gate has a 0 output.
Because of the inverter, the overall output of the circuit is
the 8-bit word

1100 0001

Notice that this has odd parity.

The circuit is called an odd-parity generator because it
produces an 8-bit output word with odd parity. If the register
word has even parity, 0 comes out of the XOR gate and the
odd-parity bit is 1. On the other hand, if the register word
has odd parity, a | comes out of the XOR gate and the odd-
parity bit is 0. No matter what the register contents, the
odd-parity bit and the register bits form a new 8-bit word
that has odd parity.

What is the practical application? Because of transients,
noise, and other disturbances, 1-bit errors sometimes occur
in transmitted data. For instance, the letter A may be
transmitted over phone lines in ASCII form:

100 0001 (A)

Somewhere along the line, one of the bits may be changed.
If the X, bit changes, the received data will be

100 0011 ©

40 Digital Computer Electronics

Because of the 1-bit error, we receive letter C when letter
A was actually sent. : .

One solution is to transmit an odd-parity bit along with
the data word and have an XOR gate test each received
word for odd parity. For instance, with a circuit like Fig.
3-19 the letter A would be transmitted as

1100 0001

An XOR gate will test this word when it is received. If no
error has occurred, the XOR gate will recognize the word.
On the other hand, if a 1-bit error has crept in, the XOR
gate will disregard the received word and the data can be
rejected. T

A final point. When errors come, they are usually 1-bit
errors. This is why the method described catches most of
the errors in transmitted ddta.

EXAMPLE 3-6
What does the circuit of Fig. 3-20 do?

A
INVERT
Y
Fig. 3-20
SOLUTION
When INVERT = O and A = 0,
Y=080=0

When INVERT = Oand A =1,

1

Y=0®@1
In either case, the output is the same as A; that is,
Y=A

for a low INVERT signal.
On the other hand, when INVERT = 1 and A =. 0,

Y=1®0=1
When INVERT = 1 and A = 1,
Y=1®1=0

This time, the output is the complement of A.- As an
gquation,

Y=A

for a high INVERT signal.

To summarize, the circuit of Fig. 3-20 does either of
two things. It transmits A when INVERT is 0 and A when
INVERT is 1. ’

3-6 THE CONTROLLED INVERTER

The preceding example suggests the idea of a controlled
"inverter, a circuit that transmits a binary word or its I’s
complement. ' :

The 1's Complement

Complement each bit in a word and the new word you get
is the 1’s complement. For instance, given

1100 0111 -
the 1’s complement is '
0011 1000

Each bit in the original word is inverted to get the 1’s
complement.

The Circuit

The xoRrR gates of Fig. 3-21 form a controlled inverter
(sometimes called a programmed inverter). This circuit can
transmit the register contents or the 1’s complement of the

register contents. As demonstrated in Example 3-6, each
XOR gate acts like this. A low INVERT results in

Y, = A,
and a high INVERT gives

Y, = A,

. So each bit is either transmitted or inverted before reaching

the final output.

Visualize the register contents as a word A;Aq * -+ Ay
and the final output as a word Y,Ys * - * Y,. Then a low,
INVERT means)

Y;Ys: o Yo = AAq- - - A
On the other hand, a high INVERT results in
Y7Y6"'Y0=K7K6"'Ko’
As a concrete example, sﬁppose the register word is
AsAg - - - Ay = 11100110
Then, a low INVERT give; an output word of

Y;Ys - - Yo = 1110 0110

“and a high INVERT produces

Y;Ys.: - - Y, = 0001 1001

The controlled inverter of Fig. 3-21 is important. Later
you will see how it is used in solving arithmetic and logic
problems. For now, all you need to remember is the key
idea. The output word from a controlled inverter equals the

8-bit register

INVERT

Fig. 3-21 Controlled inverter.

Chapter 3 More Logic Gates 41

input word when INVERT is low; the output word equals
the 1’s complement when INVERT is high.

Boldface Notation

After you understand an idea, it simplifies discussions and

equations if you use a symbcl, letter, or other sign to-

represent the idea. From now on, boldface letters will stand
for binary words.
For instance, instead of writing

A7A6'~ .-.- Ay = 11100110
we can write
A = 11100110
_ Likewise, instead of
Y,Ys - - - Y, = 0001 1001
the simpler equation
Y = 0001 1001

can be used. .

This is another example of chunking. We are replacing
long strings like A;Aq -+ - Ag and Y;Y4 - * - Y, by A and
Y. This chunked notation will be convenient when we get
to computer analysis. »

This is how to summarize the action of a controlled
inverter: :

A
-

(Note: A boldface letter with an overbar means that each
bit in the word is complemented; if A is a word, A is its
I’s complement.)

when INVERT = 0
when INVERT = 1

3-7 EXCLUSIVE-NOR GATES

The EXCLUSIVE-NOR gate, abbreviated XNOR, is logically
equivalent to an XOR gate followed by an inverter. For
example, Fig. 3-22a shows a 2-input XNOR gate. Figure
3-22b is an abbreviated way to draw the same circuit.

A A
Y Y
B 8

(a) b)
Fig. 3-22 A 2-input XNOR gate: (a) circuit; (b) abbreviated symbol.

42 Digital Computer Electronics

TABLE 3-9.
TWO-INPUT
XNOR GATE

A B

—— O O
—O = O

’_OWM

Because of the inversion on the output side, the truth

. table of an XNOR gate is the complement of an XOR truth

table. As shown in Table 3-9, the output is high when the
inputs are the same. For this reason, the 2-input XNOR gate
is ideally suited for bit comparison, recognizing when two
input bits are identical. (Example 3-7 tells you more about
bit comparison.)

o -

(a) b)
Fig. 3-23 XNOR gates: (a) 3-input; (b) 4-input.

Figure 3-234 is the symbol for a 3-input XNOR gate, and
Fig. 3-23b is the 4-input XNOR gate. Because of the inversion
on the output side, these XNOR gates perform the comple-
mentary function of XOR gates. Instead of recognizing odd-
parity words, XNOR gates recognize even-parity words.

EXAMPLE 3-7
What does the circuit of Fig. 3-24 do?

SOLUTION

The circuit is a word comparator; it recognizes two identical
words. Here is how it works. The leftmost XNOR gate
compares As and Bs; if they are the same, Y5 is a 1. The
second XNOR gate compares A, and By; if they are the same,
Y, is a 1. In turn, the remaining XNOR gates compare the
bits that are left, producing a 1 output for equal bits and a
0 output for unequal bits.

If the words A and B are identical, all XNOR gates have
high outputs and the AND gate has a high EQUAL. If words
A and B differ in one or more bit positions, the AND gate
has a low EQUAL.

A register

B register

[++]
;o

EQUAL

Fig. 3-24 Word comparator.

GLOSSARY

controlled inverter This circuit produces the 1’s comple-
ment of the input word. One application is binary subtrac-
tion. It is sometimes called a programmed inverter. -

De Morgan’s theorems The first theorem says that a NOR
gate is equivalent to a bubbled AND gate. The second
theorem says that a NAND gate is equivalent to a bubbled
OR gate.

even parity An even number of 1s in a binary word.

NAND gate Equivalent to an AND gate followed by an °

inverter. All inputs must be high to get a low output.
NOR gate Equivalent to an OR gate followed by an inverter.
All inputs must be low. to get a high output.

odd parity An odd number of 1s in a binary word.
parity generator A circuit that produces either an odd- or
even-parity bit to go along with the data.

XNOR gate Equivalent to an EXCLUSIVE-OR gate followed
by an inverter. The output is high only when the input word
has even parity. ‘
XOR gate An EXCLUSIVE-OR gate. It has a high output
only when the input word has odd parity. For a 2-input
XOR gate, the output is high only when the inputs are
different.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. A NOR gate has two or more input signals. All inputs
must be to get a high output. A NOR
gate recognizes only the input word whose bits are

. The NOR gate is logically equivalent to
an OR gate followed by an

2. (low, Os, inverter) De Morgan’s first theorem says
that a NOR gate is equivalent to a bubbled
gate.

3. (AND) A NAND gate is equivalent to an AND,_gate
followed by an inverter. All inputs must be

to get a low output. De Morgan’s second theorem
says that a NAND gate is equivalent to a bubbled

gate.
4. (high, OR) An XOR gate recognizes only words with
an _________ number of Is. The 2-input XOR gate

has a high output only when the input bits are
. XOR gates are ideal for testing parity
because even- parity words produce a
output and odd-parity words produce a
output.
5. (odd, different, low, high) An odd-parity generator
produces an odd-parity bit to go along with the data.

Chapter 3 More Logic Gates 43

The parity of the transmitted datais . An
XOR gate can test each received word for parity,
rejecting words with parity.

6. (odd, even) A controlled inverter is a logic circuit
that transmits a binary word orits —____ com-
plement.

7. (I’s) The EXCLUSIVE-NOR gate is equivalent to an
XOR gate followed by an inverter. Because of this,
even-parity words produce a high output.

PROBLEMS

3-1. In Fig. 3-25a the two inputs are connected to-
gether. If A is low, what is ¥? If A is high, what
is Y? Does the circuit act like a noninverter or an
inverter? ‘

A_CDO—Y

(a)

A
8 Y

(b)
Fig. 3-25

3-2. What is the output in Fig. 3-25b if both inputs are
low? If one is low and the other high? If both are
high? Does the circuit act like an OR gate or an
AND gate?

3-3. Figure 3-26 shows a NOR-gate crossbar switch. If
all X and Y inputs are high, which of the Z
outputs is high? If all inputs are high except X,
and Y,, which Z output is high? If X, and ¥, are
low and all other inputs are high, which Z output
is high?

3-4. In Fig. 3-26, you want Z, to be 1 and all other Z
outputs to be 0. What values rus: the X and Y
inputs have?

3-5. The outputs in Fig. 3—27‘are cross-coupled back
to the inputs of the NOR gates. If R = 0 and § =
1, what do Q and Q equal?

Q1

S
Fig. 3-27 Cross-coupled NOR gates.

3-6. IfR = 1andS = 0 in Fig. 3-27, what does 0 ~
equal? Q7 .
3-7.° Prove that Fig. 3-28a and b are equivalent.
3-8. What is the output in Fig. 3-284 if all inputs are
Os. If all inputs are 1s?
3-9. What is the output in Fig. 3-28b if all inputs are
0Os. If all inputs are 1s?
3-10. A NOR has 6 inputs. How many input words are
' in its truth table? What is the only input word that
produces a | output?
3:11. In Fig. 3-28a how many input words are there in
the truth table?
3-12. What is the output in Fig. 3-29 if all inputs are
low? If all inputs are high?

4 4 Y
Xo * -
P4 pg 2z
X, ° o
X, *

Fig. 3-26 NORr-gate crossbar switch.

44 Digial Computer Electronics

= >

=D P

=

Fig. 3-28
A
8
B
c
D
Fig. 3-29 ’
3-13. How many words are in the truth table of Fig.

3-14.

3-15.

3-29. What is the value of Y for each of the

following?

a. ABCD = 0011
b. ABCD = 0110 .
c. ABCD = 1001
d. ABCD = 1100

Which ABCD input words does the circuits of
Fig. 3-29 recognize? ‘

In Fig. 3-30a the two inputs are connected to-
gether. If A = 0 what does Y equal? If A = 1,
what does Y equal? Does the circuit act like a
nomnverter or an inverter?

A—E}Y

fa)

S D>

(b)

Fig. 3-30

3-16.

317.

What is the output in Fig. 3-30b if both inputs are
- low? If one input is low and the other high? If
both are high? Does the circuit act like an OR gate

or an AND gate?

Suppose the NOR gates of Fig. 3-26 are replaced

by NAND gates. Then you’ve got a NAND-gate
crossbar switch.

a. IfallXandY 1nputs are low, which Z output

is low?

= >—

A >—=

= o

3-18.

(b)

b. If all inputs are low except X, and Y,, which
Z output is low?

c. If all inputs are low except X, and Y,, which
Z output is low?

d. To get a low Zg output, which inputs must be
high?

In Fig. 3-31, what are the outputs if R = 0 and

§=1?

Fig. 3-31 Cross-coupled NAND gates.

3-19.

3-20.

3-21.

IfR = 1and S = 0 in Fig. 3-31, what does 0
equal? Q?

What is the output in Fig. 3-32q if all inputs are
0s? If all inputs are 1s?

How many input words are there in the truth table

- of Fig. 3-32a?

| |

1]

L1

o lo-

i b)

I

il

Fig. 3-32

Chapter 3 More Logic Gates 45

3-22.

3-23.

3-24.

Prove tha: Fig. 3-32a and b are equivalent.
What is the output in Fig. 3-33 if all inputs are
low? If they are all high?

How many words are in the truth table of Fig.
3-33? What does Y equal for each of the follow-
ing:

a. ABCDE = 00111

b.. ABCDE = 10110

3-26.

c. All inputs are low except T,, JAZ, and A;.

d. The only high inputs are T,, JAM, AND A,,.
Figure 3-35 shows the control matrix discussed in
Example 3-3. Only one of the timing signals T, to
T is high at a time. Also, only one of the instruc-
tions, LDA to OUT, is high at a time. Which are
the high outputs for each of the following condi-
tions?

Fig. 3-35 Control matrix.

46 Digital Computer Electronics

c. ‘ABCDE = 11010 a. T, high g. Ts and ADD high
, d. ABCDE = 10101 b. T, high h. T, and ADD high
3-25. In Fig. 3-34 the inputs are T,, JMP, JAM, JAZ, c. T;high i. T, and SUB high
Ay, and Az; the output is L,. What is the output d. T, and LDA high j- Ts and SUB high
for each of these input conditions? e. Tsahd LDA high k. T¢and SUB high
‘' a. All inputs are Os. f. T, and ADD high 1. T, and OUT high
b. All inputs are low except T, and JMP.
Ta JMP UAM JAZ A, 4,
A —]
B8 — .
] P
Y
C —
D — |
£ —
Fig. 3-33 Fig. 3-34
T I3 T, 75 T
LDA
ADD
sus
ouT: »> *
|| || | | J | | || | | ||
=]
Cp Ep Ly Eg L, E Ly Ey SU Ey Lg Lo

3-27.

Figure 3-36 shows a binary—to-Gray-code con-
verter. (Gray code is a special code used in ana-
log-to-digital conversions.) The input word is
X,X; -+ Xo, and the output word is Y,Y; - - -
Y,. What does the output word equal for each of
these inputs?

a. X,X; - Xo = 10011

b. X X5 - X, = 01110

c. X X;---X,= 10101

d. X,X; -+ X, = 11100

X4 X X, X Xo
1

Ys 4] Y " | Yo

Fig. 3-36 Binary—to-Gray-code converter.

3-28.

3-29.

3-30.

How many input words are there in the truth table
of an 8-input XOR gate?

How can you modify Fig. 3-19 so that it produces
an 8-bit output word with even parity?

In the controlled inverter of Fig. 3-21, what is the
output word Y for each of these conditions?

a. A = 11001111 and INVERT = 0O
b. A = 0101 0001 and INVERT = |
c. A = 1110 1000 and INVERT = 1
d. A = 10100101 and INVERT = 0

3-31.

The inputs A and B of Fig. 3-37 produce outputs
of CARRY and SUM. What are the values of
"CARRY and SUM for"each of these inputs?

a. A=0andB =0
b. A=0andB = 1
c. A=1landB =0
d. A=1andB=1"
A 8
CARRY {
sum
Fig. 3-37
3-32. In Fig. 3-37, what is the boolean equation for
CARRY? For SUM?
3-33. What is the 1’s complement for each of these
numbers? _
a. 1100 0011
b. 1010 1111 0011
c. 1110 0001 1010 0011
d. 0000 1111 0010 1101 .
3-34. What is the output of a 16-input XNOR gate for

each of these input words?
a. 0000 0000 0000 1111
b. 11110101 1110 1100
c. 0101 1100 0001 0011
d. 11110000 1010 0110

Chapter 3 More Logic Gates 47

TTL Circuits

In 1964 Texas Instruments introduced transistor-transistor
logic (TTL), a widely used family of digital devices. TTL
is fast, inexpensive, and easy to use. This chapter concen-
_trates on TTL because once you are familiar with it, you
can branch out to other logic families and technologies.

4-1 DIGITAL INTEGRATED
CIRCUITS

Using advanced photographic techniques, a manufacturer
can produce miniature circuits on the surface of a chip (a
small piece- of semiconductor material). The finished net-
work is so small you need a microscope to see the
connections. Such a circuit is called an integrated circuit
(IC) because the components (transistors, diodes, resistors)
are an integral part of the chip. This is different from a
discrete circuit, in which the components are individually
connected during assembly.

Levels of Integration

Small-scale integration (SSI) refers to ICs with fewer than
12 gates on the same chip. Medium-scale integration (MSI)
means from 12 to 100 gates per chip. And large-scale
integration (LSI) refers to more than 100 gates per chip.
The typical microcomputer has its microprocessor, memory,
and I/O circuits on LSI chips; a number of SSI and MSI
chips are used to support the LSI chips.

Technologies and Families

The two basic technologies for manufacturing digital ICs
are bipolar and MOS. The first fabricates bipolar transistors
on a chip; the second, MOSFETS. Bipolar technology is
preferred for SSI and MSI because it is faster. MOS
technology dominates the LSI field because more MOSFETSs
can be packed on the same chip area.

A digital family is a group of compatible devices with
the same logic levels and supply voltages (‘‘compatible’

48

means that you can connect the output of one device to the
input Jf another). Compatibility permits a large number of.
different combinations. g

Bipolar Families
In the bipolar category are these basic families:

DTL Diode-transistor logic
TTL Transistor-transistor logic
ECL Emitter-coupled logic

DTL uses diodes and transistors; this design, once popular,
is now obsolete. TTL uses transistors almost exclusively;
it has become the most popular family of SSI and MSI

* chips. ECL, the fastest logic family, is used in high-speed

applications.

MOS Families

In the MOS category are these families:

PMOS p-Channel MOSFETs
NMOS n-Channel MOSFETs
CMOS Complementary MOSFETSs

PMOS, the oldest and slowest type, is becoming obsolete.

NMOS dominates the LSI field, being used for micropro-

cessors and memories. CMOS, a push-pull arrangement of
n- and p-channel MOSFETs, is extensively used where low.
power consumption is needed, as in pocket calculators,

digital wristwatches, etc.

4-2 7400 DEVICES

The 7400 series, a line of TTL circuits introduced by Texas
Instruments in 1964, has become the most widely used o~
all bipolar ICs. This TTL family contains a variety of S8
and MSI chips that allow you to build all kinds of digite"
circuits and systems. .

Fig. 4-1 Standard TTL NAND gate.

Standard TTL

Figure 4-1 shows a TTL NAND gate. The multiple-emitter
input transistor is typical of all the gates and circuits in the
7400 series. Each emitter acts like a diode; therefore, Q,
and the 4-k{} resistor act like a 2-input AND gate. The rest
of the circuit inverts the signal; therefore, the overall circuit
acts like a 2-input NAND gate.

The output transistors (Q; and Q) form a totem-pole
connection, typical of most TTL devices. Either one or the
other is on. When Q, is on, the output is high; when Q, is
on, the output is low. The advantage of a totem-pole
connection is its low output impedance.

Ideally, the input voltages A and B are either low
(grounded) or high (5 V). If A or B is low, Q, saturates.
This reduces the base voltage of Q, to almost zero.
Therefore; Q, cuts off, forcing Q4 to cut off. Under these
conditions, Q; acts like an emitter follower and couples a
high voltage to the output. '

On. the other hand, when both A and B are high, the

collector diode of Q, goes into forward conduction; this
forces Q, and Q, into saturation, producing a low output.
Table 4-1 summarizes all input and output conditions.
Incidentally, without diode D, in the circuit, Q; would
conduct slightly when the output is low. To prevent this,
the diode is inserted; its voltage drop keeps the base-emitter

TABLE 4-1.
TWO-

INPUT

NAND GATE
A B|Y
0 0|1
0 141
1 0f1.
1 110

diode of Q, reverse-biased. In this way, only Q, conducts
when the output is low.

Totem-Pole Output

Why are totem-pole transistors used? Because they produce
a low output impedance. Either Q, acts like an emitter
follower (high output) or Q, is saturated (low output).
Either way, the output impedance is very low. This is
important because it reduces the switching speed. In other
words, when the output changes from low to high, or vice
versa, the low output impedance implies a short RC"time
constant; this short time constant means that the output
voltage can change quickly from one state to the other.

Propagation Delay Time and Power Dissipation

Two quantities needed for our later discussions are power
dissipation and propagation delay time. A standard TTL
gate has a power dissipation of about 10 mW. It may vary
from this value because of signal levels, tolerances, etc.,
but on the average, it’s 10 mW per gate.

The propagation delay time is the amount of time it takes
for the output of a gate to change after the inputs have
changed. The propagation delay time of a TTL gate is in
the vicinity of 10 ns.

Device Numbgrs

By varying the design of Fig. 4-1 manufacturers can alter
the number of inputs and the logic function. The multiple-
emitter inputs and the totem-pole outputs are still used, no
matter what the design. (The only exception is an open
collector. discussed later.)

Table 4-2 lists some of the 7400-series TTL gates. For
instance, the 7400 is a chip withefour 2-input NAND gates
in one package. Similarly, the 7402 has four 2-input NOR
gates, the 7404 has six inverters, and so on.

TABLE 4-2. STANDARD TTL

Device number Description
7400 Quad 2-input NAND gates
7402 » Quad 2-input NOR gates
7404 Hex inverter
7408 Quad 2-input AND gates
7410 Triple 3-input NAND gates
7411 Triple 3-input AND gates
7420 Dual 4-input NAND gates
7421 Dual 4-input AND gates
7427 Triple 3-input NOR gates
7430 8-input NAND gate
7486 Quad 2-input XOR gates

Chapter 4 TTL Circuits 49

5400 Series

Any device in the 7400 series works over a temperature
range of 0% to 70°C and over a supply range of 4.75 to
5.25 V. This is adequate for commercial applications. The
5400 series, developed for the military applications, has
the same logic functions as the 7400 series, except. that it
works over a temperature range of —55 to 125°C and over
a supply range of 4.5 to 5.5 V. Although 5400-series
devices can replace 7400-series devices, they are rarely
used commercially because of their much higher cost.

High-Speed TTL

The circuit of Fig. 4-1 is called standard TTL. By decreasing
the resistances a manufacturer can lower the internal time
constants; this decreases the propagation delay time. The
smaller resistances, however, increase the power dissipa-
tion. This variation is known as high-speed TTL. Devices
of this type are numbered 74H00. 74HOL. 74H02, and so
on. A high-speed TTL gate has a power dissipation around
22 mW and a propagation delay time of approximately 6
ns.

Low-Power TTL

By increasing the internal resistances a manufacturer can
reduce the power dissipation of TTL gates. Devices of this
type are called low-power TTL and are numbered 74100,
74L01, 74L02, etc. These devices are slower than standard
TTL because of the larger internal time constants. A low-
power TTL gate has a power dissipation of approximately
I mW and a propagation delay time around 35 ns.

Schottky TTL

With standard TTL, high-speed TTL. and low-power TTL,
the transistors go into saturation causing extra carriers to
flood the base. If you try to switch this transistor from
saturation to cutoff, you have to wait for the extra carriers
to flow out of the base: the delay is known as the saturation
delay time.

One way to reduce saturation delay time is with Schottky
TTL. The idea is to fabricate a Schottky diode along with
each bipolar transistor of a TTL circuit. as shown in Fig.
4-2. Because the Schottky diode has a forward voltage of
only 0.4 V. it prevents the transistor from saturating fully.

Fig. 4-2 Schottky diode prevents transistor saturation.

850 Digital Computer Electronics

This virtually eliminates saturation delay time. which means
better switching speed. This variation is called Schotrky
TTL. the devices are numbered 74500, 74S01. 74S02, and
so forth.

Schottky TTL devices are very fast, capable of operating
reliably at 100 MHz. The 74S00 has a power dissipation
around 20 mW per gate and a propagation delay time of
approximately 3 ns.

Low-Power Schottky TTL

By increasing internal resistances as well as using Schottky
diodes manufacturers have come up with the best compro-
mise between low power and high speed: low-power Schottky
TTL. Devices of this type are numbered 74LS00, 74LS01,
74LS02, etc. A low-power Schottky gate has a power
dissipation of around 2 mW and a propagation delay time
of approximately 10 ns. as shown in Table 4-3.

Standard TTL and low-power Schottky TTL are: the
mainstays of the digital designer. In other words, of the
five TTL types listed in Table 4-3, standard TTL and low-
power Schottky TTL have emerged as the favorites of the
digital designers. You will see them used more than any
other bipolar types. :

4-3 TTL CHARACTERISTICS

7400-series devices are guaranteed to work reliably over a
temperature range of 0 to 70°C and over a supply range of
4.75 to 5.25 V. In the discussion that follows, worst case
means that the parameters (characteristics like maximum
input current, minimum output voltage, and so on) are
measured - under the worst conditions of temperature and
voltage—maximum temperature and minimum voltage for
some parameters, minimum temperature and maximum
voltage for others. or whatever combination produces the
worst values. :

Floating Inputs

When a TTL input is low or grounded, a current I
(conventional direction) exists in the emitter, as shown in

TABLE 4-3. TTL POWER-DELAY VALUES

Power, Delay time,
Type mW ns
l.ow-power 1 35
Low-power Schottky 2 10
Standard 10 10
High-speed 22 6
Schottky 20 3

f

fa)) [1J]

Open ._D&_
(high)
Open

fe) ’ (d)

=

Fig. 4-3 Open or floating input is the same as a high input.

Fig. 4-3a. On the other hand, when a TTL input is high
(Fig. 4-3b), the emitter diode cuts off and the emitter
current is approximately zero.

When a TTL input is floating (unconnected), as shown
in Fig. 4-3¢, no emitter current is possible. Therefore, a
floating TTL input.is equivalent to a high input. In other
words, Fig. 4-3¢ produces the same output as Fig. 4-3b.
This is important to remember. In building circuits any
floating TTL input will act like a high input.

Figure 4-3d emphasizes the point. The input is floating
and is equivalent to a high input; therefore, the output of
the inverter is low.

Fig. 4-4 TTL inverter.

Worst-Case Input Voltages

Figure 4-4 shows a TTL inverter with an input voltage of
V, and an output voltage of V,. When V, is 0 V (grounded),
the output voltage is high. With TTL devices, we can raise

V, t0.0.8 V and still have a high output. The maximum
low-level input voltage is designated V. Data sheets, list
thlS worst-case low input as

Ve =08V

Take the other extreme. Suppose V, is 5 V in Fig. 4-4.
This is a high input; therefore, the output of the inverter is
low. V, can decrease all the way down to 2 V, and the
output will still be high. Data sheets list this worst-case
high input as :

V=2V
In other words, any input voltage from 2 to 5 V is a high
input for TTL devices. '

Worst-Case Output Voltages

Ideally, O V is the low output, and 5 V is the high output.
We cannot attain these ideal values because of internal
voltage drops. When the output is low in Fig. 4-4, Q, is
saturated and has a small voltage drop across it. With TTL
devices, any voltage from 0 to 0.4 V is a low output.

When the output is high, Qs acts like an emitter follower.
Because of the drop across Qs;, D,, and the 130-() resistor,
the output is less than 5 V. With TTL devices, a high
output is between 2,4 and 3.9 V, depending on the supply
voltage, temperature, and load.

This means that the worst-case output values are

Voo = 0.4V Vou = 2.4V

Table 4-4 summarizes the worst-case values. Remember
that they are valid over the temperature range (0 to 70°C)
and supply range (4.75 to 5.25 V).

Compatibility

The values shown in Table 4-4 indicate that TTL devices
are compatible. This means that the output of a TTL device
can drive the input of another TTL device, as shown in
Fig. 4-5a. To be specific, Fig. 4-5b shows a low TTL
output (0 to 0.4 V). This is low enough to drive the second
TTL device because any input less than 0.8 V is a low
input.

TABLE 4-4. TTL STATES (WORST

CASE)
Output, V. Input, V
Low 0.4 0.8
High =~ 24 2

Chapter 4 TTL Circuits 51

T L T
i . devi
devu.:e Vo v vice
(a}
— +H$BV
13092
+5V -_—
- a3 4kQ
1.6 mA
- Q,
0to0.4V

Less than 0.8 V is low input

(b)

- +5V
130 Q
C 4BV -
- Qs $ aka
_ M a,
241039V
— Q,

More than 2 V is high inpu’:

fc)
Fig. 4-5 Sourcing and sinking current.

Similarly, Fig. 4-5¢ shows a high TTL output (2.4 to

3.9 V). This is more than enough to drive the second TTL '

because any input greater than 2 V is a high input.

Noise Margin

In the worst case, there is a margin of 0.4 V between the
driver and the load in Fig. 4-5b and c¢. This difference,
called the noise margin, represents protection against noise.
In other words, the connecting wire between a TTL driver
and a TTL load may pick up stray noise voltages. As long
as these induced voltages are less thar 0.4 V, we get no
false triggering of the TTL load.

Sourcing and Sinking
When a standard TTL output is low (Fig. 4-5b), an emitter

current of approximately 1.6 mA (worst case) exists in the

82 Digital Computer Electronics

direction shown. The charges flow from the emitter of Q,
to the collector of Q,. Because it is saturated, Q, acts like
a current sink; charges flow through it to ground like water
flowing down a drain. ' '

On the other hand, when a standard TTL output is high
(Fig. 4-5¢), a reverse emitter current of 40 wA (worst case)
exists in the direction shown. Charges flow from Q; to the
emitter of Q,. In this case, Qs is acting like a source.

Data sheets lists the worst-case input currents as

IIL =-‘l.6mA . 1,”‘——4OP4A

The minus sign indicates that the current is out of the
device; plus means the ‘current is into the device. All data
sheets use this convention.

Standard Loading

A TTL device can source current (high output) or it can
sink current (low output). Data sheets of standard TTL
devices indicate that any 7400-series device can sink up to
16 mA, designated as

IOL = 16 mA)
and can source up to 400 pA, designated
»IOH = —400 'LA

(Again, a minus sign means that the current is out of the
device and a plus sign means that it’s into the device.)

A single TTL load has a low-level input current of 1.6
mA (Fig., 4-5b) and a high-level input current of 40 pA
(Fig. 4-5¢). Since the maximum output currents are 10
times as large, we can connect up to 10 TTL emitters to
any TTL output.)

Figure 4-6a illustrates a low output. Here you see the
TTL driver sinking 16 mA, the sum of 10 TTL load
currents. In this state, the output voltage is guaranteed to
be 0.4 V or less. If you try connecting more than 10
emitters, the output voltage may rise above 0.4 V.

Figure 4-6b shows a high output with the driver sourcing
400 pA for 10 TTL loads of 40 pA each. For this maximum
loading, the output voltage is guaranteed to be 2.4 V or

‘more under worst-case conditions.

Loading Rules
The maximum number of TTL emitters that can be reliably

- driven under worst-case conditions is called the fanout.

With standard TTL, the fanout is 10, as shown in Fig.
4-6. Sometimes, we may want to use a standard TTL device
to drive low-power Schottky devices. In this case, the
fanout increases because low-power Schottky devices have
less input current.

.6 mA
1om TTL
device
1
16 mA 1.6 mA TTL
TTL device
device : 9
1.6mA '
" TTL
device
10
(a)
40
“A. TTL
device
1
. 400 uA 40 uA
TTL — D —— TTL
device device
2
|
|
1
40
“A, TTL
- device
10

(b)

Fig. 4-6 Fanout of standard TTL devices: (a) low output; (b)
high output.

By examining data sheets for the different TTL types we

can calculate the fanout for all possible combinations. Table
4-5 summarizes these fanouts, which may be useful if you
ever have to mix TTL types.

Read Table 4-5 as follows. The series numbers have
been abbreviated; 74 stands for 7400 series, 74H for 74H00
series, and so forth. Drivers are on the left and loads on

TABLE 4-5. FANOUTS

TTL TTL load ‘
driver 74 74H 74L 748 74LS
74 10 8 40 8 20
74H . 12 10 50 10 25
74L 2 1 20 1 10*
74S 12 10 100 10 50
74LS 5 4

40 4 20

the right. Pick the driver, pick the load, and read the fanout
at the intersection of the two. For instance, the fanout of a
standard device (74) driving low-power Schottky devices
(74LS) is 20. As another example, the fanout of a low-
power device (74L) driving high-speed devices (74H) is
only 1.

4-4 TTL OVERVIEW

Let’s take a look at the logic functions available in the
7400 series. This overview will give you an idea of the
variety of gates and circuits found in the TTL family. As
guide, Appendix 2 lists some of the 7400-series devices.
You will find it useful when looking for a device number
or logic function.

(a) “(b)

) fc) :
Fig. 4-7 Three, four, and eight inputs.

NAND Gates

To begin with, the NAND gate is the backbone of the entire
series. All devices in the 7400 series are derived from the
2-input NAND gate shown in Fig. 4-1. To produce 3-, 4-,
and 8-input NAND gates the manufacturer uses 3-, 4-, and
8-emitter transistors, as shown in Fig. 4-7. Because they
are so.basic, NAND gates are the least expensive devices in
the 7400 series.

NOR Gates

To get other logic functions the manufacturer modifies the
basic NAND-gate design. For instance, Fig. 4-8 shows a 2-
input NOR gate. Q,, Q,, Qs, and Q, are the same as in the
basic design. Qs and Q, have been added to produce oring.
Notice that Q, and Qg are in parallel, the key to the ORing
followed by inversion to get NORing.

vChapter‘gi TTL Circuits 53

4 +5V

4k

M9

4k 1.6 kﬂg 130

<

Fig. 4-8 TTL or gate.

When A and B are both low, Q, and Qs are saturated;
this cuts off Q, and Qg. Then Q; acts like an emitter
follower and we get a high output.

If A or B or both are high, Q, or Qs or both are cut off,
forcing Q, or Q4 or both to turn on. When this happens,
Q, saturates and pulls the output down to a low voltage.

With more transistors, manufacturers can produce 3- and
4-input NOR gates. (A TTL 8-input NOR gate is not available.)

AND and OR Gates

To produce the AND function, another common-emitter
stage is inserted before the totem-pole output of the basic
NAND gate design. The extra inversion converts the NAND
gate to an AND gate. Similarly, another CE stage can be
inserted before the tetem-pole output of Fig. 4-8; this
converts the NOR gate to an OR gate.

Buffer-Drivers

A buffer is a device that.isolates two other devices.
Typically, a buffer has a high input impedance and a low
output impedance. In terms of digital ICs, this means a low
input current and a high output current.

Since the output current of a standard TTL gate' can be
10 times the input current, a basic gate does a certain
amount of buffering (isolating). But it’s only when the
manufacturer optimizes the design for high output currents
that we call a device a buffer or driver.

As an example, the 7437 is a quad 2-input NAND buffer,
meaning four 2-input NAND gates optimized to get high
output currents. Each gate has the following worst-case
values of input and output currents: ’

IIL= —1.6mA 1]”=40}LA
IOL = 48 mA IOH = —1.2mA

854 Digital Computer Electronics

The input currents are the same as those of a standard NAND
gate, but the output currents are 3 times as high, which
means that the 7437 can drive heavier loads.

Appendix 2 includes several other buffer-drivers.

Y, !
iy
d
(a) (b)

Fig. 4-9 Seven-segment display.

Encoders and Decoders

A number of TTL chips are available for encoding and
decoding data. For instance, the 74147 is a decimal-to-
BCD encoder. It has 10 input lines (decimal) and 4 output
lines (BCD). As another example, the 74154 is a 1-of-16
decoder. It has 4 input lines (binary) and 16 output lines
(hexadecimal).

Seven-segment decoders (7446, 7447, etc.) are useful for
decimal displays. They convert a BCD nibble into an output
that can drive a seven-segment display. Figure 4-9a illus-
trates the idea behind a seven-segment LED display. It has
seven separate LEDs that allow you to display any digit
between 0 and 9. To display a 7, the decoder will turn on
LEDs a, b, and c (Fig. 4-9b).

Seven-segment displays are not limited to decimal num-
bers. For instance, in some microprocessor trainers, seven-
segment displays are used to indicate hexadecimal digits.
Digits A, C, E, and F are displayed in uppercase form;
digit B is shown as a lowercase b (LEDs ¢, d, e, f, g); and
digit D as a lowercase d (LEDs b, c, d, e, g).

Schmitt Triggers

When a computer is running, the outputs of gates are
rapidly switching from one state to another. If you look at
these signals with an oscilloscope, you see signals that
ideally resemble rectangular waves like Fig. 4-10a.

When digital signals are transmitted and later received,
they are often corrupted by noise, attenuation, or other
factors and may wind up looking like the ragged waveform
shown in Fig. 4-10b. If you try to use these nonrectangular
signals to drive a gate or other digital device, you get
unreliable operation.

This is where the Schmitt trigger comes in. It designed
to clean up ragged looking pulses, producing almost vertical

I T

fa)

(b)
Schmitt
: trigger

(c)
Fig. 4-10 Schmitt trigger produces rectangular output.

- L

%mﬂﬂﬂﬂﬂﬂ

B
28082,

L] L]

7 |GND

T_J

D> O

(b) fc)

Fig. 4-11 (a) Hex Schmitt-trigger inverters; (b) 4-input NAND
Schmitt trigger; (c) 2-input NAND Schmitt trigger.

E

i

transitions between the low and high state, and vice versa
(Fig. 4-10c). In other words, the Schmitt trigger produces
a rectangular output, regardless of the input waveform.

The 7414 is a hex Schmitt-trigger inverter, meaning six
Schmitt-trigger inverters in one package like Fig. 4-11a.
Notice the hysteresis symbol inside each inverter; it des-
ignates the Schmitt-trigger function.

Two other TTL Schmitt triggers are available. The 7413
is a dual 4-input NAND Schmitt trigger, two Schmitt-trigger
gates like Fig. 4-11b. The 74132 is a quad 2-input NAND
Schmitt trigger, four Schmitt-trigger gates like Fig. 4-11c.

Other Devices

The 7400 series also includes a number of other devices
that you will find useful, such as AND-OR-INVERT gates

(discusée'd in the next section), latches and flip-flops (Chap.
7), registers and counters (Chap. 8), and memories (Chap.
9).

4-5 AND-OR-INVERT GATES

Figure 4-12a shows an AND-OR circuit. Figure 4-12b shows
the De Morgan equivalent circuit, a NAND-NAND network.
In either case, the boolean equation is

Y =AB + CD (4-1)

Since NAND gates are the preferred TTL gates, we*would
build the circuit of Fig. 4-12b. NAND-NAND circuits like

“this are important because with them you can build any

desired logic circuit (discussed in Chap. 5).

TTL Devices

Is there any TTL device with the output given by Eq. 4-1?
Yes, there are some AND-OR gates but they are not easily
derived from the basic NAND-gate design. The gate that is
easy to derive and comes close to having an expression like
Eq. 4-1 is the AND-OR-INVERT gate shown in Fig. 4-12c.
In other words, a variety of circuits like this are available
on chips. Because of the inversion, the output has an
equation of

Y =AB +'CD 4-2)
A—
8 F_)——l
— D
C |
O

(a)

]

cT

D —vq

¥

(b) .

A

8 ——

_—

o
Y

(c)

Fig. 4-12 (a) AND-OR circuit; (b) NAND-NAND circuit; (¢) AND-

OR-INVERT circuit.

Chapter 4 TTL Circuits 55

4k 4kQ 1.6 k2

AN

Fig. 4-13 AND-OR-INVERT schematic diagram.

Figure 4-13 shows the schematic diagram of a TTL AND-
OR-INVERT gate. Q,, Q,, Qs, and Q, form the basic 2-input
NAND gate of the 7400 series. By adding Qs and Qg we
convert the basic NAND gate to an AND-OR-INVERT gate.

Q, and Qs act like 2-input AND gates; Q, and Qg produce
oring and inversion. Because of this, the circuit is logically
equivalent to Fig. 4-12c.

In Table 4-6, listing the AND-OR-INVERT gates available

in the 7400 series, 2-wide means two AND gates across, 4- .

wide means four AND gates across, and so cn. For instance,
the 7454 is a 2-input 4-wide AND-OR-INVERT gate like Fig.
4-14a; each AND gate has two inputs (2-input) and there

are four AND gates (4-wide). Figure 4-14b shows the 7464;

it is a 2-2-3-4-input 4-wide AND-OR-INVERT gate.

When we want the output given by Eq. 4-1, we can
connect the output of a 2-input 2-wide AND-OR-INVERT gatg
to another inverter. This cancels out the'internal inversion,
giving us the equivalent of an AND-OR circuit (Fig. 4-12a)
or a NAND-NAND network (Fig. 4-12b).

Expandable AND-OR-INVERT Gates

Thie widest AND-OR-INVERT gate available in the 7400 series
is 4-wide. What do we do when we need a 6- or 8-wide
circuit? One solution is to use an expandable AND-OR-
INVERT gate.

TABLE 4-6. AND-OR-INVERT GATES

Device Description

7451 Dual 2-input 2-wide
7454 2-input 4-wide

7459 Dual 2-3 input 2-wide
7464 2-2-3-4 input 4-wide

56 Digital Computer Electronics

L L

[A*a]

~

(a

| >—

Lo 1

L L

(h)
Fig. 4-14 Examples of AND-OR-INVERT circuits.

Figure 4-15a shows the schematic diagram of an ex-
pandable AND-OR-INVERT gate. The only difference between
this and the preceding AND-OR-INVERT gate (Fig. 4-13) is
collector and emitter tie points brought outside the package.
Since Q, and Qs are the key to the ORing operation, we are
being given access to the internal ORing function. By
connecting other gates to these new inputs we can expand
the width of the AND-OR-INVERT gate.

Figure 4-15b shows the logic symbol for an expandable-
AND-OR-INVERT gate. The arrow input represents the emitter,

-and the bubble stands for the collector. Table 4-7 lists the

expandable AND-OR-INVERT gates in the 7400 series.

Expanders

What do we connect to the collector and emitter inputs of
an expandable gate? The ocutput of an expander like Fig.
4-16a. The input transistor acts like a 4-input AND gate.
The output transistor is a phase splitter; it produces two

TABLE 4-7. EXPANDABLE AND-OR-
INVERT GATES

Device Description

7450 Dual 2-input 2-wide
7453 2-input 4-wide
7455 4-input 2-wide

Collector

1.6k 1309

< <

AA—$

&-

Emitter

(a)
Fig. 4-15 (a) Expandable AND-OR-INVERT gate; (b) logic symbol.

Emitter

(a)

L]

HigHy.

e
Fig. 4-16 (a) Expander; (b) symbol for expander: (¢) expander
-driving expandable AND-OR-INVERT gate; (d) AND-OR-INVERT cir-
cuit; (e) expandable AND-OR-INVERT with two expanders.

output signals, one in phase (emitter) and the other invertéd
(collector). Figure 4-16b shows the symbol of a 4-input
expander.

Visualize the outputs of Fig. 4-16a connected to the
collector and emitter inputs of Fig. 4-15a. Then Qg is in
parallel with Q, and Q. Figure 4-16c shows the logic
circuit. This means that the expander outputs are being
ored with the signals of the AND-OR-INVERT gate. In other

Collector

(d)

+5V

Collector

Emitter

(b)

Collector

Emitter

—
—

(b)

.“ H%;

!
§

:

(e)

words, Fig. 4-16c is equivalent to the AND-OR-INVERT
circuit of Fig. 4-16d.

We can connect more expanders. Figure 4-16¢ shows
two expanders driving the expandable gate. Now we have
a 2-2-4-4-input 4-wide AND-OR-INVERT circuit.

The 7460 is a dual 4-input expander. The 7450, a dual
expandable AND-OR-INVERT gate, is designed for use with
up to four 7460 expanders. This means that we can add
two more expanders in Fig. 4-16e to get a 2-2-4-4-4-4-
input 6-wide AND-OR-INVERT circuit.

Chapter 4 TTL Circuits 57

4-6 OPEN-COLLECTOR GATES

Instead of a totem-pole output, some TTL devices have an
open-collector output. This means they use only the lower
transistor of a totem-pole pair. Figure 4-17a shows a 2-
input NAND gate with an open-collector output. Because
the collector of Q, is open, a gate like this won’t work
properly until you connect an external pull-up resistor,

-

shown in Fig. 4-17b.

Pull-up
resistor

(b)
Fig. 4-17 Open-collector TTL: (a) circuit; (b) with pull-up resistor.

" .—._The outputs of open-collector gates can be wired together

" and connected to a. common pull-up resistor. This is known
as WIRE-OR. The big disadvantage of open-collector gates
is their slow switching speed.

Open-collector gates are virtually obsolete because a new
device called the three-state switch appeared in the early
1970s. Section 8-8 discusses three-state switches in detail.

4-7 MULTIPLEXERS

Muitiplex means ‘‘many into one.” A multiplexer is a
circuit with many inputs but only one output. By applying
control signals we can steer any input to the output.

58 Digital Computer Electronics

Data Selection

Figure 4-18 shows a 16-to-1 multiplexer, also called a data
selector. The input data bits are D, to D,s. Only one of
these is transmitted to the output. Control word ABCD
determines which data bit is passed to the output. For
instance, when

ABCD = 0000

the upper AND gate is enabled but all other AND gates are
disabled. Therefore, data bit Dy, is transmitted to the output,
giving ’

Y = D,

If the control word is changed to
ABCD = 1111

the bottom gate. is enabled and all other gates are disabled.
In this case,

Y =Dy

Boolean Function Generator

Digital design often starts with a truth table. The problem
then is to come up with an equivalent logic circuit.’
Multiplexers give us a simple way to transform a truth table
into an equivalent logic circuit. The idea is to use input
data bits that are equal to the desired output bits of the
truth table.

For example, look at the truth table of Table 4-8. When
the input word ABCD is 0000, the output is 0; when ABCD

. TABLE 4-8
A B C DY
0 0 0 0/0O0
0 0 0 1]1
0 01 0}0
0O 0 1 1]0
0 1 0 070
0O 1 0 1]0
0 1 1 01
o I 1 17]1
1 0 0 0O
1 0 0 1|0
1 01 0]0
1 0 1 1|0
1 1 0 00
1 1 0 1]60
1-1 1 0}]1
1 1 1 1]|0

)
Dg
)
b |/
1
T\
b L/
2
)
b -y
3
T\
D4
)
b |/
5 .
- =

A

(

Dy

Dy

U U

Dys

Fig. 4-18 A 16-to-1 multiplexer.

Chapter 4 TTL Circuits 59

— >
—
— o
— O

O -0

o

16to 1
data selector/
multiplexer

—_—

O - 000000~ -=00

Fig. 4-19 Generating a boolean function.

= 0001, the output is 1; when ABCD = 0010, the output
is 0; and so on. Figure 4-19 shows how to set up a
multiplexer with the foregoing truth table. When ABCD
"= 0000, data bit 0.is steered to the output; when ABCD
= 0001, data bit 1 is steered to the output; when ABCD
= 0010, data bit 0.is steered to the output; and so forth.
As a result, the truth table of this circuit is the same as
Table 4-8.

Universal Logic Circuit

The 74150 is a 16-to-1 multiplexer. This TTL device is a
universal logic circuit because you can use it to get the
hardware equivalent of any four-variable truth table. In
other words, by changing the input data bits the same IC
can be made to generate thousands of different truth tables.

Multiplexing Words

Figure 4-20 illustrates a word multiplexer that has two input
words and one output word. The input word on the left is
L;L,L,L, and the one on the right is R;R.RR,. The control
signal labeled RIGHT selects the input word that will be
transmitted to the output. When RIGHT is low, the four
NAND gates on the left are activated; therefore,

OUT = L,L,LL
When RIGHT is high,
OUT = R3R2R|R0

The 74157 is TTL multiplexer with an equivalent circuit
like Fig. 4-20. Appendix 2 lists other multiplexers available
in the 7400 series.

Ly L2‘ Ly Ly Ry R, Ry Ry
RIGHT [‘ l’ I i g | & l
‘ outr -
Fig. 4-20 Nibble multiple' r.
GLOSSARY

bipolar Having two types of charge carriers: free electrons
and holes. o

chip A small piece of semiconductor material. Sometimes,
chip refers an IC device including its pins.

- 60 Digital Computer Electronics -

fanout The maximum number of TTL loads that a TTL
device can drive reliably over the specified temperature
range.

low-power Schottky TTL A modification of standard TTL

in which larger resistances and Schottky diodes are used.
The increased resistances decrease the power dissipation,
and the Schottky diodes increase the speed.

multiplexer A circuit with many inputs but only one
output. Control signals select which input reaches the output.
noise margin The amount of noise voltage that causes
unreliable operation. With TTL it is 0.4 V. As long as
noise voltages induced on connecting lines ‘are less than
0.4 V, the TTL devices will work reliably.

saturation delay time The time delay encountered when
a transistor tries to come out of the saturation region. When
the base drive switches from high to low, a transistor cannot
instantaneously come out of saturation; extra carriers that
flooded the hase region must first flow out of the base.

Schmitttrigger A digital circuit that produces a rectangular
output from any input large enough to drive the Schmitt
trigger. The input waveform may be sinusoidal, triangular,
distorted, and so on. The output is always rectangular.
sink A place where something is absorbed. When satu-
rated, the lower transistor in a totem-pole output acts like
a current sink because conventional charges flow through
the transistor to ground.

source A place where something originates. The upper
transistor of a totem-pole output acts like a source because
charges flow out of its emitter into the load.

- standard TTL The initial TTL design with resistance

values that produce a power dissipation of 10 mW per gate
and a propagation delay time of 10 ns.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. Small-scale integration, abbreviated | re-

fers to fewer than 12 gates on the same chip.
 Medium-scale integration (MSI) means 12 to 100

gates per chip. And large-scale integration (LSI)

refers to more than gates per chip.

2. (8SI, 100) The two basic technologies for digital
ICs are bipolar and MOS. Bipolar technology is
preferred for and whereas
MOS technology is better suited to LSI. The reason
MOS dominates the LSI field is that more
can be fabricated on the same chip area.

3. (SSI, MSI, MOSFETs) Some of the bipolar families
include DTL, TTL, and ECL. has be-
come the most widely used bipolar family.
is the fastest logic family; it’ s used in high-speed
applications. - '

4, (TTL, ECL) Some of the MOS families are PMOS,
NMOS, and CMOS. dominates the LSI
field, and is used extensively where
lowest power consumption is necessary.

5. (NMOS, CMOS) The 7400 series, also called stan-
dard TTL, contains a variety of SSI and
chips that allow us to build all kinds of digital
circuits and systems. Standard TTL has a multiple-
emitter input transistor and a output.
The totem-pole output produces a low output
impedance in either state.

6. (MSI, totem-pole) Besides standard TTL, there is
high-speed TTL, low-power TTL, Schottky TTL,
and low-power TTL. Standard TTL and
low-power TTL have become the favor-
ites of digital designers, used more than any other
bipolar families.

7. (Schottky, Schottky) 7400-series devices are guaran-
teed to work reliably over a range of 0
to 70°C and over a voltage range of 4.75t0 5.25 V.
A floating TTL ‘input has the same effect as a

input.

8. (temperature, high) A TTL device can
sink up to 16 mA and can source up to 400 pA.
The maximum number of TTL loads a TTL device
can drive is called the . With standard
TTL, the fanout equals

9. (standard, fanout, -10) A buffer is a dev1ce that
isolates other devices. Typically, a buffer has a high
input impedance and a output imped-
ance. In terms of digital ICs, this means a
input current and a high output current capability.

10. (Jow, low) A Schmitt trigger is a digital circuit that
produces a output regardless of the in-
put waveform. It is used to clean up ragged looking
pulses that have been distorted during transmission
from one place to another.

11. (rectangular) A multiplexer is a circuit with many
inputs but only one output. It is also called a data
selector because data can be steered from one of the
inputs to the output. A 74150 is a 16-to-1 multi-
plexer. With this TTL device you can implement
the logic circuit for any four-variable truth table.

Chapter 4 TTL Circuits 61

PROBLEMS

Fig. 4-21

4-1. In Fig. 4-21 a grounded input means that almost
the entire supply voltage appears across the 4-k2
resistor. Allowing 0.7 V for the emitter-base volt-
age of Q,, how much input emitter current is there
with a grounded input? The supply voltage can be
as high as 5.25 V and the 4-k() resistance can be a
low as 3.28 k(). What is the input emitter current
in this case? :

4-2. What is the fanout of a 74500 device when it
drives low-power TTL loads?

4-3. What is the fanout of a low-power Schottky device
driving standard TTL devices? -

62 Digital Computer Electronics

4-4. Section 4-4 gave the input and output currents for a
7437 buffer. What is the fanout of a 7437 when it
drives standard TTL loads?

Y, !
£
d
{a) (b)

Fig. 4-22

4-5. A seven-segment decoder is driving a LED display
like Fig. 4-22a. Which LEDs are on when digit 8
appears? Which LEDs are on when digit 4 ap-
pears?

4-6. Section 4-7 described the 74150, a 16-to-1 multi-
plexer. Refer to Fig. 4-23 and indicate the values
the D, to D5 inputs of a 74150 should have to
reproduce the following truth table: The output is
high when ABCD = 0000, 0100, 0111, 1100, and
1111; the output is low for all other inputs.

1 [

Do

D,

D,

D3

Dy

Dg

Dg

Dy

Dg

ng

Dy

Dy

Dy

Dyg

Dy

Dqs

ig. 4-23

Chapter 4 TTL Circuits 63

Boolean A
Kama

ebra and
Maps

This chapter discusses boolean algebra and Karnaugh maps,
topics needed by the digital designer. Digital design usually
begins by specifying a desired output with a truth table.
The question then is how to come up with a logic circuit
that has the same truth table. Boolean algebra and Karnaugh
maps are the tools used to transform a truth table into a
practical logic circuit.

5-1 BOOLEAN RELATIONS

What follows is a discussion of basic relations in boolean
algebra. Many of these relations are the same as in ordinary
algebra, which makes remembering them easy.

Commutative, Associative, and
Distributive Laws

Given a 2-input OR gate, you can transpose the input signals
without changing the output (see Fig. 5-1a). In boolean
terms

A+B=B+A o (5-D
Similarly, you can transpose the input signals to a 2-input
AND - gate without affecting the output (Fig. 5-1b). The
boolean equivalent of this is
AB = BA (5-2)
The foregoing relations are called commutative laws.
The next group of rules are called the associative laws.

The associative law for ORing is

A+B+0O=A+B+C (5-3)

64

A B
= Y
(a)
A 8
= Y
B:D_Y A:D_
(b)
A A -
8 Y -
(c)
c & (o
(d)
B
A
B Y = A Y
C \

(e)
Fig. 5-1 Commutative, associative, and distributive laws.

Figure 5-1c illustrates this rule. The idea is that how you
group variables in an ORing operation has no effect on the
output. For either gate in Fig. 5-1c the output is

Y=A+B+C

Similarly, the associative law for ANDing is
A(BC) = (AB)C (5-4)

Figure 5-1d illustrates this rule. How you group variables
in ANDing operations has no effect on the output. For either
gate of Fig. 5-1d the output is

Y = ABC
The distributive law states that
AB + C) = AB + AC (5-5)

This is easy to remember because it's identical to ordinary
algebra. Figure 5-1¢ shows the meaning in terms of gates.

OR Operations
The next four boolean relations are about OR operations.
Here is the first:

A+0=A (5-6)

This says that a variable Ored with O equals the variable.
For better grasp of this idea, look at Fig. 5-2a. (The solid
arrow stands for ‘‘implies.’”) The two cases on the left
imply the case on the right. In other words, if the variable
is 0, the output is O (left gate); if the variable is I, the
output is 1 (middle gate); therefore, a variable OrRed with
0 equals the variable (right gate).

0 and

0 and

1 and

Fig. 5-2 or relations.

-
-1 >
o = o
1 >

Another boolean relation is
A+A=4 (5-7)

which is illustrated in Fig. 5-2b. You can see what happens.
If A is 0, the output is 0; if A is 1, the output is 1; therefore,
a variable ored with itself equals the variable.

Figure 5-2¢ shows the next boolean rule:

A+1=1 (5-8)

In a nutshell, if one input to an OR gate is 1, the output is
1 regardless of the other input.
Finally, we have

A+A=1 5-9

shown in Fig. 5-2d. In this case, a variable ORed with its
complement equals 1.

AND Operations

The first AND relation to know about is
A-1=A4A (5-10)

illustrated in Fig. 5-3a. If A is 0, the output is 0; if A'is' I,
the output is 1; therefore, a variable ANDed with 1 equals
the variable.

Another relation is

A-A=A ' (5-11)

Chapter 5 Boolean Algebra and Karnaugh Maps 685

0 — 11—

0 and
1 —)

0 and

0 —v
0 and
1 —

0 —

Ba

g O =~
Dy
By

LL’J

(a)

v

(b)

6

(c)

.

Fig. 5-3 AND relations.

shown in Fig. 5-3b. In this case, a variable ANDed with

itself equals the variable.
Figure 5-3¢ illustrates this relation
A-0=0 (5-12)

The rule is clear. If one input to an AND gate is O, the
output is O regardless of the other input.

The last AND rule is
AA=0 (5-13)

As shown in Fig. 5-3d, a variable ANDed with its comple-
ment produces a 0 output.

Double Inversion and De Morgan's Theorems

The double-inversion rule is

=A

|

(5-14)

which says that the double complement of a variable equals
the variable. Finally, there are the De Morgan theorems
discussed in Chap. 3:

(5-15)
(5-16)

ATE=AF
AB=A+B

You should memorize Egs. 5-1 to 5-16 because they are
used frequently in design work.

68 Digital Computer Electronics

(d)

A —

] —

e
BS
j_

Duality Theorem

We state the duality theorem without proof. Starting with
a boolean relation, you can derive another boolean relation
by

1. Changing each OR sign to an AND sign

2. Changing each AND sign to an OR sign

3. Complementing each 0 and 1

For instance, Eq. 5-6 says that
A+0=A

The dual relation is

This is obtained by changing the OR sign to an AND sign;
and by complementing the O to get a 1.

The duality theorem is useful because it sometimes
produces a new boolean relation. For example, Eq. 5-5
states that

AB + C) = AB + AC

By changing each OR and AND operation we get the dual
relation ’

A+BC=(A+B)A+C)

This is a new boolean relation, not previously discussed.
(If you want to prove it, construct the truth table for the

left and right members of the equation. The two truth tablés
will be identical.)

Summary

For future reference, here are some' boolean relanom and
their duals:

A+B=B+A AB = BA

A+B+C=@A+B)+C A(BC) = (AB)C
AB +C) = A+ BC =

AB + AC (A+ BXA+ O
A+0=4 A-1=A
A+1=1 A-0=0
A+A=A AA = A
A+A=1 AA =0
A=A A=A

A+ B =AB AB=A+B
A+ AB =A AA +B) = A
A+AB=A+B AR + B) = AB

5-2 SUM-OF-PRODUCTS METHOD

Digital design often starts by constructing a truth table with
a desired output (0 or 1) for each input condition. Once
you have this truth table, you transform it into an equivalent
-logic circuit. This section discusses the sum-of-products
method, a way of deriving a logic circuit from a truth table.

A— __ A _
_ AB AB
58— B—

(a) ’ (b)
A _ A |
_ - AB AB
B—— 58—

(c) (d)

Fig. 5-4 Fundamental products.

Fundamental Products

Figure 5-4 shows the four possible ways to AND two input
signals_and their complements. In Fig. 5-4a the inputs are
A and B. Therefore, the output is

Y =AB
The output is high only when A = O and B = 0.

Figure 5-4b shows another possibility. Here the inputs
are A and B; so the output is

TABLE 5-1. TWO VARIABLES

Fundamental product

AB
AB
AB

—_——_ 0 o | »

B
0 AB
1
0
1

In this case, the output is | only when A =0andB = 1.
In Fig. 5-4¢ the inputs are A and B. The output

is high only when A = 1 and B = 0. Finally, in Fig.
5-4d the inputs are A and B. The output

Y = AB

is | only whenA = | and B = |.

Table 5-1 summarizes the four possible ways to AND two
signals in complemented or uncomplemented form. The
logical prcductsZE AB. AB. and AB are called fundamental
products because each produces a high output for its
corresponding input. For instance. ABis a | when A is 0

and Bis0, ABisa | whenA is 0 and B is 1, and so forth.

Three Variables

A-similar idea applies to three signals in complemented and
uncomplemented form. Given A. B, C, and their comple-

ments, there are eight fundamental products: ABC. ABC.
ABC. ABC, ABC. ABC, ABC. and ABC. Table 5-2 lists
each input possibility and its fundamental product. Again
notice this property: each fundamental product is high for
the corresponding input. This means that ABC isa | when
Ais0.Bis 0. and Cis 0: ABC is a | when A is 0. B is
0, and C is 1; and so on. '

TABLE §-2. THREE VARIABLES

Fundamental product

ABC
ABC
ABC
ABC
ABC
ABC
ABC
ABC

—_—_ —_ —_ 00O |»

B
0
0
1
1
0
0
1
|

—_0 — O -0 — O (o)

Chapter 5 Boolean Algebra and Karnaugh Maps 67

Four Variables

When there are 4 input variables, there are 16 possible
. input conditions, 0000 to 1111. The corresponding funda-
mental products are from ABCD through ABCD. Here is
a quick way to find the fundamental product for any input
condition. Whenever the input variable is 0, the same
variable is complemented in the fundamental product. For
instance, if the input condition is 0110, the fundamental
product is ABCD. Similarly, if the input is 0100, the

fundamental product is ABCD.

Deriving a Logic Circuit

To get from a truth table to an equivalent logic circuit OR

the fundamental products for each input condition that
produces a high output. For example, suppose you have a
truth table like Table 5-3. The fundamental products are
listed for each high output. By oOring these products you
get the boolean equation

' ¥ =ABC + ABC + ABC + ABC (5-17)
This equation implies four AND gates driving an OR gate.
The first AND gate has inputs of A, B, and C; the second
AND gate has inputs of A, B, and C; the third AND gate has
inputs of A, B, and C; the fourth AND gate has inputs of
A, B, and C. Figure 5-5 shows the corresponding logic
circuit. This AND-OR circuit has the same .truth table as
Table 5-3.

As another example of the sum-of-products method, look
at Table 5-4. Find each output 1 and write its fundamental
product. The resulting products are ABCD, ABCD, and
ABCD. This means that the boolean equation is

Y = ABCD + ABCD + ABCD (5-18)
This equation implies that three AND gates are driving an
OR gate. The first AND gate has inputs of A, B, C, and D;
the second has inputs of A, B, C, and D; the third has

()

)

Fig. 5-5 Sum-of-products circuit.

68 Digital Computer Electronics

TABLE 5-3 TABLE 5-4
A B Y A B CD|Y
0 0 0| O 0 0 0 00
00 1| 0 - 00 0 10
0 1 0| 1—>ABC 0 01 0f0
01 1] 0 0 0 1 1]1
1 0 0| 0 0 1 0 00
1 0 1| 1—-ABC 0 1 0 10
1 1 0! 1-A4BC 0 1°1 00
1 1 1| 1-ABC 0 1L 1 1|1
1 0 0 0[O0
1 0 0 1|1
1 01 00
170 1 1]0
1 1 0 00
1 1 0 10
1 1 1 0/0
1 1 1 1[0

Fig. 56

inputs of A, B, C, and D. Figure 5-6 is the equivalent logic
circuit.

The sum-of-products method always works. You OR the
fundamental products of each high output in the truth table.
This gives an equation which you can transform into an
AND-OR network that is the circuit equivalent of the truth
table.

5-3 ALGEBRAIC SIMPLIFICATION

After obtaining a sum-of-products equation as described in
the preceding section, the thing to do is to simplify the
circuit if possible. One way to do this is with boolean
algebra. ‘Here is the approach. Starting with the boolean
equation for the sum-of-products circuit, you try to rearrange
and simplify the equation as much as possible using the
boolean rules of Sec. 5-1. The simplified boolean equation
means a simpler logic circuit. This section will give you
examples. :

WU

(a)

(b)
Fig. 5-7

Gate Leads

A preliminary guide for comparing the simplicity of one
logic circuit with another i$ to count the number of input
gate leads, the circuit with fewer input gate leads is usually
easier to build. For instance, the AND-OR circuit of Fig.
5-7a has a total of 15 input gate leads (4 on each AND gate
and 3 on the OR gate). The AND-OR circuit of Fig. 5-7b,
on the. other hand, has a total of 9 input gate leads. The
AND-OR circuit of Fig. 5-7b is simpler than the AND-OR
circuit of Fig. 5-7a because it has fewer input gate leads.

A bus is a group of wires carrying digital signals. The
8-bit bus of Fig. 5-7a transmits variables A, B, C, D and
their complements A, B, C, and D. In the typical micro-
computer, the microprocessor, memory, and I/O units
exchange data by means of buses.

Factoring to Simplify

One way to reduce the number of input gate leads is to
factor the boolean equation if possible. For instance, the
boolean equation

Y = AB + AB (>-19)
has the equivalent logic circuit shown in Fig. 5-8a. This

circuit has six input gate leads. By factoring Eq. 5-19 we
get

Y = AB + B)

(a)

(b)

—Y—b

(c)
Fig. 5-8

The equivalent logic circuit for this is shown in Fig. 5-8b;
it has only four input gate leads.

Recall that a variable OrRed with its complement always
equals 1; therefore,

Y=AB +B)=A-1=4

To get this output, all we need is a connecting wire from
the input to the output, as shown in Fig. 5-8c. In other
words, we don’t need any gates at all.

Another Example

Here is another example of how factoring can simplify a
boolean equation and its corresponding logic circuit. Sup-
pose we are given

Y = AB + AC + BD + CD (5-20)
In this equation, two variables at a time are being ANDed.
The logical products are then ORed to get the final output.
Figure 5-9a shows the corresponding logic circuit. It has
12 input gate leads.

We can factor and rearrange Eq. 5-20 as

~

Y=AB +C) + DB + O

Chapter 5 BooleahAlgebra and Karnaugh Maps 69

3

}

|
';D_j__
>

(b)

Fig. 5-9

or as
Y=(A+D)XB + C) (5-21)

In this case, the variables are first OrRed, then the logical
sums are ANDed. Figure 5-9b illustrates the logic circuit.
Notice it has only six input gate leads and is simpler than
the circuit of Fig. 5-9a.

Final Example

In Sec. 5-2 we derived this sum-of-products equation from
a truth table:
Y = ABCD + ABCD + ABCD (5-22)

Figure 5-7a shows the. sum-of-products circuit. It has 15
input gate leads. We can factor the equation as

Y = ACDB + B) + ABCD
or as
Y = ACD + ABCD (5-23)

Figure 5-7b6 shows the equivalent logic circuit; it has only
nine input gate leads.

70 Digital Computer Electronics

In general, one approach in digital design is to transform
a truth table into a sum-of-products equation, which you
then simplify as much as possible to get a practical logic
circuit.

5-4 KARNAUGH MAPS

Many engineers and technicians don’t simplify equations
with boolean algebra. Instead, they use a method based on
Karnaugh maps. This section tells you how to construct a’
Karnaugh map.

B 8 B B B B
A A A
A Al Al 1 o
(a) (b) (c)
B B B 8
Alo o Alo 1
Al 1 o Al1 o

(d) (e)
Fig. 5-10 Two-variable Karnaugh map.

Two-Variable Map

Suppose you have a truth table like Table 5-5. Here’s how
to construct the Karnaugh map. Begin by drawing Fig.
5-10a. Note the order of the variables and their complements;
the vertical column has A followed by A, and the horizontal
row has B followed by B.

Next, look for output 1s in Table 5-5. The first 1 output
to appear is for the input of A = 1 and B = 0. The
fundamental product for this is AB. Now, enter a 1 on the
Karnaugh map as shown in Fig. 5-10b. This 1 represents
the product AB because the 1 is in the A row and the B
column.

Similarly, Table 5-5 has an output 1 appearing for an
input of A = 1 and B = 1. The fundamental product for
this is AB. When you enter a 1 on the Karnaugh map to
represent AB, yoh get the map of Fig. 5-10c.

The final step in the construction of the Karnaugh map
is to enter Os in the remaining spaces. Figure 5-10d shows
how the. Karnaugh map looks in its final form.

Here’s another example of a two-variable map. In the
truth table of Table 5-6, the fundamental products are AB
and AB. When Is are entered on the Karnaugh map for
these products and Os for the remaining spaces, the com-
pleted map looks like Fig. 5-10e.

- TABLE 5-5 TABLEV 5-6

A B|Y A B|Y

0 0f0 0 ofo

0 1.10 0 111

1 01 1 01

1 1411 1 110
c ¢ c ¢ c ¢
AB AB AB| 0o o
AB AB | 1 AB| 1 ©
AB Al 1.1 Al 1 1
AB AB AB| 0o o

(a) (b) : (c)

Fig. 5-11 Three-variable Karnaugh map.

Three-Variable Map

Suppose you have a truth table like Table 5-7. Begin by
drawing Fig. 5-11a. It is especially important to notice the
order of the variables and their complements. The vertical
column is labeled KE, AB, AB, and AB. This order is not
a binary progression; instead it follows the order of 00, 01,
11, and 10. The reason for this is explained in the derivation
of the Karnaugh method; briefly, it’s done so that only one
variable changes from complemented to uncomplemented
form (or vice versa).

Next, lock for output s in Table 5-7. The fundamental
products for these 1 outputs are ABC, ABC, and ABC.
Enter these 1s on the Karnaugh'map (Fig. 5-11b). The final
step is to enter Os in the remaining spaces (Fig. 5-11c).
This Karnaugh map is useful because it shows the funda-
mental products needed for the sum-of-products circuit.

TABLE 5-7

—_———0 00O |
——~oo;-—oo]
—o—omo=—o |8
I'--»—-ooo—-c'>0|.~<l

¢D CD €D CD Cb Cp ¢D ¢D

AB » AB 1
AB AB 11
AB A. AB 1
AB AB

.

(a) . ' (b)

¢O Cb ¢cD CcD

ABl'0 1 0 o
ABl 0O o 1 1~

AB | 0 0 0 1

AB 0.0 0 0

fc)
Fig. -5-12 Four-variable Karnaugh map.

Four-Variable Map

Many MSI. circuits process binary words of 4 bits each
(nibbles). For this reason, logic circuits are often designed
to handle four variables (or their complements). This is
why the four-variable map is the most important.

Here’s an example of constructing a four-variable map.
Suppose you have the truth table of Table 5-8. The first
step is to draw the blank map of Fig. 5-12a. Again, notice

the progression. The vertical column is labeled AB, AB,

TABLE 5-8

A B C D|Y
0 0 0 00
0 0 0 1]1
0.0 1°0[0
00 1 1[0
01 0 0/0
01 0 10
01 1 01
0.1 1 1]1
1-0 0 00
1 0 0 1]0
1 01 0f0
1 0 1 1]0
1 1 0 0fo0
1 1 0 L]0
1 1 1 0]1
1 1 1 10

Chapter 5 Boolean Algebra and Kafnaugh Maps 71

AB, and AB. The horizontal row is labeled CD, CD, CD,
and CD. , , '

In Table 5-8 the output 1s have these fundamental
products: ABCD, ABCD, ABCD, and ABCD. After entering
Is on the Karnaugh map, you will have Fig. 5-12b. The
final step of filling in Os results in the completed map of
Fig. 5-12c.

5-5 PAIRS, QUADS, AND OCTETS

There is a way of using the Karnaugh map to get simplified
logic circuits. But before you can understand how this is
done, you will have to learn the meaning of pairs, quads,
and octets. '

¢ch Cb cD ¢D cO CD CD CD

‘AB|l o o o0 @ ABl 0 o o0 o
AB| 0 0o 0 O Al 0 0 0 0
ABl O 0 1 1 a8l o0 o d_D
ABl O 0 o0 o0 AB|{ O 0 0 o0
(a) b)
CO CD cD CD. Ch .CD CD CD
ABl 0o 0 o0 o AB| 0o o 0 -
A8l 0 0 o0 o© A3] 0 o]
ABl 0o o0 o AB| 0 0. 0 0O
AB| 0 0 o0 ABl o o o o
(c) (d)

ch CD CD CD

(e) ‘ ff)
Fig. 5-13 Pairs on a Karnaugh map.

Pairs

The map of Fig. 5-13a contains a pair of 1s that are
horizontally adjacent. The first 1 represents the product
ABCD; the second 1 stands for the product ABCD. As we
move from the first 1 to the second 1, only one variable

72 Digital Computer Electronics

goes from uncomplemented ‘'to complemented form (D to
D). The other variables don’t change form (4, B, and C
remain uncomplemented). Whenever this happens, you can
eliminate the variable that changes form.

Aigebraic Proof

The sum-of-products equation corresponding to Fig. 5-13a
is

Y = ABCD + ABCD

which factors into
Y = ABC(D + D)

Since D is ored with D, the equation reduces to

Y = ABC

- A pair of adjacent 1s is like those of Fig. 5-13a always

means that the sum-of-products.equation will have a variable
and a complement that drop out. ’

For easy identification, it is customary to encircle a pair
of adjacent 1s, as shown in Fig: 5-13b. Then when you
look at the map, you can tell at a.glance that one variable
and its complement will drop out of the boolean equation.

- In other words, an encircled pair of 1s like those of Fig.

5-13b no longer stands for the ORing of two separate
products, ABCD and ABCD. The encircled pair should be
visualized instead as representing a single reduced product
ABC. ' .

Here’s another example. Figure 5-13c¢ shows a pair of
Is that are vertically adjacent. These 1s correspond to the
product ABCD and ABCD. Notice that only one variable .
changes from uncomplemented to complemented form (B
to B); all other variables retain their original form. Therefore,
B and B drop out. This means that the encircled pair of
Fig. 5-13c represents ACD.

From now on, whenever you see-a pair of adjacent s,
eliminate the variable that goes from complemented to -
uncomplemented form. A glance at Fig. 5-13d indicates
that B changes form; therefore, the pair of 1s represents
ACD. Likewise, D changes form in Fig. 5-13e; so the pair
of 1s stands for ABC.

If more than one pair exists on a Karnaugh map, you
can OR the simplified products to get the boolean equation.
For instance, the lower pair of Fig. 5-13f represents ACD.
The upper pair stands for ABD. The corresponding boolean
equation for this map is

Y = ACD + ABD’

The Quad

A quad is a group of f_our 1s that are end to end, as shown
in Fig. 5-t4a, or in the form of a square, as shown in Fig.

5-14b. When you see a quad, always encircle it because it
leads to a simpler product. In fact, a quad means that two
variables and ‘their complements drop out of the boolean
equation.

Here’s why a quad eliminates iwo variables. Visualize
the four 1s of Fig. 5-14a as two pairs (Fig. 5-14¢). The
first pair represents ABC; the second pair stands for ABC.
The boolean equation for these two pairs is

Y = ABC + ABC
This factors into
Y = AB(C + C) .
which reduces to
Y = AB

So the quad of Fig. 5-14a represents a product where two
variables and their complements drop out.)

A similar proof applies to all quads. There’s no need to
go through the algebra again. Merely determine which
variables go from complemented to uncomplemented form;
these are the variables that drop out. ‘ ,

For instance, look at the quad of Fig. 5-14b. Pick any 1
as a starting point. When you move horizontally, D is the
varigble that changes form. When you move vertically, B
changes form. Therefore, the simplified equation is

Y = AC
Cb &b cp cb Ch Co ¢p cb
ABl o o o o ABl 0 o o0 o
ABl o o o o A8l 0o o o o
AB AB| 0 o
AB|l o o o0 o AB|l o o
(a) (b)

: fc)
Fig. 5-14 Quads on a Karnaugh map.

‘¢b. CO ¢D CD cb Cb ¢D CD

ABl o o o o AB|l o o o o

ABl O 0 0 O AB| 0 0 0 ©

AB AB R

AB AB 11
(a) - (b)

Fig. 5-15 Octets on a Karﬁaugh map.

The Octet

An octet is a group of eight adjacent 1s like those of Fig.
5-15a. An octet always eliminates three variables and their
complements. Here’s why. Visualize the octet as two quads
(Fig. 5-15b). The equation for these two quads is

Y = AC + AC
Factoring gives :
| Y = ACC + O
But this reduces to
. Y=A

So the octet of Fig. 5-15a means that three variables and
their complements drop out of the corresponding product.

A similar proof applies to any octet. From now on, don’t
bother with the algebra. Just step through the 'Is of the
octet and determine which three variables change form.
These are the variables that drop out.

5-6 KARNAUGH SIMPLIFICATIONS

You have seen how a pair eliminates one variable, a quad
eliminates two variables, and an octet eliminates three
variables. Because of this, you should encircle the octets
first, the quads second, and the pairs last. In this way, the
greatest simplification takes place.

An Example

Suppose you’ve translated a truth table into the Karnaugh
map shown in Fig. 5-16a. Look for octets first. There are
none. Next, look for quads. There are two. Finally, look
for pairs. There is one. If you do it correctly, you arrive
at Fig. 5-16b.

The pair represents the simplified product ABD, the
lower quad stands for AC, and the quad on the right

Chapter 5 Boolean Algebra and Karnaugh Maps 73

¢cD Cb ¢D cD ch CD CD c¢h

aBlo 1 1 1 Al o d_D
AB|l'0 o0 0 1 .. AB|l o0 o0 o0
A8l 1 1 0 1 AB 0
ABl 1 1 0 1 AB 0
' (b)

{a)
Fig. 5-16

- represents CD. By ORing these simplified products, you get
the boolean equation for the map

Y = ABD + AC + CD (5-24)

Overlapping Groups

When you encircle groups, you are allowed to use the same

1 more than once. Figure 5-17a illustrates the idéa. The
simplified equation for the overlapping groups is
Y = A + BCD (5-25)

It is valid to encircle tke 1s as shown in ng. 5-17b, but
then the isolated 1 results in'a more complicated equation:

Y = A + ABCD
This requires a more complicated logic. circuit than Eq.
5-25. So always overlap groups if possible; that is, use the
1s more than once to get the largest groups you can.

ch €O ¢D CD ch CD CD CD

LABl 0 0 0 o AB|l o o o o
AB| o o o | a8 | o 0o o
A8 | o 0 A8 | o 0
AB|l 0 o 0 ‘ A8l 0o 0 0

fa) (b)

AB ~AB[O0 o0 o0 0O
AB Ao (O o o
AB AB
AB AB m
@ (b)

Cb Co c¢p D & & co cb
ABl o o o0 o ABl o o o0 o0
a8 |\ o o a1\ o o fi
AB o 0 0" - AB] 0 o [
ailo o o o 4Bl 0 0 o0 o0

fc) (d)
Fig'. 5-17 Overlapping and rolling.

74 Digital Computer Electronics

Rolling the Map

Another thing to knqw about is rolling. In Fig. 5-17c, the
pairs result in the equation

Y = BCD + BCD (5-26)
Visualize picking up the Karnaugh map and rolling it so
that the left side touches the right side. If you’re visualizing
correctly, you will realize the two pairs actually form a

. quad. To indicate this, draw half circles around each pair,

as shown in Fig. 5-17d. From this viewpoint, the quad of

Fig. 5-17d has the equation .

Y = BD (5-27)

Why is rolling valid? Because Eq. 5-26.can be simplified - -
to Eq. 5-27. Here’s the proof. Start with Eq. 5-26:

Y = BCD + BCD
This. factors into
Y = BD(C +)
which reduces to
Y = BD

This final equation represents a rolled quad like Fig. 5-17d.
Therefore, 1s on the edges of a Karnaugh map can be
grouped with 1s on opposite edges.

Ch CD CD CD . chO CD ¢D ¢D

Fig. 5-18 Redundant group.

Redundant Groups

After you finish encircling groups, there is one more thing
to do before writing the simplified boolean equation:
eliminate any group whose 1s are completely overlapped
by other groups. (A group whose ls are all overlapped by
other groups is called a redundant group.)

Here is an example. Suppose you have encircled the
three pairs shown in Fig. 5-18a. The boolean equation then
is

Y = BCD + ABD + ACD

At this point, you should check to see if there are any
redundant groups. Notice that the 1s in the inner pair are
completely overlapped by the outside pairs. Because of
this, the inner pair is a redundant pair and can be eliminated
to get the simpler map of Fig. 5-18b. The equation for. this
.map is

Y = BED_ + ACD

Since this is a simpler equation, it means a simpler logic
circuit. This is why you should eliminate redundant groups
if they exist.

Summary

Here’s a summary of how to use the Karnaugh map to
simplify logic circuits: \

1. Enter a 1 on the Karnaugh map for each fuhdamental

product that corresponds to 1 output in the truth table.

: Enter Os elsewhere.
2. Encircle the octets, quads, and pairs. Remember to roll
" and overlap to get the largest groups possible.
If any isolated 1s remain, encircle them.
Eliminate redundant groups if they exist. .
5. Write the boolean equation by ORing the products
corresponding to the encircled groups.
6. Draw the equivalent logic circuit.

»ow

EXAMPLE 5-1

What is the simplified boolean equation for the Karnaugh
map of Fig. 5-19a?

CO cp cp D

cO € ¢co ¢cb

ABl 0o o o0 o - AB|l O 0 0 O

ABlo o 1 o A8l 0 o 1 o

Al 1 1 1 1. AB @

ABl o 1 1 1 ABl O 1 1 1
(a))

Ch CD ¢D CD

SOLUTION

There are no octets, but there is a quad, as shown in Fig.
5-19b. By overlapping we can find two ‘more quads (Fig.
5-19¢). Fmally, overlapping - gives us the pair of Fig.
5-19d.

The horizontal quad of Fig. 5-19d corresponds to a
simplified product of AB. The square quad on the right
corresponds to AC, while the one on the left stands for AD.
The pair represents BCD. By ORing these products we get
the simplified equation

Y = AB + AC + AD + BCD (5-28)
Figure 5-20 shows the equivalent logic circuit.
A 8 ¢ D _
Y

—
l——J

Fig. 5-20

EXAMPLE 5-2

As you know from Chap. 4, the NAND gate is the least
expensive gate in the 7400 series. Because of this, AND- ¢
OR circuits are usually built as equivalent NAND-NAND
circuits.

Convert the AND-OR circuit of Fig. 5-20 to a NAND-NAND
circuit using 7400-series devices.

SOLUTION

Replace each AND gate of Fig. 5-20 by a NAND gate and

. replace the final OR gate by a NAND gate. Figure 5-21 is

the De Morgan equivalent of Fig. 5-20. As shown, we can
build the circuit with a 7400, a 7410, and a 7420.

5-7 DON'T-CARE CONDITIONS

Sometimes, it doesn’t matter what the output is for a given
input word. To indicate this, we use an X in the truth table
instead of a 0 or a 1. For instance, look at Table 5-9. The

Chapter 5 Boolean Algebra and Karnaugh Maps 75

A B C D ———————

400 1,

I 4
N

2

T |

B |
| 2 .

5
T | 2 6
| o | 4 Y
} |

T 8 5

| 10

I | 7420
L J

1 ,

2 12 |

13

7410

Fig. 5-21 NAND-NAND circuit using TTL gates.

output is an X for any input word from 1000 through 1111.
The X's are called don’t cares because they can be treated
either as Os or ls, whichever leads to a simpler circuit.

Figure 5-22a shows the Karnaugh map for Table 5-9.
X's are used for ABCD, ABCD, ABCD, ABCD, ABCD,
ABCD, ABCD, and ABCD because these are don't cares
in the truth table. Figure 5-22b shows the most efficient
way to encircle the gioups. Notice two crucial ideas. First,
we visualize all X's as Is and try to form the largest groups
that include the real Is. This gives us three quads. Second,
we visualize all remaining X’s as Os. In this way, the X’s
are used to the best advantage. We are free to do this
because the don’t cares can be either Os or Is, whichever
we prefer.

TABLE 3-9
A B C D|Y
0 0 0 0]1
0 0 0 1]O0
0 0 I 0]O0
0O 0 1 1.1
o 1 0 O0]1
0O 1 0 1|1
0 1 1 0]O0
o 1 1 17]1
1 0 0 0 X
1 0 0 1]X
1 0 1 0[X
1 0 I 1[|X
1 1.0 0]X
1 1 0 1]X
1 1 1 0]X
P11 11X

76 Digital Computer Electronics

cb Cb cD CD CD CD CD CD

AB| 1 0 1 © 0
Al 1 1 1 o0 1\ o
ABl X X X X X x
ABl X X X X X

Fig. 5-22 Don't cares.

Figure 5-22b implies the simplified boolean equation
Y'=BD + CD + CD

Figure 5-22¢ is the simplified logic circuit. This AND-OR
network has nine input gate leads.

EXAMPLE 5-3

Recall that BCD numbers express each decimal digit as a
nibble: 0 to 9 are encoded as 0000 to 1001. Especially
important, nibbles 1010 to 1111 are never used in a BCD
system. ‘

Table 5-10 shows a truth table for use in a BCD system.
As you see, don’t cares appear for 1010 through 1111.
Construct the Karnaugh map and show the simplified logic
circuit.

SOLUTION

Figure 5-23a illustrates the Karnaugh map. The largest
group we can form is the pair shown in Fig. 5-23b. The
boolean equation is

Y = BCD

Figure 5-23c¢ is the simplified logic circuit.

\

TABLE 5-10

A B C D|Y
0 0 0 0/0
0 0 0 11]0
0 0 1 0/0
0 0 1 110
0 1 0 0l0
01 0 11]0
01 1 0fo0
0 1 1 1]1
1 0 0 .00
1 0 0 1{0
1 01 0/X
1 0 1 11X
1 1 0 01X
1 1 0 1[|X
1 1 1 0!X
1 i 1 11X

ABl 0 o0 o0 O ABl 0 0 o0 O
A8l 6 0o 1 o0 A8l 0 o 0
AB| X X X X ABl X X X
ABl 0 o0 x X ABl 0 0 X X
fa) (b)
A A cC DD

B
i

i
1T

Fig. 5-23 Don’t cares in a BCD system.

'GLOSSARY

bus A group of wires carrying digital signals.

don’t care An output that may be either low or high
without affecting the operation of the system. :
fundamental product The logical product of variables and
complements that produces a high output for a given input
condition.

Karnaugh map A graphical display of the fundamental
products in a truth table. .

octet ' A group of eight adjacent Is on a Karnaugh map.

-pair A group of two adjécént Is on a Karnaugh map.

These 1s may be horizontally or vertically-aligned.

quad A group of four adjacent 1s on a Karnaugh map.
redundant group A group of is on a Karnaugh map all
of which are overlapped by other groups.
sum-of-products circuit An AND-OR circuit obtained by
oring the fundamental products that produce output 1s in
a truth table.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. Digital design often starts by constructing a
table. By ORing the products, you get a
sum-of-products equation.

2. (truth, fundamental) A preliminary guide for compar-
ing the simplicity of logic circuits is to count the
number of input ______]eads.

3. (gate) A bus is a group of carrying
digital signals. In the typical microcomputer, the mi-
croprocessor, memory, and /O units communicate
via buses.

4. (wires) One way to simplify the sum-of-products

equation is to use boolean algebra. Another way is
the ___ map. :
5. (Karnaugh) A pair eliminates one variable, a
- eliminates two variables, and an octet
variables. Because of this,
first, the quads

eliminates
you should encircle the
next, and the pairs last. ,
6. (quad, three, octets) NAND-NAND circuits are equiva-
lent to AND-OR circuits. This is important because
gates are the least expensive gates in the
7400 series.
7. (NAND) When a truth table has don’t cares, we enter
X’s on the Karnaugh map. These can be treated as Os
or Is, whichever leads to a simpler logic circuit.

Chapter 5 Boolean Algebra and Karnaugh Maps 77

PROBLEMS

5-1. What are the fundamental products for each of the 5-6. A truth table has output Is for these inputs:
inputs words ABCD = 0010, ABCD = 1101, ABCD = 0011, ABCD = 0110, ABCD =
ABCD = 1110? , ~ 1001, and ABCD = 1110. Draw the Karnaugh

§-2. A truth table has output 1s for each of these map showing the fundamental products.
inputs: . 5-7. _ A truth table has four input variables. The first
a. ABCD = 0011 eight outputs are Os, and the last eight outputs are
b. ABCD = 0101 1s. Draw the Karnaugh map.
¢. ABCD = 1000 5-8. Draw the Karnaugh map for the Y; output of
d. ABCD = 1101 ' Table 5-11. Simplify as much as possible; then
What are the fundamental products? . draw the logic circuit.

5-3. Draw the logic circuit for this boolean equation: 5-9. Use the Karnaugh map to work out the simplified

_ - - logic circuit for the Y, output of Table 5-11.
Y = ABCD + ABCD + ABCD + ABCD 5-10. Repeat Prob. 5-9 for the ¥, output.
5-11. Repeat Prob. 5-9 for the Y, output.

5-4. - Output 1s appear in the truth table for these input 5-12. Use the Karnaugh map to work out the simplified
conditions: ABCD = 0001, ABCD = 0110, and logic circuit for the Y output of Table 5-12.
ABCD = 1110. What is the sum-of-products 5-13. Repeat Prob. 5-12 for the Y, output.
equation? 5-14. Repeat Prob. 5-12 for the Y, output.

5-5. Draw the AND-OR circuit for 5-15. Repeat Prob. 5-12 for Y, output.

Y = ABCD + ABCD + ABCD

How many input gate leads does this circuit have?

TABLE 5-11 TABLE 5-12

A B C D|Y, Y, Y, ¥, A B C D|Y, YV, Y, Y,
000 0|1 01 0 000 0|1 0 1 0
0 0 0 1|0 1 0 1 00 0 1]0 1 0 1
0 0 1 0|0 1 1 1 00 1 0/0 1 1 1
001 1|1 0 0 1 00 1 1|1 0 0 1
010 0[0 0 1 1 01 0 0[0 O 1 1
01 0 1|1 0 0 0 01 0 1|1 0 0 0
01 1 0[1 1 1 0 01 1 01 1 1 0
ot 1 1|1 1 1 1 001 1 t|1 1 11
1 00 0[O0 0 0 O 1 0 0 0{0 0 0 O
1 00 1]0 0 0 1 1 0 0 1[0 0 0 1
1 0 1 0|1 0 1 1. 1 01 0/X X X X
1 01 1[0 1.0 0 1 0 1.1]X X X X
1 1 0 0l0 1 1 0 11 0 0/X X X X
1 1 0 1|1 0 1 0 1 1 0 1{X X X X
1 1 1 0|1 1 0 0 1 1 1 0/X X X X
1 1 1 11 1 0 1 I 11 !X X X X

78 Digital Computer Electronics

Arithmetic-Logic Units

The arithmetic-logic unit (ALU) is the number-crunching
part of a computer. This means not only arithmetic opera-
tions but logic as well (OR, AND, NOT, and so forth).- In

this chapter you will learn how the ALU adds and subtracts

binary numbers. Later chapters will discuss the logic
operations.

6-1 BINARY ADDITION

ALUs don’t process decimal numbers; they process binary
numbers. Before you can understand the circuits inside an
ALU, you must learn how to add binary numbers. There
are five basic cases that must be understood before going
on.

Case 1

When no pebbles are added to no pebbles, the total is no
pebbles. As a word equation,

None + none = none
With binary numbers, this equation is written as
0+0=0
Case 2
If no pebbles are added to one pebble, the total is one
pebble:
None + @ = @
In terms of: binary numbers,

0+1=1

Case 3

Addition is commutative. This means you can transpose

. the numbers of the preceding case to get

® + none = @
or
1+0=1

Case 4
Next, one pebble added to one pebble gives two pebbles:

®+0 =00

As a binary equation,

1+1=10

To avoid confusion with decimal numbers,. read this as
‘‘one plus one equals one-zero.”’ An alternative way of
reading the equation is ‘‘one plus one equals zero, carry

L]

one.

Case 5

One pebble plus one pebble plus one pebble gives a total
of three pebbles:

o+0+0 =000
The binary equation is
I+1+1=11

Read this as “‘one plus one plus one equals one-one.”
Alternatively, ‘‘one plus one plus one equals one, carry

’s

one.

79

Rules to Remember

The foregoing cases are all you need for more complicated
binary addition. Therefore, memorize these five rules:

0+0=0 (6-1)
0+1=1 (6-2)
1+0=1 - (6-3)
1+1=10 (6-4)
1+1+1=11 (6-5)
Larger Binary Numbers

Column-by-column addition applies to binary numbers as
well as decimal. For example, suppose you have this
problem in binary addition:

11100

-+ 11010
?

Start with the least significant column to get

11100
+ 11010

0

Here, 0 + 0 gives 0.
Next, add the bits of the second column as follows:

11100
+ 11010

10 -

This time, 0 + 1 results in 1.
The third column gives .

11100
+ 11010

110

In this case, 1 + O produces 1.
The fourth column results in

11100
+ 11010

0110 kcarry 1)

As you see, 1 + 1 equals 0 with a carry of 1.
Finally, the last column gives

11100
+ 11010

110110

Here, 1 + 1 + 1 (carry) produces 11, recorded as 1 with
a carry to the next higher column.

80 Dlgital Computer Electronics

EXAMPLE 6-1 .
Add the binary numbers 01010111 and 00110101.

SOLUTION

This is the problem:

01010111

-+ 00110101
?

If you add the.bits column by éolumn as previously
demonstrated, you will get '

01010111
+ 00110101
10001100

Expressed in hexadecimal numbers, the foregoing addi-
tion is '
57
+35
8C

For clarity, we can use subscripts:

5Te

+ 356 -

In microprocessor work, it is more convenient to use the
letter H to signify hexadecimal numbers. In other words,
the usual way to express the foregoing addition is

57TH
+ 35H

8CH

6-2 BINARY SUBTRACTION

To subtract binary numbers, we need to discuss four cases.

Case 1: 0-0=20
Case 2: | —0=1
Case 3: I-1=0
Case 4: “10—1=l
The last result represents

o0 -0 =0

which makes sense.

To subtract larger binary numbers, subtract column by
column, borrowing from the next higher column when
necessary. For instance, in subtracting 101 from 111,
proceed like this:

7 111
-5 —101
2 010

Starting on the right, 1 .— 1 gives O; then, 1 — O is I;
finally, 1 — 1is 0.
Here is another example: subtract 1010 from 1101.

13} 1101
- 10 — 1010

3 0011

In the least significant column, 1 — 0 is 1. In the second
column. we have to borrow from the next higher column;
then, 10 — 1 is 1. In the third column, O (after borrow)
— 0is 0. In the fourth column, 1 — 1 = 0.

Direct subtraction like the foregoing has been used in
computers; however, it is possible to subtract in a different
way. Later sections of this chapter will show you how.

6-3 HALF-ADDERS

Figure 6-1 is a half-adder, a logic circuit that adds 2 bits.
Notice the outputs: SUM and CARRY . The boolean equations
for these outputs are

SUM'=A®B (6-6)
CARRY = AB (6-7)

The SUM output is A XOR B; the CARRY output is A AND
B. Therefore, SUM is a 1 when A and B are different;
CARRY is a 1 when A and B are ls.

Table 6-1 summarizes the operation. When A and B are
Os, the SUM is 0 with a' CARRY of 0. When A is 0 and B
is 1, the SUM is 1 with a CARRY of 0. When A is 1 and
B is 0, the SUM equals 1 with a CARRY of 0. Finally,
when A is 1 and B is 1, the SUM is O with a CARRY of 1.

The logic circuit of Fig. 6-1 does electronically what we
do mentally when we add 2 bits. Applications for the half-
adder are limited. What we need is a circuit that can add
3 bits at a time.

canay __C
—C =

Sum
Fig. 6-1 Halt-adder.

TABLE 6-1. HALF-ADDER

A B | CARRY SUM

0.0 0 0

0 1 0 1

1 0 0 1

11 1 0
6-4 FULL ADDERS

Figure 6-2 shows a full adder, a logic circuit that can add
3 bits. Again there are-two outputs, SUM and CARRY. The
boolean equations are

SUM =A®BDC . (6-8)
CARRY = AB + AC + BC (6-9)

CARRY

%mﬁwi

Sum
Fig. 6-2 Full adder.

In this case, SUM equals A XOR B XOR C; CARRY equals
AB OR AC OR BC. Therefore, SUM is 1 when the number
of input 1s is.odd; CARRY is a 1 when two or more inputs
are Is. '

Table 6-2 summarizes the circuit action. A, B, and C
are the bits being added. If you check each entry, you will
see that the circuit adds 3 bits at a time and comes up with
the correct answer. '

TABLE 6-2. FULL ADDER

A B C CARRY SUM
0 0 o0 0 0

0 o0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Chapter 6 Arithmetic-Logic Units 81

Here’s the point. The circuit of Fig. 6-2 does electronically
what we do mentally when we add 3 bits. The full adder
can be cascaded to add large binary numbers. The next
section tells you how.

6-5 BINARY ADDERS

Figure 6-3 shows a binary adder, a logic circuit that can
add two binary numbers. The block on the right (labeled
HA) represents a half-adder. The inputs are A, and B,; the
outputs are S, (SUM) and C, (CARRY). All other blocks
are full adders (abbreviated FA). Each of these full adders
has three inputs (4,, B,, and C,) and two outputs.

The circuit adds two bin‘ary numbers. In other words, it
carries out the following addition:

AACA A,

+ B;B,B,By
C4S3S,8, S0

Here’s an example. Suppose A = 1100 and B = 1001.
Then the problem is . :

1100

+ 1001
?

Figure 6-4 shows the binary adder with the same inputs,
1100 and 1001. The half-adder produces a sum of 1 and
carry of 0, the first full adder produces a sum of 0 and a
carry of 0, the second full adder produces a sum of 1 and

a carry of 0, and the third full adder produces a sum of 0
and a carry of 1. The overall output is 10101, the same

-answer we would get with pencil and paper.

By using more full adders, we can build binary adders
of any length. For example, to add 16-bit numbers, we
need 1 half-adder and 15 full adders. From now on, we
will use the abbreviated symbol of Fig. 6-5 to represent a
binary adder of any length. Notice the solid arrows; the
standard way to indicate words in motion. In Fig. 6-5,
words A and B are added to get a sum of S plus a final
CARRY.

O U

Binary
CARRY «—§ adder

U

s
Fig. 6-5 Symbol for binary adder.

EXAMPLE 6-2

Find the output in Fig. 6-5 if the two input words are

A = 0000 0001 0000 1100
B = 0000 0000 0100 1001

A3 2 A1 AO .
33 2 B‘ BO
< FArC3 FAI— 2 FA {—C' r
HA
! ! P '
S3 S? s? SO
Fig. 6-3 Binary adder.
1 0 0
1 0 0 1
R T R I
] A | FA FA 0 HA
' ! ' I
0 1 0 S

Fig. 6-4 Adding 12 and 9 to get 21.

- 82 Digital Computer Electronics

SOLUTION

The binary adder adds the two inputs to get

0000 0001 0000 1100
+ 0000 0000 0100 1001
0000 0001 0101 9101

In hexadecimal form; the foregoing addition is

010CH
+ 0049H
0155H

6-6 SIGNED BINARY NUMBERS

The negative decimal numbers are —1, —2, —3, and so
on. One way to code these as binary numbers is to convert
the magnitude (1, 2, 3, .) to its binary equivalent and
prefix the sign. With thlS approach, —1. —2, and -3
becomes —001, —010, and —O011. It’s customary to use
0 for the + sign and 1 for the — sign. Therefore, —001,
—010, and —011 are coded as 1001, 1010, and 1011.
The foregoing numbers have the sign bit followed by .the
magnitude bits. Numbers in this form are called signed
binary numbers or sign-magnitude numbers. For larger

decimal numbers you need more than 4 bits. But the idea .
is still the same: the leading bit represents the 51gn and the -

remaining bits stand for the magnitude.

EXAMPLE 6-3

Express each of the following as 16-bit sxgned binary
numbers.

a. +7°

b. -7

c. +25

d -25

SOLUTION

a. +7 = 0000 0000 0000 0111
b. —7 = 1000 0000 0000 0111
c. +25 = 0000 0000 0001 1001
d. =25 = 1000 0000 0001 100!

No subscripts are used in these equations because it’s clear
from the context that decimal numbers are being expressed
in binary form. Nevertheless, you can use subscripts if you
prefer. The first equation can be written as

+7,0 = 0000 0000 0000 O111, -

/a0 o

oo

“the next equation as

~70 = 1000 0000000001112

and so forth.

EXAMPLE 6-4

‘Convert the following signed binary numbers to.decimal

‘numbers:
0000 0000 0000 1001
1000 0000 0000 1111
- 1000 0000 0011 0000
0000 0000 1010 0101
SOLUTION

As usual, the leading bit gives the sign and the remaining

_bits give the magnitude.

0000 0000 0000 1001 = +9

1000 0000 0000 1111 = —15
1000 0000 0011 0000 = —48
0000 0000 1010 0101 = +165

6-7 2’'s COMPLEMENT

Sign-magnitude numbers are easy to understand, but they
require too much hardware for addition and subtraction.
This- has led to the widespread use of complements for
bmary arithmetic.

Definition

Recall that a high invert signal to a controlled inverter
produces the 1’s complement. For instance, if

A = 0111 (6-10a)
the 1’s complement is
A = 1000 (6-10b)

The 2’s complement is defined as the new word obtained
by adding 1 to 1’s complement. As an equation,

A'=A+1 6-11)

where A’ = 2’s complement
A = 1’s complement

Here are some examples. If

A = 0111

Chapter 6 Arithmetic-Logic Units 83 .

the 1’s complement is

A = 1000
and the 2’s complemeht is -
A’ = 1001

In terms of a binary odometer, the 2’s complement is the
next reading after the 1’s complement.
Another example. If

A = 0000 1000
- then '

A = 11110111
and

A’ = 1111 1000

Double Complement

If you take the 2’s complement twice, you get the original
word back. For instance, if

A = 0111

the 2’s complement is
A’ = 1001

If you take the 2’s complement of this, you get
A" = 0111

which is the original word.
In general, this means that
A"=A

= (6-12)
Read this as ‘‘the double complement of A equals A.”
Because of this property, the 2’s complement of a binary
number is equivalent to the negative of a decimal number.

Back to the Odometer

Chapter 1 used an odometer to introduce binary numbers.
The discussion was about positive numbers only. But
odometer readings can also indicate negative numbers.
Here’s how.

If a car has a binary odometer, all bits eventually reset
to 0s. A few readings before and after a complete reset
look like this:

1101
1110
1111
0000
0001
0010
0011

(RESET)

1101 is the reading 3 miles before reset, 1110 occurs 2
miles before reset, and 1111 indicates 1 mile before reset.
Then, 0001 is the reading 1 mile after reset, 0010 occurs
2 miles after reset, and 0011 indicates 3 miles after reset.

“‘Before’’ and ‘‘after’’ are synonymous with ‘‘negative’’
and “‘positive.”” Figure 6-6 illustrates this idea with the

. number line learned in basic algebra: 0 marks the origin,

positive decimal numbers are on the right, and negative
decimal numbers are on the left. The odometer readings -
are the binary equivalent of positive and negative decimal
numbers: 1101 is the binary equivalent of —3, 1110 stands
for —2, 1111 for —1; 0000 for 0; 0001 for + 1; 0010 for
+2, and 0011 for +3.]

The odometer readings of Fig. 6-6 demonstrate .how
positive and negative numbers are stored in a typical
microcomputer. Positive decimal numbers are expressed in
sign-magnitude forrn, but negative decimal numbers are
represented as 2’s complements. As before, positive num-
bers have a leading sign bit of 0, and negative numbers
have a leading sign bit of 1.

2's Complement Same as Decimal Sign Change

Taking the 2’s complement of a binary number is the same
as changing the sign of the equivalent decimal number. For
example, if :

This idea is explained in the following discussion. A = 0001 (4— 1 in Fig. 6-6)
1101 1110 1M1 0000 0001 0010 0011
-3 2 A 0 1 2 3

Fig. 6-6 Decimal numbers and odometer readings.

84 Digital Computer Electronics

taking the 2’s complement gives

A = 1111 (-1 in Fig. 6-6)

Similarly, if

A = 0010 (+2 in Fig. 6-6)

then the 2’s complement is

A = 1110 (—2 in Fig. 6-6)

Again, if

A = 0011 (+3in Fig. 6-6)

the 2’s complement is

A’ = 1101 (=3 in Fig. 6-6)

The same principle applies to binary numbers of any
length: taking the 2’s complement of any binary number is
the same as changing the sign of the equivalent decimal
number. As will be shown later, this property allows us to
use a binary adder for both addition and subtraction.

Summary
Here are the main things to remember about 2’s complement

representation:

1. The leading bit is the sign bit; O for plus, 1 for minus.
2. Positive decimal numbers are in sign-magnitude form.
3. Negative decimal numbers are in 2’s-complement form.

EXAMPLE 6-5

What is the 2’s complement of this word?

A = 0011 0101 1001 1100

SOLUTION

The 2’s complement is

A’ = 1100 1010 0110 0100

EXAMPLE 6-6

What is the binary form of. +5 and —5 in 2’s-complemeht
representation? Express the. answers as 8-bit numbers.

SOLUTION

Decimal +5 is expressed in sign-magnitude form:
+5 = 0000 0101
On the other hand, — S5 appears as the 2’s complement:

—-5 = 1111 1011

EXAMPLE 6-7

What is the 2’s-complement representation of —24 in a
16-bit microcomputer? s :

SOLUTION

Start with the positive form: --
+24 = 0000 0000 0001 1000
Then take the 2’s complement to get the negative form:

—24 = 1111 1111 1110 1000

EXAMPLE 6-8

What decimal number does this represent in 2’s-complement
representation? ‘

1111 0001

SOLUTION

Start by taking the 2’s complement to get
0000 1111
This represents + 15. Therefore, the original numt;er is

1111 0001= —15

6-8 2’'s-COMPLEMENT ADDER-

.SUBTRACTER

Early computers used signed binary for both positive and
negative numbers. This led to complicated arithmetic cir-
cuits. Then, engineers discovered that the 2’s-complement
representation could greatly simplify arithmetic hardware.

Chapter 6 Aﬂthmetic-Logic Units 85

This is why 2’s-complement adder-subtracters are now the
most widely used arithmetic circuits.

Addition

Figure 6-7 shows a 2’s-complement adder-subtracter, a
logic circuit that can add or subtract binary numbers. Here’s
how it works. When SUB is low, the B bits pass through
the controlled inverter without inversion. Therefore, the
full adders produce the sum
S=A+8B (6-13)

Incidentally, as indicated in Fig. 6-7, the final CARRY
is not used. This is because S; is the sign bit and S, to S,
are the numerical bits. The final CARRY therefore has no
significance at this time. ‘

Subtraction

When SUB is high, the controlled inverter produces the 1’s
complement. Furthermore, the high SUB adds a 1 to the

first full adder. This addition of 1 to the 1’s complement

forms the 2’s complement -of B. In other words, the

controlled inverter produces B, and adding 1 results in B’
The output of the full adders is :

S=A+B (6-14)

which is equivalent to

S=A-B (6-15)

_because the 2’s complement is équivalent to a sign change.

EXAMPLE 6-9

A 7483 is a TTL circuit with four full adders. This means
that it can add nibbles (4-bit numbers).

Figure 6-8 shows a TTL adder-subtracter. The CARRY
out (pin 14) of the least significant nibble is used as the
CARRY in (pin 13) for the most significant nibble. This
allows the two 7483s to add 8-bit numbers. Two 7486s
form the controlled inverter needed for subtraction.

A

3 A2

8 [—82

1 0

| By

! % ! f) 4 sus
CARRY
not FA - FfFA — fA | A
used :] [l
S S 5 So
Fig. 6-7 A 2’s-complement adder-2-subtracter.
A, Ag As A, B, By By B, Az A, A, Ag By B, B, B,
T I
1121459 (10{12|13 11214 |59 (101213
7486 7486
3 6 8 " 3 6 8 1"
1 3 8 10 16 4 7 11 1 3 8 10 16 4 7 11
5 -) .
+5 V — +5 V-—E—
13 14
7483 7483
12 12

]15 l 2 | 6]9
S; S¢ Ss Sa
Fig. 6-8 TTL adder-2-subtracter.

86 Digital Computer Electronics

‘15 |2 le |9

S5 S S S

Suppose the circuit has these inputs:

" A = 0001 1000
B = 0001 0000

If SUB = 0, what is the output of the adder-subtracter?

SOLUTION

When SUB is 0, the adder-subtracter adds the two inputs
as follows:

0001 1000
+ 0001 0000
0010 1000

Therefore, the output is 0010 1000. Notice that the decimal
equivalent of the foregoing addition is

24
+ 16
40

EXAMPLE 6-10
Repeat the preceding example for SUB = 1..

SOLUTION

Whén SUB is 1, the adder-subtracter subtracts the inputs
by adding the 2’s complement as follows: '

0001 1000
+ 11i1 0000
0000 1000

The decimal equivalent is

24
+ —16
8

EXAMPLE 6-11

In Fig. 6-8, what are the largest positive and negative sums
we can get?

SOLUTION

The largest positive output is

0111 1111

: Wh_ich represents decimal + 127. The largest negative output
is

1000 0000

which represents — 128. With 8 bits, therefore, all answers
must lie between —128 and +127. If you try to add
numbers with a sum outside this range, you get an overflow
into the sign-bit position, causing an error.

Chapter 12 discusses the overflow problem in more detail.
All you have to remember for now is that an overflow or
error will occur if the true sum lies outside the range of
—128 to +127.

GLOSSARY

ALU Arithmetic-logic unit. The ALU carries out arith-
meti¢ and logic operations.

binary adder A logic circuit that can add two binary
numbers. :

Jull adder A logic circiut that can add 3 bits.

. half-adder A logic circuit that adds 2 bits.

. overflow In 2’s-complement representation, a carry into
the sign-bit position, which results in an error. For an 8-

bit adder-substracter, the true sum must lie between — 128
and + 127 to avoid overflow.

signed binary A system in which the leading bit represents
the sign and the remaining bits the magnitude of the number.
Also called sign magnitude.

2’s complement The new number you get when you take
the 1’s complement and then add 1.

Chapter 6 Arithmetic-Logic Units 87

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. The ALU carries out arithmeticand ____ op-
erations (OR, AND, NOT, etc.). It processes
numbers rather than decimal numbers.

2. (logic, binary) A half-adder adds bits. A
full adder adds bits, producing a SUM
and a

3. (two, three, CARRY) A binary adder is a logic cicuit.

that can add binary numbers at a time.
The 7483 is a TTL binary adder. It can add two 4-bit
binary numbers.

4. (rwo) With signed binary numbers, also known as
sign-magnitude numbers, the leading bit stands for
the ________ and the remaining bits for the

5. (sign, magnitude) Signed binary numbers require too
much hardware. This has led to the use of
complements to represent negative numbers. To get
the 2’s complement of a binary number, you first

take the complement, then add

(2’s, I's, 1) If you take the 2’s complement twice,
you get the original binary number back. Because of
this property, taking the - complement of
a binary number is equivalent to changing the sign of
a decimal number.

(2’s) In a microcomputer positive numbers are repre-
sented in form and negative numbers in
2’s-complement form. The leading bit still represents
the . - , '

(sign-magnitude, sign) A 2’s-complement adder-sub-
tracter can add or subtract binary numbers. Sign-
magnitude numbers represent decimal
numbers, and 2’s complements stand for

decimal numbers. You can tell one from the other by
the leading bit, which represents the

(positive, negative, sign) With 2’s-complement repre-
sentation and an 8-bit adder-subtracter no overflow is
possible if the true sum is between — 128 and +127.

PROBLEMS
6-1. Add these 8-bit numbers: 6-5. Convert each of these sign-magnitude numbers to
a. 0001 0000 and 0000 1000 its decimal equivalent:
b. 0001 1000 and 0000 1100 a, 0001 1110
c. 0001 1100 and 0000 1110 b. 1000 0111
d. 0010 1000 and 0011 1011 ‘c. 1001 1100 °
After you have each binary sum, convert it to d. 0011 0001 .
hexadecimal form. 6-6. The following hexadecimal numbers represent
6-2. Add these 16-bit numbers: sign-magritude numbers. Convert each to its deci-
1000 0001 1100 1001 ;“a' ;‘;‘;;"alem'
+ 0011 0011 0001 0111 b 3AH
Express the answer in hexadecimal form. c. 7FH
6-3. In each of the following, convert to binary to do d. FFH
the addition, then convert the answer back to 6-7. Find the 2’s complements:
hexadecimal: a. 00000111
a. 2CH + 4FH =? b. 1111 1111
b. SEH + 1AH = ? c. 1111 1101
c. 3BH + 6DH = ? d. 1110 0001
d. ASH + 2CH =? Express your answers in hexadecimal form.
6-4. Convert each of the following decimal numbers to 6-8. Convert each of the following to binary. Then
an 8-bit sign-magnitude number: take the 2’s complement:
a. +27 a. 4CH
b. =27 b. .8DH
c. +80 c. CBH
d.. -80 d

After you have the sign-magnitude numbers, convert
them to hexadecimal form.

88 Digital Computer Electronics

FFH

Ao 33

A; Ag Ay A, B; Bg Bs B, Ay Ay Ay 32 B, Bo
R R
1 {2459 [10[12]13 2 |45 {9 [10]12]13
7486 7486
6 8 1 1
1 |3 |8 [0 |16 |4 7 11 1 3 |8 11
+5V —‘ﬂ 45V —
13 14
7483 7483
12] - 12
=]Ts BRENE ‘E-- IERBECEE
S, Sg Ss Sy S3 S, S S
Fig. 6-9
After you have the 2’s complements convert them number does this represent in 2’s-cornplement
to hexadecimal form. representation?

6-9. "An 8-bit microprocessor uses 2’s- complement rep- 6-11. Suppose the inputs to Fig. 6-9 are A = 3CH and
resentation. How do the following decimal num- B = 5FH. What is the output for a low SUB? A
bers appear: high SUB? Express your final answers in hexa-
a. —19 decimal form.

b. —48 : 6-12. In Fig. 6-9 which of the following inputs cause an
c. +37 } overflow when SUB is low?
d. --33 a. - 2DH and 4BH

Express your answers in binary and hexadecimal

form.

6-10. The output of an ALU is EEH. What decimal

b. 8FH and C3H
c. SEH and BS8H
d. 23H and 14H

Chapter 6 Arithmetic-Logic Units 89

Gates are decision-making elements. As shown in the
preceding chapter, they can perform binary addition and
subtraction. But decision-making elements are not enough.
A computer also needs memory elements, devices that can
store a binary digit. This chapter is about memory elements

called flip-flops.

7-1 RS LATCHES

A flip-flop is a device with two stable states; it remains in
one of these states until triggered iinto the other. The RS
latch, discussed in this section, is one of the simplest flip-
flops.

Transistor Latch

In Fig. 7-1a each collector drives the opposite base-through
a 100-k(Q resisitor. In a circuit like this, one of the transistors
is saturated and the other is cut off.

For instance, if the right transistor is saturated, its collector
voltage is approximately O V. This means that there is no
base drive for the left transistor, so it cuts off and its
collector voltage approaches +5 V. This high voltage
produces enough base current in the right transistor to
sustain its saturation. The overall circuit is latched with the
left transistor cut off (dark shading) and the right transistor
saturated. Q is approximately O V.

By a similar argument, if the left transistor is saturated,
the right transistor is cut off. Figure 7-1b illustrates this
other state. O is approximately 5 V for this condition.

Output Q can be low or high, binary 0 or 1. If latched
as shown in Fig. 7-la, the circuit is storing a binary 0
because '

0=0 "

On the other hand, when latched as shown in Fig. 7-1b,
the circuit stores a binary 1 because

0=1

90

Control Inputs

To control the bit stored in the latch, we can add the inputs
shown in Fig. 7-1c. These control inputs will be either low
(0 V) or high (+5 V). A high set input S forces the left:
transistor to saturate. As soon as the left transistor saturates,
the overall circuit latches and

Q=1

Once set, the output will remain a 1 even though the S
input goes back to 0 V.

A high reset input R drives the right transistor into
saturation. Once this happens, the circuit latches and

0=0

The output stays latched in the O state, even though the R
input returns to a low.

InFig. 7-1c, Q represents the stored bit. A complementary
output Q is available from the collector of the left transistor
This may or may not be used, depending on the application

Truth Table

Table 7-1 summarizes the operation of the transistor latch.
With both control inputs low, no change can occur in the
output and the circuit remains latched in its last state. This
condition is called *he inactive state because nothing
changes. ' T '

TABLE 7-1. TRANSISTOR

LATCH
R S 0 Comments
0+- 0 NC No change
0 1 1 Set
1 0 0 Reset
1 1 * "~ Race

5kQ 5kqQ Rc

Re

<>
5k Ac

—Q o}
100 kQ K
' 1b)
+5V
5kQ 5kQ
Q
100 kS2 - 100 kQ
§ ————AMN—

100 k2
R AAN
100 k2

Fig. 7-1 (a) Latched state; (b) alternative state; (c) trigger inputs.

When R is low and § is high, the circuit sets the Q output
to a high. On the other hand, if R is high and S is low, the
Q output resets to a low.

Race Condition

Look at ‘the last 'entry in Table 7-1. R and S are high

simultaneously. This is called a race condition; it is never
used because it leads to unpredictable operation.

Here’s why. If both control inputs are high, both tran-
sistors saturate. When the R and S inputs return to low,
both transistors try to come out of saturation. It is a race
between the transistors to see which one desaturates first.
The faster transistor (the one with the shorter saturation
delay time) will win the race and latch the circuit. If the
faster transistor is on the left side of Fig. 7-1c, the Q output
will be low. If the faster transistor is on the right side, the
Q output will go high. In mass production, either transistor
can be faster; therefore, the Q output is unpredictable. This
is why the race condition must be avoided.

Here’s how to recognize a race condition. If simultane-
ously changing both inputs to a memory element leads to
an unpredictable output, you’ve got a race condition. With
the transistor latch, R = 1 and § = 1 is a race condition

fc)

because simultaneously returning R and S to O forces Q
into a random state.

From now on, an asterisk in a truth table (see Table
7-1) indicates a race condition, sometimes called a forbidden
or invalid state.

NOR Latches

A discrete circuit like Fig. 7-1c is rarely used because we
are in the age of integrated circuits. Nowadays, you build
RS latches with NOR gates or NAND gates. :

Figure 7-2a shows how it’s done with NOR gates. Figure
7-2b is the De Morgan equivalent. As shown in Table
7-2, a low R and a low S give us the inactive state; the
circuit stores or remembers. A low R and a high S represent
the set state, while a high R and a low S give the reset
state. Finally, a high R and a high S produce a race
condition; therefore, we must avoid R = 1 and § = 1
when using a NOR latch.)

Figure 7-2c is a timing diagram; it shows how the input
signals interact to produce the output signal. As you see,
the Q output goes high when S goes high. Q remains high
after S goes low. Q returns to low when R goes high, and
stays low after R returns to low.

Chapter 7 FlijJ-Flops 91

TABLE 7-2. NOrR LATCH

TABLE 7-3. NAND LATCH

R S o Comment
0 O NC No change
0 1 | Set
1 0 0 Reset
1 1 * Race
R o}
Q
s
(a)
R ——d
Q
‘ a
§ ————a

tb)

S SR o B

Fig. 7-2 (a) Nor latch; (b) De Morgan equivalent; (c) timing
diagram.

]
jm

NAND Latches

If you prefer using NAND gates, you can build an RS latch
as shown in Fig. 7-3a. Sometimes it is convenient to draw
the De Morgan equivalent shown in Fig. 7-3b. In either
case, a low R and a high § set Q to high; a high R and a
low S reset Q to low.

Because of the NAND-gate inversion, the inactive and
race conditions are reversed. In other words, R = | and §
= | becomes the inactive state; R = 0 and § = 0 becomes
the race condition (see Table 7-3). Therefore, whenever

you use a NAND latch, you must avoid having both inputs .

low at the same time. (To remember the race condition for
a NAND latch, glance at Fig. 7-3b. If R = 0 and § = 0,
then Q = 1 and Q = 1; both outputs are the same,
indicating an invalid condition.)

92 Digital Computer Electronics

R S (0] Comment
0 0 * Race
0 1 1 Set
1 0 0 Reset
1 1 NC No change
R P ——
o]
a
s
(a)
o
Q
o]
s

(b)

T

(c)

Fig. 7-3 (a) NaND latch; (b) De Morgan equivalent; (¢) timing
diagram. .

Figure 7-3c shows the timing diagram for a NAND latch.
R and S are normally high to avoid the race condition. Only
one of them goes low at any time. As you see, the Q output
goes high whenever R goes low; the Q output goes low
whenever S goes low.

Switch Debouncers

RS latches are often used as switch debouncers. Whenever
you throw a switch from the open to the closed position,
the contacts bounce and the switch alternately makes and
breaks for a few milliseconds before finally settling in the
closed position. One way to eliminate the effects of contact
bounce is to use an RS latch in conjunction with the switch.
The following example explains the idea.

Fig. 7-4 Switch debouncer.

~

EXAMPLE 7-1

Figure 7-4a shows a switch debouncer. What does it do?

SOLUTION

As discussed in Chap. 4, floating TTL inputs are equivalent
to high inputs. With the switch in the START position, pin
1 is low and pin 5 is high; therefore, CLR is high and CLR
is low. When the switch is thrown to the CLEAR position,
pin 1 goes high, as shown in Fig. 7-4b. Because of contact
bounce, pin 5 goes alternately low and high for a few
milliseconds before settling in the low state, symbolized
by the ideal pulses of Fig. 7-4b.The first time pin 5 goes
low, the latch sets, CLR going high and CLR going low.
Subsequent bounces have no effect on CLR and CLR because
the latch stays set. _ .

Similarly, when the switch is thrown back to START, pin
1 bounces low and high for a while. The first time pin 1
goes low, CLR goes back to low and CLR to high. Later
bounces have no effect on CLR and CLR.

Registers need clean signals like CLR and CLR of Fig.
7-4b to operate properly. If the bouncing signals on pins 1
and 5 drove the registers, the operation would be erratic.
This is why you often see RS latchés used as switch
debouncers.

T

7-2 LEVEL CLOCKING

Computers use -thousands of flip-flops. To coordinate the
overall action, a square-wave signal called the clock is sent
to each flip-flop. This signal prevents the flip-flops from

changing states until the right time.

Clocked Latch

In Fig. 7-5a a pair of NAND gates drive a NAND latch. §
and R signals drive the input gates. To avoid confusicn,
the inner control signals are labeled R’ and S'. The NAND
latch works as previously described; a low R’ and a high
S’ set Q to 1, whereas a high R’ and a low S’ reset Q to
0. Furthermore, a low R’ and S’ represent the race condition;
therefore, R’ and S’ are normally high when the latch is
inactive. Because of the inversion through the input NAND
gates, the S input has to drive the upper NAND input and
the R input must drive the lower NAND input.

Double Inversions Cancel

When analyzing the operation of this and similar circuits,
remember that a double inversion (two bubbles in a series
path) cancels out; this makes it appear as though two AND
gates drove OR gates, as shown in Fig. 7-5b. In this way,
you can see at a glance that a high S and high CLK force

Chapter 7 Flip-Flops 93

CLK —

CLK —9

{b)

|5
eé

Fig. 7-5 (a) Clocked latch: (b) equivalent circuit; (c¢) timing
diagram.

Q to go high. In other words, even though you are looking
at Fig. 7-5a, in your mind you should see Fig. 7-5b.

Positive Clocking

In Fig. 7-5a the clock is a square-wave signal. Because the
clock (abbreviated CLK) drives both NAND gates, a low
CLK prevents S and R from controlling the latch. If a high
S and a low R drive the gate inputs, the latch must wait
until the clock goes high before Q can be set to 1. Similarly,
given a low S and a high R, the latch must wait for a high
CLK before Q can reset to 0. This is an example of positive
clocking, making a latch wait until the clock signal is high
before the output can change.

Negative clocking is similar. Visualize an inverter be-
tween CLK and the input gates of Fig. 7-5a. In this case,
the latch must wait until CLK is low before the output can
change.

Positive and negative clocking are often called level
clocking because the flip-flop responds to the level (high
or low) of the clock signal. Level clocking is the simplest
way to contro! flip-flops with a clock. Later, we will discuss
more advanced methods called edge triggering and master-
slave clocking.

Race Condition

What about the race condition? When the clock is low in
Fig. 7-5a, R’ and §’ are high, which is a stable condition.

The only way to get a race condition is to have a high

94 Digital Computer Electronics

(c)

CLK, high R, and high S. Therefore, normal operation of
this circuit requires that R and S never both be high when
the clock goes high.

Timing Diagram and Truth Table

Figure 7-5¢ shows the timing diagram. Q goes high when
S is high and CLK goes high. Q returns to the low state
when R is high and CLK goes high. Using a common CLK
signal to drive many flip-flops allows us to synchronize the
operation of the different sections of a computer.

Table 7-4 summarizes the operation of the clocked NAND

‘latch. When the clock is low, the output is latched in its

last state. When the clock goes high, the circuit will set if
S is high or reset if R is high. CLK, R, and § all high is a
race condition, which is never used deliberately.)

TABLE 7-4, CLOCKED
NAND LATCH

CLK R S 0
6 0 0 NC
0 o0 1 NC
0 1 0 NC
o 1 1 NC
1 0 o0 NC
1. 0 1 1
1 1 0 0
1 11 *

7-3 D LATCHES

Since the RS flip-flop is susceptible to a race condition, we
will modify the design to eliminate the possibility of a race
condition. The result is a new kind of flip-flop known as a
D latch. ' : :

Fig. 7-6 D latch.

Unclocked

Figure 7-6 shows one way to build a D latch. Because of
the inverter, data bit D drives the S input of a NAND latch
and the complement D drives the R input. Therefore, a
high D sets the latch, and a low D resets it. Table 7-5
summarizes the operation of the D latch. Especially im-
portant, there is no race condition in this truth table. The
inverter guarantees that S and R will always be in opposite
states; therefore, it’s impossible to set up a race condition
in the D latch.

The D latch of Fig. 7-6 is unclocked; it will set or reset
as soon as D goes high or low. An unclocked flip-flop like
this is almost never used.

CLK

Fig. 7-7 Clocked D latch.

TABLE 7-5. TABLE 7-6.

UNCLOCKED CLOCKED

D LATCH D LATCH
D [0} CLK D 0
0 -0 o) X NC
1 1 1 0 0

1 1 1
Clocked

Figure 7-7a is level-clocked. A low CLK disables the input
gates and prevents the latch from changing states. In other
words, while CLK is low, the latch is in the inactive state
and the circuit stores or remembers. When CLK is high, D
controls the output. A high D sets the latch, while a low
D resets it.

Table 7-6 summarizes the operation. X represents a don’t-
care condition; it stands for either 0 or 1. While CLK is
low, the output cannot change, no matter what D is. When
CLK is high, however, the output equals the input

Q=D

Figure 7-7b shows a timing diagram. If the clock is low,
the circuit is latched and the Q output cannot be changed.
While the clock is high, however, Q equals D; when D
goes high, Q goes high; when D goes low, Q goes low.
The latch is transparent, meaning that the output follows
the value of D while the clock is high.

(e

Chapter 7 Flip-Flops 95

Disadvantage

Because the D latch is level-clocked, it has a serious
disadvantage. While the clock is high, the output follows
the value of D. Transparent latches may be all right in
some applications but not in the computer circuits we will
be discussing. To be truly useful, the circuit of Fig. 7-7a
needs a slight modification.

7-4 EDGE-TRIGGERED
D FLIP-FLOPS

Now we're ready to talk about the most common type of

D flip-flop. What a practical computer needs is a D flip-

flop that samples the data bit at a unique instant.

Edge Triggering

Figure 7-8a shows an RC circuit at the input of a D flip-
flop. By deliberate design, the RC time constant is much
smaller than the clock’s pulse width. Because of this, the
capacitor can charge fully when CLK goes high; this
exponential charging produces a narrow positive voltage
spike across the resistor. Later, the trailing edge of the
clock pulse results in a narrow negative spike.

The narrow positive spike enables the input gates for an
instant; the narrow negative spike does nothing. The effect
is to activate the input gates during the positive spike,
equivalent to sampling the value of D for an instant. At
this unique time, D and its complement hit the flip-flop
inputs, forcing Q to set or reset. '

TABLE 7-7.

EDGE-

TRIGGERED

D FLIP-FLOP

CLK D Q
0 X NC
1 X NC
I X NC
T 0 0
o 1

This kind of operation is called edge triggering because
the flip-flop responds only when the clock is changing
states. The triggering in Fig. 7-8a occurs on the positive-
going edge of the clock; this is why it’s referred to as
positive-edge triggering.

Figure 7-8b illustrates the action. The crucial idea is that
the output changes only on the rising edge of the clock. In
other words, data is stored only on the positive-going edge.

Table 7-7 summarizes the operation of the positive-edge-
triggered D flip-flop. The up and down arrows represent
the rising and falling edges of the clock. The first three
entries indicate that there’s no output change when the
clock is low, high, or on its negative edge. The last two
entries indicate an output change on the positive edge of
the clock. In other words, input data D is stored only on
the positive-going edge of the clock.

D
Q
N __LI_
CcLK J(— "o
AN
a

Fig. 7-8 Edge-triggered D flip-flop.

96 Digital Computer Electronics

(b)

Edge Triggering versus Level Clocking '

When a circuit is edge-triggered, the output can change
only on the rising (or falling) edge of the clock. But when
the circuit is level-clocked, the output can change while
the clock is high (or low). With edge triggering, the output
can change only at one instant during the clock cycle; with
level clocking, the output can change during an entire half
cycle of the clock.

Preset and Clear

When power is first applied, flip-flops come up in random
states. To get some computers started, an operator has to
push a master reset button. This sends a clear (reset) signal
to all flip-flops. Also, it is necessary in some computers to
preset (synonymous with ‘‘set’’) certain flip-flops before a
computer run.

Figure 7-9 shows how to include both functions in a D
flip-flop. The edge triggering is the same as previously
described. In addition, the AND gates allow us to slip in a
low PRESET or low CLEAR when desired. A low PRESET
forces Q to equal 1; a low CLEAR resets Q to 0.

Table 7-8 summarizes the circuit action. When PRESET
and CLEAR are both low, we get a race condition; therefore,
PRESET and CLEAR should be kept high when inactive.
Take PRESET low by itself and you set the flip-flop; take
CLEAR low by itself and you reset the flip-flop. As shown
in the remaining entries, the output changes only on the
positive-going edge of the clock.

Preset is sometimes called direct set, and clear is some-
times called direct ‘reset. The word ‘‘direct’’ means un-
clocked. For instance, the clear signal may come from a
push button; regardless of what the clock is doing, the
output will reset when the operator pushes the clear button.

The preset and clear inputs override the other inputs;
they have first priority. For example, when PRESET goes
low; the Q output goes high and stays there no matter what
the D and CLK inputs are doing. The output will remain
high as long as PRESET is low. Therefore, the normal
procedure in presetting is to take the PRESET low tempo-

CLK

o~

Fig. 7-9 Edge-triggered D flip-flop with preset and clear.

= —[>o——3°—

TABLE 7-8. D FLIP-FLOP WITH
PRESET AND CLEAR

PRESET CLEAR CLK D 0
0 0 X X *
0 1 X X 1
1 0 X X 0
1 1 0 X NC
1 1 1 X NC
1 1 I X NC
1 1 ro0 0
1 1 1 1 1

rarily, then return it to high. Similarly, for the clear function:
take CLEAR low briefly to reset the flip-flop, then take
it back to high to allow the circuit to operate.

Direct-Coupled Edge-Triggerea D Flip-Flop

Integrated D flip-flops do.not use RC circuits to get narrow
spikes because capacitors are difficult to fabricate on a
chip. Instead, a variety of direct-coupled designs is used.
As an example, Fig. 7-10 shows a positive-edge-triggered
D flip-flop. This direct-coupled circuit has no capacitors,
only NAND gates. The analysis is too long and complicated
to go into here, but the idea is the same as previously
discussed. The circuit responds only during the brief instant
the clock switches from low to high. That is, data bit D is
stored only on the positive-going edge of the clock.

Logic Symbol

Figure 7-11 is the symbol of a positive-edge-triggered D
flip-flop. The CLK input has a small triangle, a reminder
of the edge triggering. When you see this schematic symbol,
remember what it means: the D input is stored on the rising
edge of the clock.

PRESET

L

Qi

—

CLEAR

Chapter 7 Flip-Flops 97

PRESET

CLK —e

e

CLEAR
Fig. 7-10 Direct-coupled edge-triggered D" flip-flop.

b PR ol—
—Ddbook
cLR o

I

Fig. 7-11 Logic symbol for edge-triggered D flip-flop.

Figure 7-11 also includes preset (PR) and clear (CLR)
inputs. The bubbles indicate an active low state. In other
words, the preset and clear inputs are high when inactive.
To preset the flip-flop, the preset input must go low
temporarily and then be returned to high. Similarly, to reset
the flip-flop, the clear input must go low, then back to
high.

The same idea applies to circuits discussed later. A
butble at an input means an active low state: the input has
to go low to produce an effect. When no bubble is present,
the input has to go high to have an effect.

Propagation Delay Time

Diodes and transistors cannot switch states instantaneously.
It always takes a small amount of time to turn a diode on
or off. Likewise, it takes a time for a transistor to switch
from saturation to cutoff or vice versa. For bipolar diodes
and transistors, switching time is in the nanosecond region.

Switching time is the main cause of propagation delay
time t,. This represents the amount of time it takes for the
output of a gate or flip-flop to change states. For instance,

98 Digital Computer Electronics

if the data sheet of a D flip-flop indicates a ¢, of 10 ns, it

" takes approximately 10 ns for O to change states after D

has been sampled by the clock edge.

Propagation delay time is so small that it’s negligible in
many applications, but in high-speed circuits you have to
take it into account. If a flip-flop has a ¢, of. 10 ns, this
means that you have to wait 10 ns before the output can
trigger another circuit.

Setup Time

Stray capacitance at the D input (plus other factors) makes
it necessary for da’ bit D to be at the input before the CLK
edge arrives. The s..up time ty,, is the minimum length
of timie the data bit must be prec:nt before the CLK edge
hits.

For instance, if the data sheet of a D flip-flop indicates
a tyy, Of 15 ns, the data bit to be stored must be at the D
input at least 15 ns hefore the CLK edge arrives; otherwise,
the IC manufacturer does not guarantee correct sampling
and storing.

Hold Time
Furthermore, data bit D has to be held long enough for the

- internal transistors to switch states. Only after the transition

is assured can we allow data bit D to change. Hold time
Iha is the minimum length of time the data bit must be
present after the CLK edge has struck.

For example, if #., is 15 ns and #,q is 5 ns, the data
bit has to be at the D input at least 15 ns before the CLK
edge arrives and held at least 5 ns after the CLK edge hits.

7-5 EDGE-TRIGGERED
JK FLIP-FLOPS

The next chapter shows you how to build a counter, the
electronic equivalen. of a binary odometer. When it comes
to circuits that count, the JK flip-flop is the ideal memory
element to use.

Circuit

Figure 7-12a shows one way to build a JK flip-flop. As
before, an RC circuit with a short time constant converts
the rectangular CLK pulse to narrow spikes. Because of the
double inversion through the NAND gates, the circuit is
positive-edge-triggered. In other words, the input gates are
enabled only on the rising edge of the clock.

.Inactive

The J and K inputs are control inputs; they determine what
the circuit will do on the positive clock edge. When J and
K are low, both input gates are disabled and the circuit is
inactive at all times including the rising edge of the clock.

Reset

When J is low and K is high, the upper gate is disabled;
so there’s no way to set the flip-flop. The only possibility
is reset. When Q is high, the lower gate passes a reset
trigger as soon as the positive clock edge arrives. This
forces Q to become low. Therefore, / = 0 and K = |
means that a rising clock edge resets the flip-flop.

Set

When J is high and X is low, the lower gate is disabled;
so it’s impossible to reset the flip-flop. But you can set the
flip-flop as follows. When Q is low, Q is high; therefore;
the upper gate passes a set trigger on the positive clock
edge. This drives Q into the high state. Thatis, J = | and
K = 0 means that the next positive clock edge sets the
flip-flop.

Toggle

When J and K are both high, it is possible to set or reset
the flip-flop, depending on the current state of the output.
If Q is high, the lower gate passes a reset trigger on the

L

-

Qi

3 s

(a)

L
L

Fig. 7-12 (a) Edge-triggered JK flip-flop; (b) timing diagram.

(b)

Chapter 7 Flip-Flops 99

TABLE 7-9. POSITIVE-
EDGE-TRIGGERED
JK FLIP-FLOP

CLK J K Q
0 X X NC
1 X X NC
l X X NC
X 0 0 NC
1 0 I 0
1 0 1
1 1 1 Toggle

next positive clock edge. On the other hand. when Q is
low. the upper gate passes a set trigger on the next positive

clock edge. Either way, Q changes to the complement of

the last state. Therefore. J = 1 and K = [means that the
flip-flop will roggle on the next positive clock edge.
("Toggle™" means switch to opposite state.)

Timing Diagram

The timing diagram of Fig. 7-12b is a visual summary of

the action. When J is high and K is low, the rising clock
edge sets Q to high. On the other hand. when J is low and
K is high. the rising clock edge resets Q to low. When J
and K arc high simultancously. the output toggles on each
rising clock edge.

Truth Table

Table 7-9 summarizes the operation. The circuit is inactive
when the clock is low, high. or on its negative edge.
Likewise. the circuit is inactive ‘when J and K are both
low. Output changes occur only on the rising edge of the
clock, as indicated by the last three entries of the table.
The output either resets. sets. or toggles.

Racing

The JK flip-flop shown in Fig. 7-12a has to be edge-
triggered to avoid oscillations. Why? Assume that the circuit
is level-clocked. In other words. assume that we remove
the RC circuit and run the clock straight into the gates.
With a high J. high K. and high CLK. the output will
toggle. New outputs are then fed back to the input gates.
After two propagation times (input and output gates), the
output toggles again. And once more, new outputs return
to the input gates. In this way, the output can toggle
repeatedly as long as the clock is high. That is, we get
oscillations during the positive half cycle of the clock.
Toggling more than once during a clock cycle is called
racing.

100 Digital Computer Electronics

Now assume that we put the RC circuit back in and
return to edge triggering. Propagation delay time prevents
the JK flip-flop from racing. Here's why. In Fig. 7-12a the
outputs change after the positive clock edge has struck. By
the time the new Q and Q signals return to the input gates,
the positive spikes have decayed to zero. This is why we
get only one toggle during each clock cycle.

For instance, if the total propagation delay time from
input to output is 20 ns, the outputs change approximately
20 ns after the rising edge of the clock. If the spikes are
narrower than 20 ns. the returning Q and Q arrive too late
to cause false triggering.

Symbols

As previously mentioned, capacitors are too difficult to
fabricate on a chip. This is why manufacturers prefer direct-
coupled designs for edge-triggered JK flip-flops. Such
designs are too coraplicated to reproduce here. but you can
find them in manufacturers™ 1C data books.

Figure 7-13a is the standard symbol for a positive-edge-
triggered JK {lip-flop of any design.

Figure 7-13b is the symbol for a JK flip-flop with the
preset and clear functions. As usual, PR and CLR have
active low states. This means that they are normally high
and taken low temporarily to preset or clear the circuit.

Figure 7-13¢ is another commercially available JK flip-
flop. The bubble on the clock input is the standard way to
indicate negative-edge triggering. As shown in Table 7-10,
the output can change only on the falling edge of the clock.
The timing diagram of Fig. 7-13d emphasizes this negative-
edge triggering.

7-6 JK MASTER-SLAVE FLIP-FLOP

Figure 7-14 shows a JK master-slave flip-flop, another way
to avoid racing. A master-slave flip-flop is a combination
of two clocked latches; the first is called the master, and
the second is the s/lave. Notice that the master is positively

TABLE 7-10. NEGATIVE-
EDGE-TRIGGERED
JK FLIP-FLOP

CLK J K 0
0 X X NC
1 X X NC
t X X NC
X 0 0 NC
| 0 1 0
) I 0 1
) 1 1 Toggle

—y al— —s PR ol— —v o}—
—Pook —PCLK —OPCLK
—K af— —X cr 9 —1K cr 9

(a)

(d)

Fig. 7-13 (a) Positive-edge triggering; (b) active low preset and
clear; (c) negative-edge triggering; (d) timing diagram.

L

CLK

SLAVE

—O-

—l:_i

=
~ D

Fig. 7-14 Master-slave JK flip-flop.

clocked but the slave is negatively clocked. This implies
the following:

1. While the clock is high, the master is active and the
slave is inactive.
2. While the clock is low, the master is inactive and the

slave is active.

Set

To start the analysis, let’s assume low Q and high 0. For

an input conditior of high J, low K, and high CLK, the

master goes into the set state, producing high S and low R.
Nothing happens to the Q and Q outputs because the slave
is inactive while the clock is high. When the clock goes
low, however, the high S and low R force the slave into
the set state, producing a high Q and a low Q.

There are two distinct steps in setting the final Q output.
First, the master is set while the clock is high. Second, the
slave is set while the clock is low. This action is sometimes
called cocking and triggering. You cock the master during
the positive half cycle of the clock, and you trigger the
slave during the negative half cycle of the clock.

Chapter 7 Flip-Flops 101

Reset

When the slave is set, Q is high and Q is low. For the
input condition of low J, high K, and high CLK, the master
will reset, forcing S to go low and R to go high. Again,
no changes can occur in Q and ZZ- because the slave is
inactive while the clock is high. When the clock returns to
the low state, the low S and high R force the slave to reset;
this forces Q to go low and Q to go high.

Again, notice the cocking and triggering. This is the key
idea behind the master-slave flip-flop. Every action of the
master with a high CLK is copied by the slave when the
clock goes low.

Toggle

If the J and K inputs are both high, the master toggles once
while the clock is high; the slave then toggles once when
the clock goes low. No matter what the master does, the
slave copies it. If the master toggles into the set state, the
slave toggles into the set state. If the master toggles into
the reset state, the slave toggles into the reset state.

Level Clocking

The master-slave flip-flop is level-clocked in Fig. 7-14.
While the clock is high, therefore, any changes in J and K
can affect the S and R outputs. For this reason, you normally
keep J and K constant during the positive half cycle of the
clock. After the clock goes low, the master becomes inactive
and you can allow J and X to change.

l'

—ds PR aofp——
—acLk
K cr Q

T

- Fig. 7-15 (a) Symbol for master-slave JK flip-flop; (b) timing
diagram.

Symbol

Figure 7-15 shows the symbol for a JK master-slave flip-
flop with preset and clear functions. The bubble on the
CLK input reminds us that the output changes when the
clock goes low. -

Truth Table

Table 7-11 summarizes the operation of a JK master-slave
flip-flop. A low PR and low CLR produces a race condition;
therefore, PR and CLR are normally kept at a high voltage

102 Digital Computer Electronics

TABLE 7-11. MASTER-SLAVE FLIP-FLOP

PR CLR CLK J K 0
0 0 X X X *
0 1. X X X 1
1 0 X X X 0
1 1 X 0 0 NC
1 1 JL o0 1 0
1 1 JL 1 o 1
1 1 L 1 1 Toggle

when inactive. To clear, you take CLR low; to breset, you
take PR low. In either case, you return them to high when

_ ready to run.

As before, low J and low K produce an inactive state,
regardless of the what the clock is doing. If K goes high
by itself, the next clock pulse resets the flip-flop. If J goes
high by itself, the next clock pulse sets the flip-flop. When
J and K are both high, each clock pulse produces one
toggle.

EXAMPLE 7-2

Figure 7-16a shows a clock generator. What does it do
when HLT is high?

SOLUTION

To begin with, the 555 is an IC that can generate a
rectangular output when connected as shown in Fig. 7-16a.
The frequency of the output is

1.44

f= &+ 2mC

The duty cycle (ratio of high state to period) is

Ryt Ry
Ry + 2Ry

With the values shown in Fig. 7-16a the frequency of
the output is

1.44
= \ = 2kH
F= 36Kk + 36 K0)0.01 o) z
and the duty cycle is
36k + 18k
=k +36ka 07

which is equivalent to 75 percent.

HLT

Y * 15—74LS107
36 k2 Ra |3 l4 1 J o 3 CLK
7] 12
4 _
1Bk2 S Ra 555 K)
6
T13
CLR

j l"— 500 us
375 us

(b)

Fig. 7-16 Clock generator: (a) circuit; (b) 555 output; (c) JK flip-
flop output.

Figure 7-16b illustrates how the output (pin 3) of the 555
looks. Note how the signal is high for 75 percent of the
cycle. This unsymmetrical output drives the clock input of
a JK master-slave flip-flop.

The JK master-slave flip-flop toggles once per input
cycle; therefore, its output has a frequency of 1 kHz and a
duty cycle of 50 percent. One of the reasons for using the
flip-flop is to get the symmetrical output shown in Fig.
7-16¢.

I<— 1ms
0.5 ms

(c)

Another reason for using the flip-flop is to control the
starting phase of the clock. A computer run starts with
CLR going momentarily low, then back to high. This resets
the flip-flop, forcing CLK to go low. Therefore, the starting
phase of the CLK signal is always low. You will see the
clock generator of Fig. 7-16a again in Chap. 10; remember
that the CLK signal has a frequency of 1 kHz, a duty cycle
of 50 percent, and starting phase of low.

GLOSSARY

contact bounce The making and breaking of contacts for
a few milliseconds after a switch closes.

edge triggering Changing the output state of a flip-flop
on the rising or falling edge of a clock pulse.

Jflip-flop A two-state circuit that can remain in either state
indefinitely. Also called a bistable multivibrator. An external
trigger can change the output state.

hold time The minimum amount of time the input signals
must be held constant after the clock edge has struck. After
a clock edge strikes a flip-flop, the internal transistors need
time toxchange from one state to another. The input control
signals (D, or J and K) must be held constant while these
internal transistors are switching over.

latch The siniplest type of flip-flop, consisting of two
cross-coupled NAND or NOR latches.

level clocking A type of triggering in which the output
of a flip-flop responds to the level (high or low) of the

clock signal. With positive level clocking, for example, the
output can change at any time during the positive half cycle.
master-slave triggering- A type of triggering using two
cascaded latches called the master and the slave. The master
is cocked during the positive half cycle of the clock, and
the slave is triggered during the negative half cycle.
propagation delay time The time it takes for the output
of a gate or flip-flop to change after the inputs have changed.
race condition An undesirable condition which may exist
in a system when two or more inputs change simultaneously.
If the final output depends on which input changes first, a
race condition exists.

setup time The minimum amount of time the inputs to a
flip-flop must be present before the clock edge arrives.
toggle Change of the output to the opposite state in a JK
flip-flop. '

Chapter 7 Flip-Flops 103_

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. Adflipflopisa element that stores a
binary digit as a low or high voltage. With an RS
latch a high § and a low R sets the output to

inputs are often called set and

reset. These inputs averride the other inputs; they
have first priority. When preset. goes low, the O
output goes and stays there no matter
what the D and CLK inputs are doing.

. . 6. (rising, direct, direct, high) In a flip-flop, propaga-
output to lo;va low 5 and a high R the tion delay time is the-amount of time it takes for the
o . - to change after w.1e clock edge has
2. (memory, high, reset) With a NAND latct.) a low R . struck. Setup time is the amount of time an input
and a low § produce a . . condition. This is signal must be present the clock edge
why R and .S are kept high when mactxv;. O ne use strikes. Hold time is the amount of time an input
for latches is switch debouncers; they eliminate the sional must be present the clock edge
effects of bounce. s tfikes P g
3. (race, contacr) Comp uters use thou§ ands of flip- 7. (output, before, after) In a positive-edge-triggered JK
flops. To coordinate the overall action, a common flip-flop, a low J and a low K produce the
signal called the is sent to each flip-flop. ’ state. A high J and a high K mean that
With positive clocking the clock signal must be the output will ’ on the rising edge of the
for the flip-flop to respond. Positive and clock P g g
negative cl(?cking are also called level clocking be- 8. (inacziiﬁe toggle) With a JK master-slave flip-flop the
cause the flip-flop responds to the of the fnaster is cocked when the clock is and
clock, either high or low. ’
. . . the sl t ed when the clock
4. (c{ock, high, level) In a D latch, data bit D ('jI'IVCS the T;}: tt;r\:e lZf Eiﬁ_{op r\s]:sr:xall; (;e(if;l éslocke 4 instea d
5 1.nput of a latgh, and. the complement D drives the of edge-triggered. For this reason, J and K are nor-
.R input; therefore, 2 hlg.h b the latcl? mally kept ___ while the clock is high.
zndoasiltz“;taDtersejgt:t“D. lsa 1trcx;e :;:nd § are alwiﬁ;&?_ 9. (high, low, constant) Since capacitors are too diffi-
tiﬁﬁ is impossible ’ cult to fabricate on an IC chip, manufacturers rely on
5. (sets, race) With a positive-edge-triggered D flip- ;zlm(f);:)s ;ilrect-coup led designs for D flip- ﬂop s and JK
flop, the data bit is sampled and stored on the p-tiop
edge of the clock pulse. Preset and clear
PROBLEMS
7-1. The waveforms of Fig. 7-17 drive a clocked RS 7-2. A D flip-flop has these specifications:
latch (Fig. 7-5a). If Q is low before time A,
a. At what point does Q become a 1? tewp = 10 s
b. When does Q reset to 0? fhold = 5 1S
t, = 30ns

A 8 C G H
: [1
\ [1]
Fig. 7-17

104 Digital Computer Electronics

a. How far ahead of the rising clock edge must the
data bit be applied to the D input to ensure
correct storage?

b. After the rising clock edge, how long must you
wait before letting the data bit change?

c. How long after the rising clock edge will Q
change?

3 3
<]
Fig. 7-18
+5V
R J Q
cLK —
K a
Fig. 7-19
+5V
10 kQ2
I—]
o)
o PR g
CLK —— P
cLR af—
CLR_—T
Fig. 7-20

Fig. 7-21

Fig. 7-22

7-4.

7-5.

7-6.

In Fig. 7-18, the data word to be stored is
S = 1001

a. If LOAD is low, what does Q equal after the
positive clock edge? :

b. If LOAD is high, what does Q equal after th
positive clock edge. -

The clock of Fig. 7-19 has a frequency of 1 MHz,

and the flip-flop has a propagation delay time of 25

ns.

a. What is the period of the clock?

b. The frequency of the O output? Its period?

c. How long after the negative clock edge does the
Q output change?

The clock has a frequency of 6 MHz in Fig. 7-19.

What is the frequency of the Q output? This circuit

is sometimes called a divide-by-2 circuit. Explain

why.

In Fig. 7-20, CLR is taken low temporarily, then

high. Draw the timing diagram. If the clock has a

frequency of 1 MHz, what is the frequency of the

Q output? Is this a divide-by-2 circuit?

Figure 7-21 shows a NAND latch used as a switch

debouncer. With the switch in the STOP position,

what do Q and Y equal? If the switch is thrown to

the START position, what do Q and Y equal?

The clock has a frequency of | MHz in Fig. 7-22.

With the switch in the OFF position, what is the

frequency of the Q output? If the switch is thrown

to the ON position, what is the frequency of the Q

output?

Chapter 7 Flip-Flops 105

Registers and Counters

A register is a group of memory elements that work together
as a unit. The simplest registers do nothing more than store
a binary word; others modify the stored word by shifting
its bits left or right or by performing other operations to be
discussed in this chapter. A counter is a special kind of
register, designed to count the number of clock pulses
arriving at its input. This chapter discusses some basic
registers and counters used in microcomputers.

8-1 BUFFER REGISTERS

A buffer register is the simplest kind of register; all it does
is store a digital word.

Basic Idea

Figure 8-1 shows a buffer register built with positive-edge-
triggered D flip-flops. The X bits set up the flip-flops for
loading. Therefore, when the first positive clock edge
arrives, the stored word becomes Q;Q,Q,Q; = X;3X,X,X,.
In chunked notation,

Q=X

The circuit is too primitive to be of any use. What it
needs is some control over the X bits, some way of holding
them off until we’re ready to store them.

Controlled

Figure 8-2 is more like it. This is a controlled buffer register
with an active-high CLR. Therefore, when CLR goes high,
all flip-flops reset and the stored word becomes

Q = 0000
When CLR returns low, the register is ready for action.

LOAD is a control input; it determines what the circuit
does. When LOAD is low, the X bits cannot reach the flip-

106 Digital Computer Electronics

flops. At the same time, the inverted signal LOAD is high,
this forces each flip-flop output to feed back to its data
input. When each rising clock edge arrives, data is circulated
or retained. In other words, the register contents are
unchanged when LOAD is low.

When LOAD goes high, the X bits are transmltted to the -
data inputs. After a short setup time, the flip-flops are ready
for loading. With the arrival of the positive clock edge. the
X bits are loaded and the stored word becomes

Q:Q:QiQ = XXX, X,

If LOAD returns to low, the foregoing word is stored
indefinitely; this means that the X bits can change without
affecting the stored word.

EXAMPLE 8-1

Chapter 10 discusses the SAP (simple as possible) computer.
This educational computer has three generations, SAP-1,
SAP-2, and SAP-3. Figure 8-3 shows the output register
of the SAP-1 computer. The 74LS173 chips are controlled
buffer registers, similar to Fig. 8-2. What does the circuit
do?

SOLUTION

To begin with, it is an 8-bit buffer regisicr built with TTL
chips. Each chip handles 4 bits of input word X. The upper
nibble X;X¢X5X, goes to pins 14, 13, 12, and 11 of C22;
the lower nibble X3X,X;X, goes to pins 14, 13, 12, and
11 of the C23.

Output word Q drives an 8-bit LED display. The upper
nibble Q;QQ5Q, comes out of pins 3, 4, 5, and 6 of C22;
the lower nibble Q;Q,Q,Q, comes out of pins 3, 4, 5, and

* 6 of C23. The typical high-state output of a 74LS173 is

3.5 V, and the typical LED drop is 1.5 V. Since each
current-limiting resistance is 1 k{1, the high-state current
is approximately 2 mA for each output pin.

X3 X2 Xl XO
— % '03‘J"02 DZ'_’_OI D1J—Oo DO"|
<1 <—l <_’ 4
Fig. 8-1 Buffer register.
X3 X, X, Xo
| TOAD <
T
! I ’ LOAD
Jo, D, Ua, b, Ua, », o, b,
I CLR
Fig. 8-2 Controlled buffer register.
X, Xg X5 X X3 Xy X, Xg
¢ LOAD
14 13 12 1 14 13 12 1
+5v 8 9 5y 18] 9
1 10 1 . 10
2 c22 7 2 c23 7
N 7408173 q .9 7415173 I
GND : ey L
15 CLR CLR
= 3 4 5 6 = 3 4 5 6
@- CLK
‘b > > >
R, QR SRs 28, >Ry SR, SR, 2R,
zlaladz alala

Note: All resistors are 1 kS2.
Fig. 8-3 SAP-1 output register.

The 74LS173 requires a 5-V supply for pin 16 and a
ground return on pin 8. The SAP-1 output register never
needs clearing; this is why the CLR input (pin 15) is made
inactive by tying it to ground. In a 74LS173, pins 9 and
10 are separate LOAD controls. Because SAP-1 needs only

a single LOAD control, pins 9 and 10 are tied together. -

The bubbles on pins 9 and 10 indicate an active low state;
this means that LO/4 7> must be low for the positive clock

edge to store the input word. See Appendix 3 for a more
detailed description of the 74LS173.

The action of the circuit is straightforward. While LOAD
is high, the register contents are unchanged even though
the clock is running. To change the stored word, LOAD
must go low. Then the next rising clock edge loads the X
bits into the register. As soon as this happens, the LED
display shows the new contents. '

Chapter 8 Registers and Counters 107

8-2 SHIFT REGISTERS

A shift register moves the stored bits left or right. This bit
shifting is essential for certain arithmetic and logic opera-
tions used in microcomputers.

Shift Left

Figure 8-4 is a shift-left register. As shown, D;, sets up the
right flip-flop, Q, sets up the second flip-flop, Q, the third,
and so on. When the next positive clock edge strikes,
therefore, the stored bits move one position to the left.

As an example, here’s what happens with D;; = 1 and

Q = 0000

All data inputs except the one on the right are Os. The
arrival of the first rising clock edge sets the right flip-flop,
and the stored word becomes

Q = 0001
This new word means D, now equals 1, as well as D,.
When the next positive clock edge hits, the'Q, flip-flop sets
and the register contents become
Q = 0011
The third positive clock edge results in
Q = 0111

and the fourth rising clock edge gives

Q = 1111

Hereafter, the stored word is unchanged as long as
D, = 1.

Suppose D;, is now changed to 0. Then, successwe clock
pulses produce these register contents:

Q = 1110
Q = 1100
Q = 1000

Q = 0000

As long as D;, =
further effect.

The timing diagram of hg 8-5 summarizes the foregoing
discussion.

0, subsequent clock pulses have no

Shift Right

Figure 8-6 is a shift-right register. As shown, each Q output
sets up the D input of the preceding flip-flop. When the

108 Digital Computer Electronics

rising clock edge arrives, the stored bits move one posmon
to the right.
Here’s an example with D;;, = 1 and

Q = 0000

All data inputs except the one on the left are Os. The first
positive clock edge sets the left flip-flop and the stored
word becomes

Q = 1000

With the appearance of this word, D3 and D, are 1s. The
second rising clock edge gives

Q = 1100
The third clock pulse gives
. Q= 1110
and the fourth clock pulse gives

Q = 1111

8-3 CONTROLLED SHIFT
REGISTERS

A controlled shift register has control inputs that determine
what it does on the next clock pulse.

SHL Control

Figure 8-7 shows how the shift-left operation can be
controlled. SHL is the control signal. When SHL is low,
the inverted signal SHL is high. This forces each flip-flop
output to feed back to its data input. Therefore, the data is
retained in each flip-flop as the clock pulses arrive. In this
way, a digital word can be stored indefinitely.

When SHL goes high, D, sets up the right flip-flop, O,
sets up the second flip-flop, Q, the third flip-flop, and so
on. In this mode, the circuit acts like a shift-left register.
Each positive clock edge shifts the stored bits ene position
to the left.

Serial Loading

Serial loading means storing a word in the shift register by
entering 1 bit per clock pulse. To store a 4-bit word, we
need four clock pulses. For instance, here’s how to serially
store the word

X = 1010

With SHL high in Fig. 8-7, make D;, = 1 for the first
clock pulse, D, = 0 for the second clock pulse, D;, = 1

|
|
| —
___J“‘
E

Fig. 8-4 Shift-left register.

Q
x
J%

o}
9

|E

g e e e e | — —

Q3

Fig. 8-5 Shift-left timing diagram.

L03 0.} 0., Ha, 132>—|I_o1 o,H -a, DOJ

LI nan

Fig. 8-6 Shift-right register.

SHL

. . .]l SHL
Dln
. 1
o, D o, 0, o, o, Ua, o,

Fig. 8-7 Controlled shift register.

Chapter 8 Registers and Counters 109

for the third clock pulse, and D;, = 0 for the fourth clock
pulse. If the register is clear before the first clock pulse,
the successive register contents look like this:

Q = 0001 (D, = I first clock pulse)
Q = 0010 (D;, = 0: second clock pulse)
Q = 0101 (Di, = 1: third clock pulse)
Q = 1010 (D, = 0: fourth clock pulse)

I

In this way, data is entered serially into the right end of
the register and shifted left until all 4 bits have been stored.

After the last bit is entered, SHL is taken low to freeze the

register contents.

Parallel Loading

Figure 8-8 is another step in the evolution of shift registers.
The circuit can load X bits directly into the flip-flops, the
same as a buffer register. This kind of entry is called
parallel or broadside loading; it takes only one clock pulse
to store a digital word.

If LOAD and SHL are low, the output of the NOR gate
is high and flip-flop outputs return to their data inputs. This
forces the data to be retained in each flip-flop as the positive
clock edges arrive. In other words, the register is inactive
when LOAD and SHL are low, and the contents are stored
indefinitely.

When LOAD is low and SHL is high, the circuit acts like.

a shift-left register, as previously described. On the other
hand, when LOAD is high and SHL is low, the circuit acts
like a buffer register because the X bits set up the flip-flops
for broadside loading. (Having LOAD and SHL simulta-
neously high is forbidden because it’s impossible to do
both operations on a single clock edge.)

By adding more flip-flops we can build a controlled shift
register of any length. And with more gates, the shift-right

X3 Xy

operation can be included. As an example, the 74198 is a
TTL 8-bit bidirectional shift register. It can broadside load,
shift left, or shift right.

8-4 RIPPLE COUNTERS

A counter is a register capable of counting the number of -

- clock pulses that have arrived at its clock input. In its

simplest form it is the electronic equivalent of a binary
odometer.

The Circuit

Figure 8-9a shows a counter built with JK flip-flops. Since
the J and K inputs are returned to a high voltage, each flip-
flop will toggle when its clock input receives a negative
edge.

Here’s how the counter works. Visualize the Q outputs
as a binary word

Q = Q;:Q,QiQ

0, is the most significant bit (MSB), and Q, is the least
significant bit (LSB). When CLR goes low; all flip-flops
reset. This results in a digital word of

Q = 0000

When CLR returns to high, the counter is ready to go.
Since the LSB flip-flop receives each clock pulse, Q, toggles
once per negative clock edge, as shown in the timing
diagram of Fig. 8-9b. The remaining flip-flops toggle less
often because they receive their negative edges from the
preceding flip-flops.

For instance, when Q, goes from 1 back to 0, the Q
flip-flop receives a negative edge and toggles. Likewise

X, Xo

1. LOAD

SHL

D.

n

Fig. 8-8 Shift register with broadside load.

110 Dbigital Computer Electronics

High

—a, 4 Q, J; 0, g A
d 4 P d e
Q; K3 o, K a, K Q0 K-
T T i, i Y CLR

(b)

Fig. 8-9 (a) Ripple counter; (b) timing diagram.

when Q, changes from 1 back to 0, the Q, flip-flop gets a
negative edge and toggles. And when Q, goes from 1 to
0, the Q; flip-flop toggles. In other words, whenever a flip-
flop reséts to 0, the next higher flip-flop toggles (see Fig.
8-9b).

What does this remind you of? Reset and carry' Each
flip-flop acts like a wheel in a binary odometer; whenever
it resets to 0, it sends a carry to the next higher flip-flop.
Therefore, the counter of Fig. 8-9a is the electronic
equivalent of a binary odometer.

Counting

If CLR goes low then high, the register contents of Fig.
8-9a become

Q = 0000

When the first clock pulse hits the LSB flip-flop, Q, becomes
a 1. So the first output word is

Q = 0001

When the second clock pulse arrives, Q, resets and carries;
therefore, the next output word is

Q = 0010
The third clock pulse advances Q, to 1; this gives

Q = 0011

The fourth clock pulse forces the Q, flip-flop to reset and
carry. In turn, the Q, ﬂnp-ﬂop resets and carries. The
resulting output word is

Q = 0100

The fifth clock pulse gives

Q = 0101
The sixth gives

Q = 0110
and the seventh gives

Q = o111

On the eighth clock pulse, Q, resets and carries, Q,
resets and carries, Q, resets and carries, and Q; advances
to 1. So the output word becomes

Q = 1000
The ninth clock pulse gives

Q = 1001
The tenth gives
' Q = 1010

and so on.

111

Chapter 8 Registers and Counters

TABLE 8-1. RIPPLE

COUNTER
Count Q;Q,Q,Q,
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
The last word is
Q = 1111

corresponding to the fifteenth clock pulse. The next clock
pulse resets all flip-flops. Therefore, the counter resets to

Q = 0000

and the cycle repeats.

Table 8-1 summarizes the operation of the counter. Count
represents the number of clock pulses that have arrived. As
you see, the counter output is the binary equivalent of the
decimal count.

Frequency Division

Each flip-flop in Fig. 8-9a divides the clock frequency by
a factor of 2. This is why a flip-flop is sometimes called a
divide-by-2 circuit. Since each flip-flop divides the clock
frequency by 2, n flip-flops divide the clock frequency by
2,

The timing diagram of Fig. 8-9b illustrates the divide-
by-2 action. Q, is one-half the clock frequency, Q, is one-
fourth the clock frequency, Q, is one-eighth the clock

frequency, and Qs is one-sixteenth of the clock frequency.
In other words,

1 flip-flop divides by 2

2 flip-flops divide by 4

3 flip-flops divide by 8

4 flip-flops divide by 16

and

n flip-flops divide by 27

Ripple Counter

The counter of Fig. 8-9a is known as a ripple counter .
because the carry moves through the flip-flops like a ripple
on water. In other words, the Q, flip-flop must toggle before

" the Q, flip-flop, which in turn must toggle before the Q,

flip-flop, which in turn must toggle before the Q5 flip-flop.
The worst case occurs when the stored word changes from
0111 to 1000, or from 1111 to 0000. In either case, the
carry has to move all the way to the MSB flip-flop. Given
a 1, of 10 ns per flip-flop, it takes 40 ns for the MSB to
change

By adding more flip-flops to the left end of Fig. 8-9a we
can build a ripple counter of any length. Eight flip-flops
give an 8-bit ripple counter, twelve flip-flops result in a
12-bit ripple .counter, and so on,

Controlled Counter

A controlled counter counts clock pulses only when com-
manded to do so. Figure 8-10 shows how it’s done. The
COUNT signal can be low or high. Since it conditions the

_J and K inputs, COUNT controls the action of the counter,

forcing it to either do nothing or to count clock pulses.

When COUNT is low, the J and K inputs are low;
therefore, all flip-flops remain latched in spite of the clock
pulses driving the counter.

On the other hand, when COUNT is high, the J and K
inputs are high. In this case, the counter works as previously
described; each negative clock edge increments the stored
count by 1.

EXAMPLE 8-2

As mentioned earlier, the program and data are stored in
the memory before a computer run. The program is a list
of instructions telling the computer how to process the data.

\ @ ‘T 9—— COUNT -
—_jQ J Q J _l Q J Q J
3 3 2 2 1 1 0 4]
<jj J 4l UL
Q3 K aQ, K, Q, Kj 0y Ko

Fig. 8-10 Controlled ripple counter.

112 Digital Computer Electronics

C1 C2
74107 74107
COUNT
1 8 1 5 8
3 Q J 5 Q J J — Q J
12 9 12 9 —_—
b b b—— CLK
_ 4 - 1" 4 - 11
Q K — Q K p— K Q K
13 10 13 10 _
T I I I CLR
Q3 o Q, Q

Fig. 8-11 SAP-1 program counter.

Every microcomputer has a program counter to keep track
of the instruction being executed.

Figure 8-11 shows part of the program counter used in
SAP-1. What does it do?

SOLUTION

To begin with, let’s find out why the CLR and CLK signals
are shown as complements. Signals are often available in
complemented and uncomplemented form. The switch
debouncer of Fig. 7-4a has two outputs, CLR and CLR. In
SAP-1 the CLR signal goes to any circuit that uses an active
high clear and the CLR signal to any circuit with an active
low clear. This is why CLR goes to the counter of Fig.
8-11; it has an active low clear. A similar idea applies to
the clock signal.

The 74107 is a dual JK master-slave flip-flop. The SAP-
1 program counter uses two 74107s. Although not shown,
pin 14 ties to the 5-V supply, and pin 7 is the chip ground.
Because master-slave flip-tlops are used, a high CLK cocks
the master and a low CLK triggers the slave.

Before a computer run, the operator pushes a clear button
that sends a low CLR to the program counter. This resets
its count to

Q = 0000

When the operator releases the button, CLR goes high and
the computer run begins. '

After the first instruction has been fetched from the
memory, COUNT goes high for one clock pulse and the
count becomes

Q = 0001.

This count: indicates that the first instruction has been
fetched from the memory. (Later you will see how the
computer executes the first instruction.)

After the first instruction has been executed, the computer
fetches the second instruction in the memory. Once again,

COUNT goes high for one clock pulse, producing a new
count of

Q = 0010
The program counter now indicates that the second instruc-
tion has been fetched from the memory.

Each time a new instruction is fetched.from the memory,
the program counter is incremented to produce the next
higher count. In this way, the computer can keep track of
which instruction it’s working on.

8-5 SYNCHRONOUS COUNTERS

When the carry has to propagate through a chain of »n flip-
flops, the overall propagation delay time is nt,. For this
reason ripple counters are too slow for some applications.
To get around the ripple-delay problem, we can use a
synchronous counter.

The Circuit

Figure 8-12 shows one way to build a synchronous counter
with positive-edge-triggered flip-flops. This time, clock
pulses drive all flip-flops in parallel. Because of the
simultaneous clocking, the correct binary word appears
after one propagation delay time rather than four.

The least significant flip-flop has its J and K inputs tied
to a high voltage; therefore, it responds to each positive
clock edge. But the remaining flip-flops can respond to the
positive clock edge only under certain conditions. As shown
in Fig. 8-12, the Q, flip-flop toggles on the positive clock
edge only when Q, is a 1. The Q, flip-flop toggles only
when Q;.and Q, are 1s. And the Q; flip-flop toggles only
when Q,, 0, and Q, are 1Is. In other words, a flip-flop
toggles on the next positive clock edge if all lower bits are
Is.

113

Chapter 8 Registers and Counters

Jop 5
q
0; K

Fig. 8-12 Synchronous counter.

Here’s the counting action. A low CLR resets the counter

to

Q = 0000

‘When the CLR line goes high, the counter is ready to go.. .

The first positive clock edge sets Qo to get
Q = 0001

Since Q, is now 1, the Q, flip-flop is conditioned to toggle
on the next positive clock edge.

When the second positive clock edge arrives, Q, and Q,
simultaneously toggle and the output word becomes

Q = 0010
The third positive clock edge advances the count by 1:
Q = 0011

Because Q, and Q, are now lIs, the Q,, Q,, and Q, flip-
flops are conditioned to toggle on the next positive clock
edge. When the fourth positive clock edge arrives, Q,, Q,,
and Q, toggle simultaneously, and after one propagation
delay time the output word becomes

The successive Q words are 0101, 0110, 0111, and so
on up to 1111 (equivalent to decimal 15). The next positive
clock edge resets the counter, and the cycle repeats.

By adding more flip-flops and gates we can build
synchronous counters of any length. The advantage of a
synchronous counter is its speed; it takes only one propa-
gation delay time for the correct binary count to appear
after the clock edge hits. '

Controlled Counter

Figure 8-13 shows how to build a controlled synchronous
counter. A low COUNT disables all flip-flops. When
COUNT is high, the circuit becomes .a synchronous counter;
each positive clock edge advances the count by 1.

8-6 RING COUNTERS

Instead of counting with binary numbers, a ring counter
uses words that have only a single high bit.

Circuit

Figure 8-14 is a ring counter built with D flip-flops. The
Qo output sets up the D, input, the O, output sets up the

Q = 0100 D, input, and so on. Therefore, a ring counter resembles a
COUNT
Hao, & Jo |4
g <
3 Ky Ko~

CLR

Fig. 8-13 Controlled synchronous counter.

114 Digital Computer Electronics

OO PR DO._4

T 4

A

Fig. 8-14 Ring counter.

shift-left register because the bits are shifted left one position
per positive clock edge. But the circuit differs because the
final output is fed back to the D, input. This kind of action
is called rotate left; bits are shifted left and fed back to the
input.

When CLR goes low then back to high, the initial output
word is

Q = 0001

The first positive clock edge shifts the MSB into the LSB
position; the other bits shift left one position. Therefore,
the output word becomes

Q = 0010

The second positive clock edge causes another rotate left
and the output word changes to

Q = 0100
After the third positive clock edge, the output word is
Q = 1000

The fourth positive clock edge starts the cycle over because
the rotate left produces

Q = 0001

The stored 1 bit follows a circular path, moving left
through the flip-flops until the final flip-flop sends it back
to the first flip-flop. This is why the circuit is called a ring
counter.

CLR
7
4

‘More Bits

Add more flip-flops and you can build a ring counter of
any length. With six flip-flops we get a 6-bit ring counter.
Again, the CLR signal resets all flip-flops except the LSB
flip-flop. Therefore, the successive ring words are

Q = 000001 (0)
Q = 000010 (1)
Q = 000100 (2
Q = 001000 (3)
Q = 010000 (4)
Q = 100000 (5)

Each of the foregoing words has only 1 high bit. The
initial word stands for decimal O and the final word for
decimal 5. If a ring counter has n flip-flops, therefore, the

final ring word represents decimal n — 1.

Applications

Ring counters cannot compete with ripple and synchronous
counters when it comes to ordinary counting, but they are
invaluable when it’s necessary to control a sequence of
operations. Because each ring word has only 1 high bit,
you can activate one of several devices.

For instance, suppose the six small boxes (A to F) of
Fig. 8-15 are digital circuits that can be turned on by a
high Q bit. When CLR goes low, Q, goes high and activates
device A. After CLR returns to high, successive clock
pulses turn on each device for a short time. In other words,
as the stored 1 bit shifts left, it turns on B to F in sequence,
and then the cycle starts over.

Many digital circuits participate during a computer run.
To fetch and execute instructions, a cornputer has to activate

Ring counter

oo

0. b—C¢CLr

Fig. 8-15 Controlling a sequence of operations

Lhhohn

115

Chapter 8 Registers and Counters

C36 ca7

c38
74107 74107 74107 ,
cLK
3 1 5 =
a J o) Rl T o g Bl] s s Eetla Py Akl
12 9 12 9 12 9
b - b p—
2| - 4 |ef- 1mn |2f- _ _ 4 .
a K a K a K a Py AR] P K °la K _
13 10 13 10 13 10
i i i I i [
Te Ty Ta L7 T

Note: Pin 14 is connected to'+5 V, and pin 7 is grounded.

Fig. 8-16 SAP-1 ring counter.

these circuits at precisely the right time and in the right
sequence. This is where ring counters shine; they produce
the ring words for timing different operations during a
computer run.

EXAMPLE 8-3

Figure 8-16 shows the ring counter used in the SAP-1
computer. T to T, are called timing signals because they
control a sequence of digital operations. What does this
ring counter do?

SOLUTION

The 74107 is a dual JK master-slave flip-flop, previously
used in the SAP-1 program counter (Example 8-2). The
flip-flops are connected in a rotate-left mode. Since the
74107 does not have a preset input, the Q, flip-flop is
inverted so that its Q output drives the J input of the Q,
flip-flop. In.this way, a low CLR produces the initial timing
word _

T6T5T4T3T2T 1= 000001

In chunked form
T = 000001

Because of the master-slave action, a complete clock
pulse is needed to produce the next ring word. After CLR
returns high, the successive clock pulses produce the timing
words

000010
000100
001000
010000
100000

I

= e g e]
I

Then the cycle repeéts.

116 Digital Computer Electronics

EXAMPLE 8-4

The clock frequency-in Fig. 8-16 is 1 kHz. CLR goes low
then high. Show the timing diagram.

SOLUTION

Figure 8-17 is the timing diagram. Since the clock has a
frequency of 1 kHz, it has a period of 1 ms. This is the
amount of time between successive negative clock edges.
Each negative clock edge produces the next ring word.
When its turn comes, each timing signal goes high for 1
ms.

Notice that the CLK signal of Fig. 8-17 is the input to
the ring counter of Fig. 8-16, whereas the complement
CLK is the input to the program counter of Fig. 8-11. This
half-cycle difference is deliberate. The reason is given in
Chap. 10, which explains how the timing signals of Fig.
8-17 control circuits-that fetch and execute each program
instruction.

8-7 OTHER COUNTERS

The modulus of a counter is the number of output states it
has. A 4-bit ripple counter has a modulus of. 16 because it
has 16 distinct states numbered from 0000 to 1111. By
changing the design we can produce a counter with any
desired modulus. ‘

Mod-10 Counter

Figure 8-18a shows a way to build a modulus-10 (or mod-
10) counter. The circuit counts from 0000 to 1001, as
before. However, on the tenth clock pulse, the counter

v

T3
T [1 [1
T B I

High
— Q, Jg _0__[— Q, H—e Mo Jq —qT Qq Yo o
p— N p— p— CcLK
Qg K3 a, Ko a, Ky - Qg Kol—
T I T T CLR
] Y

\

Fig. 8-18 Mod-10 counter.

generates its own clear signal and the count jumps back to
0000. In other words, the count sequence is

Q = 0000 (0)
Q = 0001 (1)
Q = 0010 (2)
Q=001 (3
Q = 0100 (4
Q = 0101 (5)
Q = 0110 (6)
Q=011 (7
Q = 1000 (8
Q = 1001 (9
Q = 0000 (0)

As you see, the circuit skips states 10 to 15 (1010 through
1111). The counting sequence is summarized by the state
diagram of Fig. 8-18b.

‘(a)

(b)

Why does the counter skip the states from 10 to 15?
Because of the AND gate, the counter can be reset by a low
CLR or a low Y. Initially, CLR goes low to produce

Q = 0000

- When CLR returns to high, the counter is ready for action,

The output of the NAND gate is

Y = 050,

This output is high for the first nine states (0000 to 1001).
Nothing unusual happens when the circuit is counting from
0 to 9. On the tenth clock pulse, however, the-Q word
becomes '

Q = 1010

117

Chapter 8 Registers and Counters

which means that Q5 and 0, are high. Almost immediately,
Y goes low, forcing the counter to reset to

Q = 0000

Y then goes high, and the counter is ready to start over.

Since it takes 10 clock pulses to reset the counter, the
output frequency of the Q; flip-flop is one-tenth of the clock
frequency. This is why a mod-10 counter is also known as
a divide-by-10 circuit.

A mod-10 counter like Fig. 8-18a is often called a decade
counter. Because it counts from 0 to 9, it is a natural choice
in BCD applications like freqiency counters, digital volt-
meters, and electronic wristwatches.

To get any other modulus, we can use the same basic
idea. For instance, to get a mod-12 counter, we can drive
the NAND gate of Fig. 8-18a with Q; and Q,. Then the
circuit counts from 0 to 11 (0000 to 1011). On the next
clock pulse, Q5 and Q, are high, which clears the counter.
(What is the modulus if Q; and Q, drive the NAND gate?)

Down Counter

All the counters discussed so far have counted upward,
toward higher numbers. Figure 8-19 shows a down counter;
it counts from 1111 to 0000. Each flip-flop toggles when
its clock input goes from 1 to 0. This is equivalent to an
uncomplemented output going from O to 1. For instance,
the Q, flip-flop toggles when Q, goes from 1 to 0; this is
equivalent to 0, going from 0 to 1.

A preset signal generated elsewhere is available in either
uncomplemented or complemented form; PRE goes to all
circuits with an active-high preset; PRE goes to all circuits
with an active-low preset. Initially, the preset signal PRE
goes low in Fig. 8-19, producing an output word of

Q= 1111 (15
When PRE goes high, the action starts. Notice that Q,
toggles once per clock pulse. In the following discussion,
a positive toggle means a change from 0 to |, a negative
toggle means a change from | to 0.

The first clock pulse produces a negative toggle in Q,:

nothing else happens:

The second clock pulse produces a positive toggle in QO,
which produces a negative toggle in Q;:

Q=110 (13)

On the third clock pulse, Q, toggles negatively, and

Q = 1100 (12)
On the fourth clock pul.se, 0, toggles positively, O, toggles
positively, and Q, toggles negatively:

Q = 1011 (11
You should have the idea by now. The circuit is counting
down, from 15 to 0. When it reaches O,

Q = 0000

On the next clock pulée, .all flip-flops toggle positively to
get

Q = 1111

and the cycle repeats.

Up-Down Counter

Figure 8-20 shows how to build an up-down counter. The
flip-flop outputs are connected to steering networks. An
UP control signal produces either down countmg or up
counting. If the UP signal is low, 0,, 0,, and Q, are
transmitted to the clock inputs; this results in a down
counter. On the other hand, when UP is high, 0,, Q,, and
Q, drive the clock inputs and the circuit becomes an up
counter.

Presettable Counter

In a presettable counter, the count starts at a number greater
than zero. Figure 8-21a shows a presettable counter; the
count begins with P;P,P Py, a number between 0000 and
111,

To start.the analysis, look at the LOAD control line.

Q = 1110 (14) When it is low, all NAND gates have high outputs; therefore,
PRE
L High
g o
Q, I3 ¢ Q, J, —o o} ;o 4 Qo Jo o
Qg K3 ——‘——|— Q, Ky —-_L— a, Ky —AF—L Q Ko —

Fig. 8-19 Down counter.

118 Digital Computer Electronics

Q, a, a 2, Qo Qg
High
a, 4| o, s | o e J ¢
0_3 K L— — 62 K p— et 51 K — —— 60 K r—_J
[b [L o
Fig. 8-20 Up-down counter.
Py Py Py Po
! [1
. - ° * Py - * LOAD
L ‘L l High
Q3 J3 —e |—< Q, Jy —e Q, Jq H) I_1 Qq Jo)
- - - = cLk
0, Ky }— Q, Ky i Q, Ky p— Q, Ko —

b)
Fig. 8-21 Presettable counter.

the preset and clear inputs of all flip-flops are inactive. In
this case, the circuit counts upward, as previously described.
The data inputs P; to P, have no effect because the NAND
gates are disabled.

When the LOAD line is high, the data inputs and their
complements pass through the NAND gates and preset the

0220202202022 0 2aOpa Opa O ©

fc)

counter to P;P,P\P;. As an example, suppose the preset
input is
P,P,P,P, = 0110

Because of the two left NAND' gates, the iow P produces
a high preset and a low clear for the Q; flip-flop; this clears

Chapter 8 Registers and Counters 119

Qs to a 0. By a similar argument, the high P, sets 0, the
high P, sets Q,, and the low P, clears Q,. Therefore, the
counter is preset to

Q = 0110

When LOAD returns to low, the circuit reverts to a
counter. Successive clock pulses produce

Q = 0111
Q = 1000
Q = 1001

up to a maximum count of
Q = 1111

The next clock pulse resets the counter to
Q = 0000

In summary,

1. When LOAD is low, the circuit counts.
2. When LOAD is high, the counter presets to P;P,P,P,.

Programmable Modulus

The most important use of a presettable counter is pro-
gramming a modulus. Here’s the idea. Let’s add the NOR
gate of Fig. 8-21b to the presettable counter of Fig. 8-21a.
Then the Q outputs drive the NOR gate, and the NOR gate
controls the LOAD line of the presettable counter. Because
a NOR gate recognizes a word with all Os and disregards all
others, LOAD is high for Q = 0000 and low for all other
words. This means that the circuit presets when Q = 0000
and counts when Q is 0001 to 1111." "

If the preset input is 0110, successive clock pulses
produce 0111, 1000, 1001, . .., reaching a maximum
value of

Q = 1111
The next clock pulse resets the count to
Q. = 0000

Almost immediately, however, the NOR-gate outputs goes
high, and the data inputs preset the counter to

Q = 0110
In other words, the counter effectively skips states O to 5,
illustrated by the state diagram of Fig. 8-21c.

Figure 8-21¢ shows 10 distinct states; by presetting 0110,
we have programmed the counter to become a mod-10

120 Digital Computer Electronics

counter. If we change the preset input, we get a different
modulus. In general,

M=N-P (8-1)

where M = modulus of preset counter
N = natural modulus
P = preset count

The natural modulus equals 2" where n is the number of
flip-flops in the counter. So four flip-flops give a natural
modulus of 16, eight give a natural modulus of 256, and
SO on.

As an example, if you preset 82 into a preset counter
with eight flip-flops, the modulus is

M =256 — 82 = 174

In other words, this preset counter is equivalent to a divide-
by-174 circuit.

TTL Counters

Table 8-2 lists some TTL counters. The 7490 is an industry
standard, a widely used decade counter. This ripple counter
has two sections, a divide-by-2 and a divide-by-5. This
allows you to divide by 2, to divide by 5, or to cascade
both sections to divide by 10.

The 7492 is a mod-12 ripple counter, organized in two
sections by divide-by-2 and divide-by-6. This allows you

. to divide by 2, divide by 6, or cascade to divide by 12.

The 7493 is a mod-16 ripple counter, with two sections of
divide-by-2 and divide-by-8.

The 74160 and 74161 are presettable synchronous counters,
the first being a decade counter and the second a divide-
by-16 counter. Finally, the 74190 and 74191 are up-down
presettable counters.

This is a sample of basic TTL counters; others are listed
in Appendix 2.

TABLE 8-2. TTL COUNTERS

Number Type

7490 Decade

7492 Divide-by-12

7493 Divide-by-16

74160 Presettable decade

74161 Presettable divide-by-16

74190 Up-down presettable decade
74191 Up-down presettable divide-by-16

8-8 THREE-STATE REGISTERS

The three-state switch, a development of the early 1970s,
has greatly simplified computer wiring and design because
it’s ideal for bus-organized computers (the common type
.nowadays).

10 kQ out

100 k2
ENABLE A

. fc)
Fig. 8-22 (u) Three-state switch; (b) floating or high-impedance
state; (c) output equals input.

Three-State Switch

Figure 8-22a is an example of a three-state switch. The
ENABLE input can be low or high. When it’s low, transistor
A cuts off and transistor B saturates. This pulls the base of
transistor C down to ground, opening its base-emitter diode.
As a result, D, floats. This floating state is equivalent to
an open switch (Fig. 8-22b).

On the other hand, when ENABLE is high, transistor A
saturates and transistor B cuts off. Now, the transistor C
acts like an emitter follower, and the overall circuit is
equivalent to a closed switch (Fig. 8-22c¢). In this case,

Duul = Din

This means that D, is low or high, the same as D,,,.

Table 8-3 summarizes the action. When ENABLE is low,
D, is a don’t care and D,, is open or floating. When
ENABLE is high, the circuit acts like a noninverting buffer
because D, equals D,

TABLE 8-3. NORMALLY

OPEN

ENABLE D, D,
0 X Open
1 0 0
1 1 1

Commercial three-state switches are much more compli-
cated than Fig. 8-22a (a totem-pole output and other
enhancements are added). But simple as it is, Fig. 8-22a
captures the key idea of a three-state switch; the output can
be in any of three states: low, high, or floating (sometimes
called the high-impedance state because the Thevenin
impedance is high).

Three-state switches are also known as Tri-state switches.
(Tri-state is a trademark name used by National Semicon-
ductor, the originator of three-state TTL logic.)

D

in D out
ENABLE j ,

(a)

in j -
DISABLE

(b)
Fig. 8-23 (a) Normally open switch; () normally closed switch.

Normally Open Switch

Figure 8-23a is the symbol for a three-state noninverting
buffer. When you see this symbol, remember the action: a
low ENABLE means that the output is floating; a high
ENABLE means that the output is 0 or 1, the same as the
input. Think of this switch as normally open; to close it,
you have to apply a high ENABLE.

In the 7400 series, the 74126 is a quad three-state
normally open switch. This means four switches like Fig.
8-23a in one package. The SAP-1 computer uses five
74126s.

Normally Closed Switch

Figure 8-23b is different. This is the symbol for a normally
closed switch because the control input DISABLE is active
low. In other words, the switch is closed when DISABLE
is low, and open when DISABLE is high. Table 8-4
summarizes the operation.)

The 74125 is a quad three-state normally closed switch
(four switches like Fig. 8-23b in one package).

121

Chonter 8 Registers and Counters

TABLE 8-4. NORMALLY

CLOSED

DISABLE D, D,
0 0 0
0. 1 1
1 X Open

Three-State Buffer Register

The main application of three-state switches is to convert
the two-state output of a register to a three-state output.
For instance, Fig. 8-24 shows a three-state buffer register,
so called because of the three-state switches on the output
lines. When ENABLE is low, the Y outputs float. But when
ENABLE is high, the Y outputs equal the Q outputs;
therefore,

Y=0Q

You already know how the rest of the circuit works; it’s
the controlled buffer register discussed earlier. When LOAD
is low, the contents of the register are unchanged. When
LOAD is high, the next positive clock edge loads X;X,X,X,
into the register.

8-9 BUS-ORGANIZED COMPUTERS

A bus is a group of wires that transmit a binary word. In
Fig. 8-25, vertical wires W3, W,, W,, and W, are a bus;
these wires are .a common transmission path between the

X3 X3

three-state registers. The input data bits for register A come
from the W bus; at the same time, the three-state output of
register A connects back to the W bus. Similarly, the other
registers have their inputs and outputs connected to the W
bus.

In Fig. 8-25 all control signals are in uncomplemented
form; this means that the registers have active high inputs.
In other words, a load input (L, to L,) must be high to set
up for loading, and an enable signal (E, to E,) must be
high to connect an output to the bus.

Register Transfers

The beauty of bus organization is the ease of transferring
a word from one register to another. To begin with, the
same clock signal drives all registers, but nothing happens
until you apply high control inputs. In other words, as long
as all LOAD and ENABLE inputs are low, the registers are
isolated from the bus.

To transfer a word from one register to another, make
the appropriate control inputs high. For instance here’s
how to transfer the contents of register A to the register D.
Make E, and L, high; then the contents of register A appear
on the bus and register D is set up for loading. When the
next positive clock edge arrives, word A is stored in register
D.

Here is another example. Suppose the following words
are stored in the registers:

A = 0011

B = 0110

C = 1001

D = 1100
X, Xg 1

' l LOAD

T 9 g
D, 3]- \[a, D, 3]- Mo, D,
L]

| rinn

CLR

W%

Fig. 8-24 Three-state buffer regisigr.

122 Digital Computer Electronics

AN - ENABLE

W3 Wy Wy Wy

[
L, Yy
CLK > A
E, ENABLE |
LOAD Lo
c < CLK
| ENABLE Ec
Lg | LOAD
cLK > B
£, ENABLE] ,
T LO0AD D
D F———ctk
[ENABLE £,

Fig. 8-25 Registers coﬁnected to bus.

To transfer word C into register B, make E. and Ly high.
The high E closes the three-state switches of register C,
placing word C on the bus. The high L, sets up register B
for loading. When the next positive clock edge arrives,
word C is stored in register B, and the new words are

A = 0011
B = 1001
C = 1001
D = 1100

- The whole point of bus organization (connecting the
registers to a common word path) is to simplify the wiring
and operation of computers. As you will see in Chap. 10,
SAP-1 is a bus-organized compuier of incredible simplicity
made possible by the three-state switch.

W bus

Simplified Drawings

Figure 8-25 shows a 4-bit bus. The same idea applies to
any number of bits. For example, a 16-bit bus has 16 wires,
each carrying 1 bit of a word. By connecting the inputs
and outputs of 16-bit registers to this bus, we can transfer
16-bit words from one register to another.

Drawings get very messy unless we simplify the appear-
ance of the bus. Figure 8-26 shows an abbreviated form of
Fig. 8-25. The solid arrows represents words going into
and out of registers. The solid bar represents the W bus.

EXAMPLE 8-5

Figure 8-27 shows part of ‘the SAP-1 computer. Describe
the circuitry. "

Chapter 8 Registers and Counters 123

Fig. 8-26 Simplified bus diagram.

W bus

1"

L,y P
CLK —P A
EA —_] ;
= L
C <t+——CLK
z —e¢
Lg— 1 4 ,
cLK —> 8 ‘
EB——— » ; ,
; "o
<}——CLK
£p
A; Ag As Ay Az Ay Ay Ay
B; Bg B; By, By By
5 11413 |8 16 113 16 7
+5V — +5V — _
C16 14 Cc17
7483 7483
12 12
-_r ' 15 |2 |6 -_E 2 9
. 5 9 c1e 2 5 12
c18 ‘ < ,
74126 SKS& 74126 &1 K,, &5&23
P~ » > >

Fig. 8-27 SAP-1 ALU connected to bus.

124 Dbigital Computer Electronics

SOLUTION

As discussed in Sec. 6-8, the 7483 is a 4-bit adder. The
two 7483s of Fig. 8-27 are the ALU of the SAP-1 computer.
The inputs to this ALU are the words

A = A7A5A5A4A3A2A1A0
B = B7B6B5B4B3B2B|B0

A pair of 7486s allow us to complement the B input for
" subtraction. .

The sum (S; low) or difference (S, high) appears at the
output (pins 15, 2, 6, 9 of C16 and pins 15, 2, 6, 9 of
C17). Three-state switches (C18 and C19) connect the ALU
output to the W bus when Ey is high. If E, is low, the
74126s are open and the ALU output is isolated from the
bus.

EXAMPLE 8-6

Figure 8-28 shows the instruction register (C8 and C9) of-
the SAP-1 computer. What does this 8-bit register do?

SOLUTION

Example 8-1 introduced the 74LS173. As you may recall,
pins 9 and 10 are tied together and control the LOAD
function. Because of the bubble, a low L, is needed to set
up the registers for loading. When L, is low, the next
positive clock edge loads the data on the bus into the
instruction register.

The output of the instruction register is split; the upper
nibble LLsls1, goes to the instruction decoder, a circuit that
will be discussed in Chap. 10. The lower nibble out of the
instruction register goes back to the W bus. .

The 74LS173 is a 4-bit three-state buffer register; it has
internal three-state switches controlled by pins 1 and 2.
The bubbles on pins 1 and 2 indicate active-low inputs;
therefore, the output of C9 is connected to the bus when
E, is low and disconnected when E, is high.

Notice that pins 1 and 2 of C8 are grounded; this means
that the upper nibble is always a two-state output. In other
words, the 74LS173 can be used as an ordinary two-state -
register by grounding pins 1 and 2. (This was done in
Example 8-1, where we used two 74LS173s for the output
register to drive an 8-bit LED display.)

W bus
L_I
o e 113 Jr2 | 14 [13 f12 |
+5V —] i GPRVIALY 9
10 10
c8 co
7415173 7415173 4
5 AR 8 1
cLR —
8 l | | _
2 15 21| g
= |3 [4 [5 6 = | = 3 |4 |5 [6
Ioolg Is 4 CLK
Fig. 8-28 SAP-1 instruction register.
GLOSSARY

buffer register A register that temporarily stores a word
during data processing.

bus A group of wires used as a common word path by
everal registers.

modulus The number of stable states a counter has.

. parallel entry Loading all bits of a word in parallel during

one clock pulse. Also called broadside loading.
presettable counter . A counter that allows you to preset a

Chapter 8 Registers and Counters 128

number from which the count begins. Sometimes called a
" programmable counter.

register A group of memory elements that store a word.
ring counter A counter producing words with 1 high bit,
which shifts one position per clock pulse.

ripple counter A counter- with cascaded flip-flops. This
means that the carry has to propagate in series through the
flip-flops.

serial entry Loading a word into a shift register 1 bit per
clock pulse

shift register A register that can shift the stored bits one
position to the left or right.

synchronous counter A counter in which the clock drives
each flip-flop to eliminate the ripple delay.

three-state switch A noninverting buffer that can be closed

-or opened by a control signal. Also called a Tri-state switch.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. When the LOAD input of a buffer register is active,
the input word is stored on the next positive
edge. If LOAD then becomes inactive, the input

~word can changé without effecting the
word. :

2. (clock, stored) A shift register moves the
left or right. Serial loading means storing a word in a
shift register by entering bit per clock
pulse. With parallel or broadside loading, it takes
only one pulse to Ioad the input word.

3. (bits; 1, clock) One flip-flop leldCb the clock fre-
quency by a factor of . Two flip-flops
divide by 4, three flip-flops by 8, and four flip-flops
by — . In general, n flip-flops divide by 2.

4., (2,16)Ina ripplé counter, the carry has to propagate
through all the flip-flops to reach the MSB flip-flop.
The overall propagation delay timeis . A
controlled counter counts pulses only
when the COUNT signal is active. The clock signal
drives each flip-flop of a counter.

5. (nt,, clock, synchronous) Instead of counting with

binary numbers, a ring counter uses words that have
a single high . A ring counter is ideal for
timing a sequence of digital operations.

6. (bit) The modulus of a counter is the number of

stable output it has. A mod-10 counter
can divide the clock frequency by a factor of

7. (states, 10) An up-down counter can count up or

down. A presettable counter starts the count from a
number. This allows us to program the
. If the modulus is M, a presettable

counter is equivalent to a divide-by-M circuit.

8. (preset, modulus) A three-state switch has an output

that is either low, high, or —. Two types
are available; normally open and normally closed.
The main use of three-stdte switches is to convert the

output of a register to a three-state out-
put.

9. (floating, two-state) A bus is a group of wires used

by three-state registers as a common word path. Bus-
organized computers, the common type nowadays,
have several registers connected to one or more
buses. Instructions and data travel along these buses
as they move from one register to another.

PROBLEMS

8-1. Figure 8-29 shows an output register. Before time
A the data word to be loaded is

X = 1000 1101
and the LED display is
Q = 0001 0111

a. What is the LED display at time D? .
b. What'is the LED display at time F?

126 Digital Computer Electronics

8-2. The data sheet of a 74173 gives these values:

tewp = 1718 (Lo input)
tiewp = 10 DS (Data)
thod = 2 NS (Lo input)
thod = 10 ns (Data)

a. In Fig. 8-29, how far ahead of point £ must
the X bits be applied to ensure accurate loading?
b. Suppose the clock has a frequency of 1 MHz

X; Xe¢ Xs X X3 X Xo
. Lo
e
16 14 13 |12 |n . . '14 13 |12 119 0 ,|;
+5 V —— +5V
1 10 1 10 |
—a —a I
0—;-0 74173 < r 1»-28-0 74173 4 I
GND GND |
15 15 cip I
= ? 3 4 5 6 CcLK |
S R, SRy, SR, SR, ABCDEF
A B BN K2
Note: All resistors are 1 k2.
Fig. 8-29
and the X bits are applied at the point D. Is the
setup time sufficient for the data inputs? c. IfX = 01001011, D;, = 0, and SHIFT/LOAD
c. How long must you wait after point E before = 0, what does the Q output word equal after
‘removing the X bits or letting them change? two positive clock edges?

8-3. Each output pin of a 74173 can source up to 5.2 d. If X = 0100 1011, D;, = O, and SHIFT/
mA. In Fig. 8-29 suppose the high output voltage LOAD = 1, what does the Q output word
is 3.5 V and the LED drop is 1.5 V. To get more . equal after two positive clock edges?
light out of the LEDs, we want to reduce the 8-5. The clock frequency is 2 MHz. How long will it
current-limiting resistors. What-is the minimum take to serially load the shift register of Fig.
allowable resistance? , 8-30?

‘ 8-6. In Fig. 8-30, Q = 0001 0110 If SHIFT/LOAD is
high and D, is high, what does Q equal after
X7 Xg X5 Xq X3 X3 X1 Xo three clock pulses?
|22|20 |18 |16 |9 |7 |5 |3 8-7. Data from a satellite is received in serial form (1
By _24] -2 swirriioap . bit after another). If this data is coming at a
D, 5-MHz rate and if the clock frequency is S MHz,
1 74199 - <1_3_ CLK how ‘long‘ will i.t take to s;rially load a word in a
1 _ 32-bit shift register?””
12 14— 8-8. ‘A ripple counter has 16 flip-flops, each with a
p— CLR C . . .
- propagation delay time of 25 ns. If the count is
= |21|19]17.|15|10|3 Ie]4
107 Q5 Q5 Q4 Q3 0 O Qo Q = O111 1111 1111 1111
Fig. 8-30 _
how long after the next active clock edge before

8-4. A 74199 is an 8-bit shift-left register with a single Q = 1000 0000 0000 0000

control signal, as shown in Fig. 8-30. When - .

SHIFT/LOAD is low, the circuit loads the X word 8-9. What is the maximum decimal count for the

on the next positive clock edge. When SHIFT/ counter of the preceding problem?

LOAD is high, the register shifts the bits to the 8-10. When pins 1 and 12 of a 7490 are tied together as

left. ‘

a. To clear the register, should CLR be low or
high? When you are ready to run, what should
CLR be?

- b. - Is the X word loaded on the positive or negative

edge of the clock?

shown in Fig. 8-31, the divide-by-2 and divide-
by-5 sections are cascaded to get a mod-10
counter. Pin 14 is the input and pin 11 is the
output of each 7490. As a result, each 7490 acts
like a divide-by-10 circuit and the overall circuit
divides by 1,000

Chapter 8 Registers and Counters 127

+5V 45V +5V

|3 |5 1 |12 |3 |5 1 |12 |3 |5 |1 l12

14 1 14 1 14 1
K ——d 7490 —q 7490 4 7490
2 2 2

6 I7 'I1o 6 |7]10 6 |7 |1o

[[<
CLR - = -

A 8 c

Fig. 8-31

8-11.

If the clock has a frequency of 5 MHz, what is
the frequency of A? Of B? Of C?
The clock signal driving a 6-bit ring counter has a
frequency of 1 MHz. How long is each timing bit
-high? How long does it take to cycle through all
the ring words?

U 1] U LJ U l'J U l‘J

TS
¢ Ts
T7
a, q, e, a, aQ, @,
Synchronous counter <—-—- m
—— CLR
Fig. 8-32
8-12. Figure 8-32 shows another way to produce ring

words. After the circuit is cleared,

Q = Q:QiQ = 000

Since the AND gates are a 1-of-8 decoder,
the first timing word is

T = 0000 0001

128 Digital Computer Electronics

8-13.

60 Hz —4

What does T equal for each of the follow-
ing:

a. Q
b. Q = 010

c. Q=101

d Q=111

If the clock frequency is 5 MHz in Fig. 8-32,
how long does it take to produce all the ring
words? How long is each timing bit high?

001

o n

+60

Fig. 8-33

8-14.

8-15.

In a digital clock, the 60-Hz line frequency is
divided down to lower frequencies, as shown in
Fig. 8-33. What are the frequency and period of
the S output? Of the M output? Of the H output?
You have an unlimited number cf the following
ICs to work with: 7490, 7492, and 7493. Which
of these would you use to build the divide-by-60
circuits of Fig. 8-33?
A presettable counter has eight flip-flops. If the
preset number is 125, what is the modulus?
Given a presettable 8-bit counter, what number
would you preset to get a divide-by-120 circuit?
In Fig. 8-34, we want to transfer the contents of
register D to register C. Which are the ENABLE
and LOAD inputs you should make high?
Look at Fig. 8-35 and answer each of these ques-
tions.
a. To add the inputs and put the answer on the
bus, what should S, and E, be?
b. To subtract the inputs and put the answer on
the bus, what should S, and E be?
c. To isolate the ALU from the bus, what should
E, be? ’

Wy Wy Wy Wy

|

|
La,—{Loap
CLK—b A
E ENABLE]
A T LOAD}—L¢
c d4—-ocLk
ENABLE}——E
]
| |
Lg—roAD
CLK — 8
Eg—{ENABLE] I
LOAD Lp
D 4+—CLK
ENABLE|— g,
]
W bus
Fig. 8-34
"W bus
Aq Ag Ag A, Az Ay Aq A
B, Bg Bs B, B, B, B, By
I I N Lo o1, s
c29 v
7486 c30
7486
513810164711 513810164711
+5V — +5 V —
C16 13 14 c17 13°
7483 7483
12 12
—_r 15 |2 6 9 -E 15 |2 6 9
cis 2 5 9 12 c19 2 5 9 \ 12
74126 1 4‘&0 13 74126 1‘&; 10‘ 13
» » » » » Ey
3 6 8 1 3 6 8 1
Fig. 8-35
129

Chapter 8 Registers and Counters

Memories

The memory of a computer is where the program and data
are stored before the calculations begin. During a computer
run, the control section may store partial answers in the
memory, similar to the way we use paper to record our
work. The memory is therefore one of the most active parts
of a.computer, storing not only the program and data but
processed data as well. '

The memory is equivalent to thousands of registers, each
storing a binary word. The latest generation of computers
relies on ‘semiconductor memories because they are less
expensive and easier to work with than core memories. A
typical microcomputer has a semiconductor memory with
up to 65,536, memory locations, each capable of storing 1
byte of information.

9-1 ROMS

A read-only memory (ROM) is the simplest kind of memory.
It is equivalent to a group of registers, each permanently
storing a word. By applying control signals, we can read
the word in any memory location. (‘‘Read’’ means to make
the contents of the memory location appear at the output
terminals of the ROM.)

Diode ROM

Figure 9-1 shows one way to build a ROM. Each horizontal
row is a register or memory location. The R, register

A
p

R

o
+5V :
40 4

<Ry

% —

° : i\)\’ i \4\» RN ey
3 1\4\ - | —n,

7 GS‘L ~ \q\» X\» R
T I \4\» "

4

Fig. 9-1 Simple diode ROM.

130

A 4
v

TABLE 9-1. DIODE ROM

Register Address Word
Ry 0 0111
R, 1 1000
R, 2 1011
R; 3 1100
R, 4 0110
Rs 5 1001
R¢ 6 0011
R, 7 1110

contains three diodes, the R, register has one diode, and
so on. The output of the ROM is the word

D= D,D,D,D,

In switch position 0, a high voltage turns on the diodes
in the R, register; all other diodes are off. This means that
a high output appears at D,, D,, and D,. Therefore, the
word stored at memory location O is

D = 0111

What happens if the switch is moved to position 1? The
diode in the R, register conducts, forcing D; to go high.
Because all other diodes are off, the output from the ROM
becomes

D = 1000

So the contents of memory location 1 are 1000.

As you move the switch to other positions, you will read
the contents of the other memory locations. Table 9-1
shows these contents, which you can check by analyzing
Fig. 9-1.

With discrete circuits we can change the contents of a

- memory location by adding or removing diodes. With

integrated circuits, the manufacturer stores the words at the
time of fabrication. In either case, the words are permanently
stored once the diodes are wired in place.

Addresses

The address and contents of a memory location are two
different things. As shown in Table 9-1, the address of a
memory location is the same as the subscript of the register
storing the word. This is why register 0 has an address of
0 and contents of 0111; register 1 has an address of 1 and
contents of 1000; register 2 has an address of 2 and contents
of 1011; and so on.

The idea of addresses applies to ROMs of any size. For
example, a ROM with 256 memory locations has decimal

addresses running from 0 to 255. A ROM with 1,024
memory locations-has decimal addresses from O to 1,023.

On-Chip Decoding

Rather than switch-select the memory location, as shown

in Fig. 9-1’, IC manufacturers use on-chip decoding. Figure

9-2 gives you the idea. The three input pins (A,, A,, and

Ay) supply the binary address of the stored word. Then a .

1-of-8 decoder produces a high output to one of the registers. -
"For instance,. if

ADDRESS = AA A, = 100

the 1-of-8 decoder applies a high voltage to the R, register,
and the ROM output is

D = 0110
If you change the address word to
ADDRESS = 110
you will read the contents of memory location 6, which is
D = 0011

The circuit of Fig. 9-2 is a 32-bit ROM organized as 8
words of 4 bits each. It has three address (input) lines and
four data (output) lines. This is a very small ROM compared
with commercially available ROMs.

Number of Address Lines

With on-chip decoding, n address lines can select 2" memory
locations. For instance, we need 3 address lines in Fig.
9-2 to access 8 memory locations. Similarly, 4 address
lines can access 16 memory locations, 8 address lines can
access 256 memory locations, and so on. |

9-2 PROMS AND EPROMS .

With a ROM, you have to send a list of data to be stored
in the different memory locations to the manufacturer, who
then produces a mask (a photographic template of the
circuit) used in mass production of your ROMs. In fabri-
cating ROMs the manufacturer may use.bipolar transistors
or MOSFETs. But the idea is still basically the same; the
transistors or MCSFETs act like the diodes of Fig. 9-2.

Programmable

A programmable ROM (PROM) is different. It allows the
user to store the data. An instrument called a PROM

Chapter 9 Memon. 1 3 1)

P

A A

4

Fig. 9-2 ROM with on-chip decoding.

programmer does the storing by ‘‘burning in.”’ (Fusible
links at the bit locations can be burned open by high
currents.) With a PROM programmer, the user can burn in
the program and data. Once this has been done, the
programming is permanent. In other words, the stored
contents cannot be erased.

Erasab'e

The erasable PROM (EPROM) uses MOSFETs. Data is
stored with a PROM programmer. Later, data can be erased
with ultraviolet light. The light passes through a window
in the IC package to the .chip, where it releases stored
charges. The effect is to wipe out the stored contents. In
other words, the EPROM is ultraviolet-light-erasable and
electrically reprogrammable.

The EPROM is helpful in design and development. It
allows the user to erase and store until the program and
data are perfected. Then the program and data can be sent
to an IC manufacturer who produces a ROM mask for mass
production.

132 Digital Computer Electronics

,.\b
i

14

vT'
_‘U
T
|
o

pa

o

o

by

Manufactured Devices

With large-scale integration, manufacturers can fabricate
ROMs, PROMs, and EPROMs that store thousands of
words. For instance, the 8355 is a 16,384-bit ROM orga-
nized as 2,048 words of 8 bits each. It has 11 address lines
and 8 data lines.

As another example, the 2764 is 65,536-bit EPROM
organized as 8,192 words of 8 bits each. It has 13 address
lines and 8 data lines.

Access Time

The access time of a memory is the time it takes to read a
stored word after applying address bits. Since bipolar
transistors are faster than MOSFETs, bipolar memories
have faster access times than MOS memories. For instance,
the 3636 is a bipolar PROM with an access time of 80 ns;
the 2716 is a MOS EPROM with an access time of 450 ns.
You have to pay for the speed; a bipolar memory is more

A Ag Ag Ay Ag Ag Ay Az Ap Ay Ag

2048 X 8
ROM

Fig. 9-3. Three-state ROM.

expensive than a MOS memory, so it’s up to the designer
to decide which type to use in a specific application.

Three-State Memories

By adding three-state switches to the data lines of a memory
we can get a three-state output. As an example, Fig. 9-3
shows a 16,384-bit ROM organized as 2,048 words of 8
bits each. It has 11 address lines and 8 data lines. A low
ENABLE opens all switches and floats the output lines. On
the other hand, a high ENABLE allows the addressed word
to reach the final output.

Most of the commercially available ROMs, PROMs, and
EPROMs have three-state outputs. In other words, they
have built-in three-state switches that allow you to connect
or disconnect the output lines from a data bus. More will
be said about this ‘later.

Nonvolatile Memory

ROMs, PROMs, and EPROMs are nonvolatile memories.
This means that they retain the stored data even when the
power to the device is shut off. Not all memories are like
this, as will be explained in Sec. 9-3.

EXAMPLE 9-1

A 16 X 8 ROM stores these words in its first four locations:

R, = 1110 0010
R, = 0101 0111
R, = 0011 1100
R, = 1011 1111

Express the stored contents in hexadecimal notation.

ENABLE

SOLUTION

In hexadecimal shorthand, the stored contents are

R, = E2H
R, = 57TH
R, = 3CH
R3 = BFH

9-3 RAMS

A random-access memory (RAM), also called a read-write
memory, is equivalent to a group of addressable registers,
After supplying an address, you can either read the stored
contents of the memory location or write new contents into
the memory location. ‘

Core RAMs

The core RAM was the workhorse of earlier computers. It
has the advantage of being nonvolatile; even though you
shut off the power, a core RAM continues to store data.
The disadvantage of core RAMs is that they are expensive
and harder to work with than semiconductor memories.

Semiconductor RAMs

Semiconductor RAMs may be static or dynamic. The static
RAM uses bipolar or MOS flip-flops; data is retained
indefinitely as long as power is applied to the flip-flops.
On the other hand, a dynamic RAM uses MOSFETs and
capacitors that store data. Because the capacitor charge
leaks off, the stored data must be refreshed (recharged)
every few milliseconds. In either case, the RAMs are
volatile; turn off the power and you lose the stored data.

Chapter 9 Memories 133

+Vop

——
-

L
(a)

Sénse
line

1 1
’ Storage
I : j: capacitor

{b)
Fig. 9-4 (a) Static cell; (b) dynamic cell.

Control
line

Static RAM

Figure 9-4a shows one of the flip-flops used in a static,

MOS RAM. Q, and Q, act like switches. Q5 and Q, are
active loads, meaning that they behave like resistors. The
circuit action is similar to the transistor latch discussed in
Sec. 7:1. Either Q, conducts and Q, is cut off or vice versa.
A static RAM will contain thousands of flip-flops like this,
one for each stored bit. As long as power is applied, the
flip-flop remains latched and can store the bit indefinitely.

Dynamic RAM

Figure 9-4b shows one of the memory elements (called
cells) in a dynamic RAM. When the sense and control lines
go high, the MOSFET conducts and charges the capacitor.
" When the sense and control {ines go low, the MOSFET
opens and the capacitor retains its charge. In this way, it

can store 1 bit. A dynamic RAM may contain thousands
of memory cells like Fig. 9-4b. Since only a single MOSFET
and capacitor are needed, the dynamic RAM contains more
memory cells than a comparable static RAM. In other
words, a dynamic RAM has more memory locations than
a static RAM of the same physical size.

The disadvantage of the dynamic RAM is the need to
refresh the capacitor charge every few milliseconds. This

complicates the design problem because more circuitry is .

needed. In short, it’s much simpler to work with static

134 Digital Computer Electronics

RAMs than dynamic RAMs. The remainder of this book
emphasizes static RAMs.

Three-State RAMs

Many of the commercially available RAMs, either static or

dynamic, have three-state outputs. In other words, the
manufacturer includes three-state switches on the chip so
that you can connect or disconnect the output lines of the
RAM from a data bus.

D

in

we —g
Aoonsss:> RAM

CE

out

Fig. 9-5 Static RAM with inverted control inputs.

Figure 9-5 shows a static RAM and typical input signals.
The ADDRESS bits select the memory location; control
signals WE and CE select a write, read, or do nothing
operation. WE is known as the write-enable signal, and CE
is called the chip-enable signal. Notice that the control
inputs are active low.

Table 9-2 summarizes the operation of the static RAM.
Here’s what happens. A low CE and low WE produce a
write operation. This means that the input data D, is stored
in the addressed memory location. The three-state output
data lines are floating during this write operation.

When CE is low and WE is high, we get a read operation.
The contents of the addressed memory location appear on
the data output lines because the internal three-state switches
are closed at this time.

The final possibility is CE high. This is a holding pattern
where nothing happens. Internal data at all memory locations
is frozen or unchanged. Notice that the output data lines
are floating.

TABLE 9-2. STATIC RAM

CE WE Operation Output
0 0 Write Floating
0 1 Read Connected
1 X Hold Floating

Bubble Memories

A bubble memory sandwiches a thin film of magnetic
_ material between two permanent bias magnets. Logical 1s
~ and Os are represented by magnetic bubbles in this thin
film. The details of how a bubble memory works are too
complicated to go into here. What is worth knowing is that
bubble memories are nonvolatile and capable of storing
huge amounts of data. For instance, the INTEL 7110 is a
bubble memory that can store approximately 1 million bits.
One disadvantage is they have slow access times.

EXAMPLE 9-2

Figure 9-6 shows the pin configuration of a 74189, a
Schottky TTL static RAM with three-state outputs. This
64-bit RAM is organized as 16 words of 4 bits each. It has
an access time of 35 ns. What are the different pin functions?

\J
‘A O 1 161 Ve
CEQ?2 153 A,
We s 143 A,
Dy 04 130 Aq
Ez:l'_' 5 74189 12 D,
Db, s 113 Dy
D, Q7 103 o,
Gyo O 8 91 D,

Fig. 9-6 Pinout for 74189.

SOLUTION

To begin with, 4 address bits can access 2* = 16 vyords.
This is why the 74189 needs 4 address bits to select the
desired memory location.

The ADDRESS bits go to pin 1 (4;), pin 15 (4,), pin’

14 (A)), and pin 13 (A,). The data inputs are pin 4 (D),
pin 6 (D), pin 10 (D,), and pin 12 (D,). Because of the
TTL design, the data is stored as the complement of the

input bits. This is why the data outputs are pin 5 (D;), pin -

-7 (D,), pin 9 (D)), and pin 11 (Dy).
‘The chip enable is pin 2, and the write enable is pin 3.
These control signals work as previously described. CE and

WE must bé low for a write operation; CE must be low -

and WE high for a read, and CE must be high to do nothing.
Pin 16 gets the supply voltage, which is +5 V, and pin
8 is grounded.

9-4 A SMALL TTL MEMORY

Figure 9-7 shows a modified version of the SAP-1 memory.
Two 74189s (see Appendix 3) are used to get a 16 X 8

memory. This means that we can store 16 words of 8 bits
each. The bubbles on the output data pins (pins 5, 7, 9,
11) remind us that the stored data bits are the complements

.of the input data bits.

Addressing the Memory

The address bits come from an address-switch register (A3,
A, A, Ap). By setting the switches we can input any-
address from 0000 to 1111. As noted at the bottom of Fig.
9-7, an up address switch is equal to a 1. Therefore, the
address with all switches up is 1111."

Setting Up Data

The data inputs come from the two other switch registers.
The upper input nibble is D;, D¢, Ds, and D,. The lower
input nibble is D;, D,, D,, and D,. By setting the data
switches we can input any data word from 0000 0000 to

~1111 1111, equivalent to 00H to FFH. The note at the

bottom of Fig. 9-7 indicates that an up data switch produces
an input O or an output 1. In other words, a data switch
must be up to store a 1.

Programming the Memory

To program the memory (this means to store instruction
and data words), the RUN-PROG switch must be in the PROG
position. This grounds pin 2 (CE) of each 74189. When
the READ-WRITE switch is thrown to WRITE, pin 3 (WE) is
grounded and the complement of the input data word it

" written into the addressed memory location.

‘For instance, suppose we want to store the following
words:

- Address Data

0000 0000 1111
0001 0010 1110
0010 0001 1101

0011 1110 1000

Begin by placing the RUN-PROG switch:in the PROG position.
To store the first data word at address 0000, set the switches
as follows:

Address Data
DDDD DDDD UUUU

where D stands for down and U for up. When the READ-
WRITE switch is thrown to WRITE, 0000 1111 is written into
memory location 0000. The READ-WRITE switch is then
returned to READ in preparation for the next WRITE operation.

Chapter 9 Memories 135

"Whbus .

Az
A—/ AAN—§— 45 V
2 .
y:—/ —AAA—
L
o;‘—/ AMN—9
1]
9 AN~
= 10kQ
Eq
1 |1s 14113 1 |1s]1al13
Dy 4 16 D, 4
= 5y = 16 5y
Dg 6 8 Dy 6 8
Dy 10 c6 L D, 10 o |4
7 - =
D4 12 4189 D, 12 74189 »
3 | — 2 ' —| 2 RUN
= L | —oE CE CE b4
10 k& ’_ipnoe
. .
Ts T7 Tg 1 T7 To ?11 —
+5V : -
10kQ i
+5 V ——AMN——9
WRITE
®
= READ

Notes: ‘1. Address switches: Up=1
2. Data switches: Up = Input 0 = Qutput 1

Fig. 9-7 Modified SAP-1 read-write memory.

To load the second word at address 0001, set the address
and data switches as follows:

Address Data
DDDU DDUD UUUD

When the READ-WRITE switch is thrown to WRITE, the data
word 0010 1110 is stored at memory location 0001.

Continuing like this, we can program the memory with
the remaining words.

The SAP-1 memory is slightly different from Fig. 9-7
and will be discussed in Chap. 10. What we have discussed
here, however, gives you an example of how a program
and data can be entered into a memory before a computer
run.

9-5 HEXADECIMAL ADDRESSES

During a computer run, the CPU sends binary addresses to
the memory, where read or write operations occur. These
address words may contain 16 or more bits. There’s no
need for us to get bogged down with long strings of binary
numbers. We can chunk those Os and 1s into neat strings

136 Digital Computer Electronics

of hexadecimal numbers. Using hexadecimal shorthand is
standard in microprocessor work.

Typical microcomputers have an address bus with 16
address lines. The words on this bus have the binary format
of

ADDRESS = XXXX XXXX XXXX XXXX

For convenience, we can chunk this into ‘its equivalent
hexadecimal form. For instance, instead of writing

ADDRESS = 0101 1110 0111 1100

we can write
ADDRESS = SE7CH

The 16 address lines can access 2'® memory locations,
equivalent to 65,536 words. The hexadecimal addresses are
from 0000H to FFFFH. In microcomputers using 8-bit
microprocessors, 1 byte is stored in each memory location.
Figure 9-8 illustrates how to visualize such a memory. The
first memory location has an address of 0000H, the second
memory location an address of 0001H, the third an address

of 0002H, and so on. Moving toward higher memory, we
eventually reach FFFDH, FFFEH, and FFFFH.

Notice that 1 byte is stored in each memory location.
This is standard for first-generation microcomputers because
they use 8-bit microprocessors like the Z80 and 6502. In
other words, typical microcomputers have a maximum
memory of 64K (1K = 1,024 bytes).The memory may be
less than this, of course. For instance, a TRS80 microcom-
puter from Radio Shack comes with 16K of ROM and as
little as 4K of RAM. It can be upgraded to a maximum of
16K of ROM and 48K of RAM, for a total memory of
64K.

0000H | byte
0001H | byte
0002H| byte -
FFFDH| byte
FFFEH| byte.
FFFFH| byte

Fig. 9-8 Memory layout.

GLOSSARY

access time The time it takes to read the contents of a

memory location after it has been addressed.

address A way of specifying the location of data in

memory, similar to a house address.

dynamic memory A memory that relies on a MOSFET

switch to charge a capacitor. This memory is highly volatile

because not only must the power be kept on, but the

capacitor charge must also be refreshed every few milli-
" seconds.

EPROM Erasable programmable read-only memory, a

device that is ultraviolet-erasable and electrically repro-

grammable.

nonvoiatile A type of memory in which the stored data

is not lost when the power is turned off.

PROM Programmable read-only memory. With a PROM

programmer, you can burn in your own programs and data.
RAM Random-access memory. It is also called a read-
write memory because you can read the contents of a
memory location or write new contents into it.

ROM Read-only memory. (ROM rhymes with Mom.)
This device provides nonvolatile storage of programs and
data. You can access any memory location by supplying
its address. o ‘ »
static RAM A volatile memory using bipolar or MOSFET
flip-flops. It is easy to work with. Refreshing data is
unnecessary. You simply supply address and control bits
for a read or write operation.

volatile A type of memory in which data stored in the
memory is lost when the power is turned off.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. The memory of a computer is where the
and ______ are stored before the calculations
begin. During a computer run, partial answers may
also be stored in the .
2. (program, data, memory) A read-only memory or
is equivalent to a group of memory
locations, each permanently storing a word. The
is the only one who can store programs
and data in a ROM.
3. (ROM, manufacturer) The and contents
of a memory location are two different things. Be-

cause the address is in binary form, the manufac-
turer uses on-chip decoding to access the memory
location. With on-chip decoding, n address lines
can access memory locations.

4. (address, 2") The PROM allows users to store their
own programs and data. An instrument called a
PROM does the storing or burning in.
Once this is done, the programming is permanent.

5. (programmer) The is ultraviolet-light-
erasable and electrically programmable. This allows
the user to erase and store until programs and data
are perfected.

6. (EPROM) The time of a memory is the

Chapter 9 Memories 137

bits of a static RAM

time it takes to read the contents of a memory 10. (static, static) The
location. Bipolar memories are faster than select the memory location. The write enable (WE)
memories but more expensive. and chip enable (CE) select. a write, read, or do-
7. (access, MOS) ROMs, PROMs, and EPROMs are nothing. When WE and CE are both low, you get a
memories. This means that they retain operation. When WE is high and CE is
stored data even though the power is turned off. low, you get a operation. CE high is
Core RAMs are also , but they are be- the inactive state. .
coming obsolete. 11. (address, write, read) During a computer run, the
8. (nonvolatile, nonvolatile) Semiconductor RAM CPU sends binary addresses tothe - |
memories may be static or . Both are where read or write operations occur. Typical mi-
volatile. The first type uses bipolar or MOS flip- crocomputers have an address bus with
flops, which means that data is stored as long as bits.
power is applied. The second type uses MOSFETSs 12. (memory, 16) An, address bus ith 16 bits can
and capacitors to store data, which must be access a maximum of 65,536 1nemory locations.
every few milliseconds. The hexadecimal addresses of these memory loca-
9. (dynamic, refreshed) The memory cell of a dynamic tions are from 0000H to FFFFH. First-generation
RAM is simpler and smaller than the memory cell microcomputers store 1 byte.in each memory loca-
of a RAM. Because of this, the dy- tion, which implies a maximum memory of 64K.
namic RAM can contains more memory cells than a
RAM of the same chip size.
PROBLEMS
9-1. How many memory locations can 14 address bits 9-6. The following data is to be programmed into the
. access? TTL memory of Fig. 9-9:
9-2. The 2708 is an 8,192-bit EPROM organized as a Address Data
1,024 x 8 memory How many address pins does
it have? OH EEH
9-3. The 2732 is a 4,096 X 8 EPROM. How many 1H SCH
- address lines does it have? 2H 26H
9-4. An 8156 is a 2,048-bit static RAM with 256 3H 6AH
words of 8 bits each. How many address lines 4H FDH
does this RAM have? SH 15H
9-5. - Use U (up) and D (down) to program the TTL 6H 94H
memory of Fig. 9-9 with the following data: 7H C3H
Address ‘Data Convert these hexadecimal addresses and contents
: to ups (U) and downs (D) as described in Sec.
0000 1000 1001 9-4.
0001 0111 1100 9.7. Address 2000H contains the byte 3FH What is
0010 0011 0110 the decimal equivalent of 3FH?)
0011 0010 0011 9-8. In a 32K memory, the hexadecimal addresses are
0100 0001 0111 from 0000H to 7FFFH. What is the decimal
010t 0101 1111 equivalent of the highest address?
0110 1110 1101 9-9. What is the highest address in a 48K memory?
0111 1111 1000 Express the answer in hexadecnmal and decimal
: form.
Show your answer by converting each 0 to a D 9-10. A byte is stored at hexadec1mal location 6F9EH.

and each 1 to a U.

138 Digital Computer Electronics

What is the decimal address? (Use Appendix 1.)

W bus

Dy
Dg
Dg
Dy
- >
10 k2
+5V
10 kQ
45V ——AAA———
WRITE
¢

A3
’A_/ A BV
R)
t A
1
— A
Ag
< A
= 10kQ "
Ep
1 |15 14[13 1 |15 1413
4 16 D 4 T h
L — 15V 3 . e +5V
6 8 D, 6 8
10 cé -1_ D4 10 c7 __I___
74 = =
12 189 Do T
3) —| 2 — . — 2 RUN
WE CE = g 3o wE CE ple— -
A 10 kQ2 B B e ’_ipaog
5 [7 |9 [5 [7. |9 [=
+5V S

Notes: 1. Address switches: Up =1
2. Data switches: Up = Input 0 = Output 1°

Fig. 99

9-11. Here is some data stored in a memory:

Address

8EO0OH
8EOIH
8E02H
8EO3H
8E04H
8EOSH

Data

2FH

D4H
CFH
6EH
53H
7AH

a. What is the decimal equivalent of each stored
byte? (Use Appendix 1.) ,
b. What is the decimal equivalent of the highest

address?

9-12. Suppose there are four different memories with
the following capacities:

Memory A = 16K
Memory B = 32K
Memory C = 48K
Memory D = 64K

All memories start with hexadecimal address

0000H.

a. How many bytes can memory C store? Express
the answer in decimal. :

b. What is the highest decimal address in memory
A?

c. We want to store a byte at address C300H.
Which memory must we use?

d. What is the highest hexadecimal address for

" each memory?

v Chapter 9 Memories 139

The SAP (Simple-As-Possible) computer has been designed
for you, the beginner. The main purpose of SAP is to
introduce all the crucial ideas behind computer operation
without burying you in unnecessary detail. But even a
simple computer like SAP covers many advanced concepts.
To avoid bombarding you with too much all at once, we
will examine three different generations of the SAP com-
puter. :

SAP-1 is the first stage in the evolution toward modern
computers. Although primitive, SAP-1 is a big step for a
beginner. So, dig into this chapter; master SAP-1, its
architecture, its programming, and its circuits. Then you

~ will be ready for SAP-2.

10-1 ARCHITECTURE

Figure 10-1 shows the architecture (structure) of SAP-1, a
bus-organized computer. All register outputs to the W bus
are three-state; this allows orderly transfer of data. All other
~ register outputs are two-state; these outputs continuously
drive the boxes they are connected to.

The layout of Fig. 10-1 emphasizes the registers used in
SAP-1. For this reason, no attempt has been made to keep
all control circuits in one block called the control unit, all
input-output circuits in another block called the I/O unit,
etc.

Many of the registers of Fig. 10-1 are already familiar
from earlier examples and discussions. What follows is a
brief description of each box; detailed explanations come
later.

Program Counter

The program is stored at the beginning of the memory with
the first instruction at binary address 0000, the second
instruction at address 0001, the third at address 0010, and
so on. The program counter, which is part of the control
unit, counts from 0000 to 1111. Its job is to send to the
memory the address of the next instruction to be fetched
and executed. It does this as follows.

140

The program counter is reset to 0000 before each computer
run. When the computer run begins, the program counter
sends address 0000 to the memory. The program counter
is then incremented to get 0001. After the first instruction
is fetched and executed, the program counter sends address
0001 to the memory. Again the program counter is incre-
mented. After the second instruction is fetched and executed,
the program counter sends address 0010 to the memory. In
this way, the program counter is keeping track of the next
instruction to be fetched and executed.

The program counter is like someone pointing a finger
at a list of instructions, saying do this first, do this second,
do this third, etc. This is why the program counter is
sometimes called a pointer; it points to an address in
memory where something important is being stored.

Input and MAR

Below the program counter is the input and MAR block. It
includes the address and data switch registers discussed in
Sec. 9-4. These switch registers, which are part of the input
unit. allow you to send 4 address bits and 8 data bits to
the RAM. As you recall, instruction and data words are
written into the RAM before a computer run.

The memory address register (MAR) is part of the SAP-
1 memory. During a computer run, the address in the
program counter is latched into the MAR. A bit later, the
MAR applies this 4-bit address to the RAM. where a read
operation is performed.

The RAM

The RAM is a 16 X 8 static TTL RAM. As discussed
in Sec. 9-4, you can program the RAM by means of the
address and data switch registers. This allows you to store
a program and -data in the memory before a computer run.

During a computertun, the RAM receives 4-bit addresses
fromthe MAR and a read operation is performed. In this way,
the instruction or data word stored in the RAM is placed
on the W bus for use in some other part of the computer.

W bus . -
Cp — T: — L4
8
Pt Program Accumulator ‘
Lk —p lipbell _ i} 4— cLk
CLR — 8
Ep — — €4
{8
Ly — Sy
nput (L—— <4—— Adder/
ck—p l\;:dn AN - < - ' subtractor
EU
U {0}
LB
16 x8 ——j —ﬁ B
8 8 X <$+—CLK
RAM — ~ register
CE —
L/ —_] . | LO
Instruction utpu
CLK register TN E register <4— CLK
CLR — . 4
E, _ — 7
/ L
192 {J
— CLK
Controller/ ———> CLK Qinary
sequencer —— CLR display
—— CLR

\tﬂ/

CpEplLy CE LELAE, SuEyLslo
Fig. 10-1 SAP-1 architecture.

Instruction Register

The instruction register is part of the control unit. To fetch
an instruction from the memory the computer does a memory
read operation. This places the contents of the addressed
memory location on the W bus. At the same time, the
instruction register is set up for loading on the next positive
clock edge.

The contents of the instruction register are split into two
nibbles. The upper nibble is a two-state output that goes
directly to the block labeled ‘‘Controller-sequencer.”” The
lower nibble is a three-state output that is read onto the W
bus when needed.

Controller-Sequencer

The lower left block contains the controller-sequencer.
Before each computer run, a CLR signal is sent to the
program counter and a CLR signal to the instruction register.

This resets the program counter to 0000 and wipes out the
last instruction in the instruction register.

A clock signal CLK is sent to all buffer registers; this
synchronizes the operation of the computer, ensuring that
things happen when they are supposed to happen. In other
words, all register transfers occur on the positive edge of
a common CLK signal. Notice that a CLK signal also goes
to the program counter.

The 12 bits that come out of the controller-sequencer
form a word controlling the rest of the computer (like a
supervisor telling others what to do.) The 12 wires carrying
the control word are called the control bus.

The control word has the format of

CON = CPEPEME EIE[EAEA SUEUEBEO

This word determines how the registers will react to the
next positive CLK edge. For instance, a high E, and a low

Chapter 10 sAP-1 141

Ly, mean that the contents of the program counter are latched
into the MAR on the next positive clock edge. As another
example, a low CE and a low L, mean that the addressed
RAM word will be transferred to the accumul.tor on the
next positive clock edge. Later, we will examine the timing
diagrams to see exactly when and how these data transfers
take place.

Accumulator

The accumulator (A) is a buffer register that stores inter-
mediate answers during a computer run. In Fig. 10-1 the
accumulator has two outputs. The two-state output goes
directly to the adder-subtracter. The three-state output goes
to the W bus. Therefore, the 8-bit accumulator word
continuously drives the adder-subtracter; the same word
appears on the W bus when E, is high.

The Adder-Subtracter

SAP-1 uses a 2’s-complement adder-subtracter. When Sy
is low in Fig. 10-1, the sum out of the adder-subtracter is

S=A+B-
When Sy, is high, the difference appears:
A=A+ P

(Recall that the 2’s complement is equivalent to a decimal
sign change.)

The adder-subtracter is asynchronous (unclocked); this
means that its contents can change as soon as the input
words change. When Ej, is high, these contents appear on
the W bus.

B Register

The B register is another buffer register. It is used in
arithmetic operations. A low L, and positive clock edge
load the word on the W bus into the B register. The two-
state output of the B register drives the adder-subtracter,
. supplying the number to be added or subtracted from the
contents of the accumulator.

Output Register

Example 8-1 discussed the output register. At the end of a
computer run, the accumulator contains the answer to the
problem being solved. At this point, we need to transfer
the answer to the outside world. This is where the output
register is used. When E, is high and L, is low, the next
positive clock edge loads the accumulator word into the
output register.

The output register is often called an output port because
processed data can leave the computer through this register.

142 Dpigital Computer Electronics

In microcomputers the output ports are connected to inter-
face circuits that drive peripheral devices like printers,
cathode-ray tubes, teletypewriters, and so forth. (An inter-
face circuit prepares the data to drive each device.)

Binary Display

The binary display is a row of eight light-emitting diodes
(LEDs). Because each LED connects to one flip-flop of the
output port, the binary display shows us the contents of the
output port. Therefore, after we’ve transferred an answer
from the accumulator to the output port, we can see the
answer in binary form.

Summary

' The SAP-1 control unit consists of the program counter,

the instruction register, and the controller-sequencer that
produces the control word, the clear signals, and the clock |
signals. The SAP-1 ALU consists of an accumulator, an
adder-subtracter, and a B register. The SAP-1 memory has
the MAR and a 16 X 4 RAM. The I/O unit includes the
input programming switches, the output port, and the binary
display.

10-2 INSTRUCTION SET

A computer is a useless pile of hardware until someone
programs it. This means loading step-by-step instructions
into the memory before the start of a computer run. Before
you can program a computer, however, you must learn its
instruction set, the basic operations it can perform. The
SAP-1 instruction set follows.

LDA

As described in Chap. 9, the words in the memory can be
symbolized by Rg, R;, R,, etc. This means that Ry is stored
at address OH, R, at address 1H, R, at address 2H, and so
on. '
LDA stands for ‘‘load the accumulator.”” A complete
LDA instruction includes the hexadecimal address of the
data to be loaded. LDA 8H, for example. means ‘‘load the
accumulator with the contents of memory location 8H.”’
Therefore, given .

R = 1111 0000

the execution of LDA 8H results in

A= 1111 0000

Simildrly, LDA AH means ‘‘load the accumulator with
the contents of memory location AH,”” LDA FH means
“‘load the accumulator with the contents of memory location
FH,”’ and so on.

ADD

ADD is another SAP-1 instruction. A complete ADD
instruction includes the address of the word to be added.
For instance, ADD 9H means *‘add the contents of memory
location 9H to the accumulator contents’’; the sum replaces
the original contents of the accumulator.

Here’s an example. Suppose decimal 2 is in the accu-
mulator and decimal 3 is in memory location 9H. Then

A = 00000010
R, = 00000011

During the execution of ADD 9H, the following things
happen. First, Ry is loaded into the B register to get

B = 0000 0011

and almost instantly the adder-subtracter forms the sum of
Aand B
SUM = 0000 0101

Second, this sum is loaded into the accumulator to get
A = 0000 0101

The foregoing routine is used for all ADD instructions;
the addressed RAM word goes to the B register and the
adder-subtracter output to the accumulator. This is why the
execution of ADD 9H adds Ry to the accumulator contents,
the execution of ADD FH adds Rg to the accumulator
contents, and so on.

SUB

SUB is another SAP-1 instruction. A complete SUB in-
struction includes the address of the word to be subtracted.
For example, SUB CH means ‘‘subtract the contents of
memory location CH from the contents of the accumulator’’;
the difference out of the adder-subtracter then replaces the
original contents of the accumulator.

For a concrete example, assume that decimal 7 is in the
accumulator and decimal 3 is in memory location CH. Then

A = 00000111
Rc = 00000011

The execution of SUB CH takes place as follows. First,
Rc is loaded into the B register to get

B = 0000 0011

and almost instantly the adder-subtracter forms the differ-
ence of A and B:

DIFF = 0000 0100

Second, this difference is loaded into the accumulator and
A = 0000 0100

The foregoing routine applies to all SUB instructions;
the addressed RAM word goes to the B register and the
adder-subtracter output to the accumulator. This is why the
execution of SUB CH subtracts R from the contents of
the accumulator, the execution of SUB EH subtracts Rg
from the accumulator, and so on.

out

The instruction OUT tells the SAP-1 computer to transfer
the accumulator contents to the output port. After OUT has
been executed, you can see the answer to the problem being
solved.

OUT is complete by itself; that is, you do not have to
include an address when using OUT because the instruction
does not involve data in the memory.

HLT

HLT stands for halt. This instruction tells the computer to
stop processing data. HLT marks the end of a program,
similar to the way a period marks the end of a sentence.
You must use a HLT instruction at the end of every SAP-
1 program; otherwise, you get computer trash (meaningless
answers caused by runaway processing).

HLT is complete by itself; you do not have to include a
RAM word when using HLT because this instruction does
not involve the memory.

Memory-Reference Instructions

LDA, ADD, and SUB are called memory-reference instruc-
tions because they use data stored in the memory. OUT
and HLT, on the other hand, are not memory-reference
instructions because they do not involve data stored in the
memory.

Mnemonics

LDA, ADD, SUB, OUT, and HLT are the instruction set
for SAP-1. Abbreviated instructions like these are called
mnemonics (memory aids). Mnemonics are popular in
computer work because they remind you of the operation
that will take place when the instruction is executed. Table
10-1 summarizes the SAP-1 instruction set.

.The 8080 and 8085

The 8080 was the first widely used microprocessor. It has
72 instructions. The 8085 is an enhanced version of the
8080 with essentially the same instruction set. To make
SAP practical, the SAP instructions will be upward com-

Chapter 10 SAP-1 143

TABLE 10-1. SAP-1 INSTRUCTION SET

Mneinonic Operation

LDA Load RAM data into accumulator
ADD Add RAM data to accumulator

SUB Subtract RAM data from accumulator
ouT Load accumulator data into output
register

HLT Stop processing

patible with the 8080/8085 instruction set. In other words,
the SAP-1 instructions LDA, ADD, SUB, OUT, and HLT
are 8080/8085 instructions. Likewise, the SAP-2 and SAP-
3 instructions will be part of the 8080/8085 instruction set.
Learning SAP instructions is getting you ready for the 8080
and 8085, two very widely used microprocessors. Once
you learn the 8080/8085 instruction set, you can branch
out to other microprocessors.

EXAMPLE 10-1

Here’s a SAP-1 program in mnemonic form:

Address Mnemonics
OH LDA 9H
IH : ADD AH
2H ADD BH
3H SUB CH
4H OouT
5H HLT

The data in higher memory is

Address Data

6H FFH
7H FFH
8H FFH
9H 01H
AH 02H
BH 03H
CH 04H
DH FFH
EH FFH
FH FFH

What does each instruction do?

SOLUTION

The program is in the low memory, located at addresses
OH to SH. The first instruction loads the accumulator with

144 Digital Computer Electronics

the contents of memory location 9H, and so the accumulator
contents become

A = 0l1H
The second instruction adds the contents of memory location
AH to the accumulator contents to get a new accumulator
total of

A = 0l1H + 02H = 03H

Similarly, the third instruction add the contents of memory
location BH

A = 03H + 03H = 06H

The SUB instruction subtracts the contents of memory
location CH to get

A = 06H — 04H = 02H

The OUT instruction loads the accumulator contents into
the output port: therefore, the binary display shows

0000 0010

The HLT instruction stops the data processing.

10-3 PROGRAMMING SAP-1

To load instruction and data words into the SAP-1 memory
we have to use some kind of code that the computer can

‘interpret. Table 10-2 shows the code used in SAP-1. The

number 0000 stands for LDA, 0001 for ADD, 0010 for
SUB, 1110 for OUT, and 1111 for HLT. Because this code
tells the computer which operation to perform, it is called
an operation code (op code).

As discussed earlier, the address and data switches of
Fig. 9-7 allow you to program the SAP-1 memory. By
design, these switches produce a 1 in the up position (U)

TABLE 10-2. SAP-1

OP CODE

Mnemonic Op code
LDA 0000
ADD 0001
SUB 0010
ouT 1110
HLT 1111

and a 0 in the down position (D). When programming the
data switches with an instruction, the op code goes into the
upper nibble, and the operand (the rest of the instruction)
into the lower nibble.

For instance, suppose we want to store the following
instructions: :

Instruction

Address
OH LDA FH
1H ADD EH
2H HLT

First, convert each instruction to binary as follows:

LDAFH = 0000 1111
ADDEH = 0001 1110
HLT = 1111 XXXX

In the first instruction, 0000 is the op code for LDA, and
1111 is the binary equivalent of FH. In the second instruc-
tion, 0001 is the op code for ADD, and 1110 is the binary
equivalent of EH. In the third instruction, 1111 is the op
code for HLT, and XXXX are don’t cares because the HLT
is not a memory-reference instruction.

Next, set up the address and data switches as follows:

Address

Data
DDDD DDDD UUUU
DDDU DDDU UUUD
DDUD UUUU XXXX

After each address and data word is set, you press the write
button. Since D stores a binary 0 and U stores a binary 1,
the first three memory locations now have these contents;

Address Contents
0000 0000 1111
0001 0001 1110
0010 1111 XXXX

A final point. Assembly language involves working with
mnemonics when writing a program. Machine language
involves working with strings of Os and 1s. The following
examples bring out the distinction between the two lan-
guages.

EXAMPLE 10-2

Translate the program of Example 10-1 into SAP-1 machine
language.

SOLUTION

Here is the program of Exa.nple 10-1:

Address Instructiqn
OH LDA 9H
1H ADD AH
2H ADD BH
3H - SUB CH
4H ouT

SH HLT

This program is in assembly language as it now stands. To
get it into machine language, we translate it to Os and 1s
as follows:

Address Instruction
0000 0000 1001
0001 0001 1010
0010 0001 1011
0011 0010 1100
0100 1110 XXXX
0101 1111 XXXX

Now the program is in machine language. .

Any program like the foregoing that’s written in machine
language is called an object program. The original program
with mnemonics is called a source program. In SAP-1 the
operator translates the source program into an object program
when programming the address and data switches.

A final point. The four MSBs of a SAP-1 machine-
language instruction specify the operation, and the four
LSBs give the address. Sometimes we refer to the MSBs
as the instruction field and to the LSBs as the address field.
Symbolically, ‘

Instruction = XXXX XXXX

Instruction field —
Address field

EXAMPLE 10-3

How would you program SAP-1 to soive this arithmetic
problem?

16 + 20 + 24 — 32

The numbers are in decimal form.

SOLUTION

One way is to use the program of the preceding example,
storing the data (16, 20, 24, 32) in memory locations 9H

Chapter 10 sAP-1 145

to CH. With Appendix 1, you can convert the decimal data
into hexadecimal data to get this assembly-language version:

Address Contents
OH LDA 9H
IH ADD AH
2H ADD BH
3H SUB CH
4H OUT .
SH HLT
6H XX
7H. XX
8H XX
9H 10H
AH 14H

" BH 18H
CH . 20H

The machine-language version is

Address Contents
0000 0000 1001
0001 0001 1010
0010 0001 1011
0011 0010 1100
0100 1110 XXXX
0101 1111 XXXX
0110 XXXX XXXX
0111 XXXX XXXX
1000 XXXX XXXX
1001 0001 0000
1010 0001 0100
1011 0001 1000
1100 0010 0000

Notice that the program is stored ahead of the data. In
other words, the program is in low memory and the data
in high memory. This is essential in SAP-1 because the
program counter points to address 0000 for the first instruc-
tion, 0001 for the second instruction, and so forth.

EXAMPLE 10-4

Chunk the program and data of the preceding example by
converting to hexadecimal shorthand.

SOLUTION
Address Contents
OH 09H
1H 1AH
2H 1BH

146 Digital Computer Electronics

3H 2CH
4H - EXH
5H FXH
6H XXH
7H XXH
8H XXH
9H 10H
AH 14H
BH 18H

CH 20H

This version of the program and data is still considered
machine language. ‘

Incidentally, negative data is loaded in 2’s-complement
form. For example, —Q3H is entered as FDH.

10-4 FETCH CYCLE

The control unit is the key to a computer’s automatic
operation. The control unit generates the control words that
fetch and execute each instruction. While each instruction
is fetched and executed, the computer passes through
different riming states (T states), periods during which
register contents change. Let’s find out mofe about these T

~ states.

Ring Counter
—
Earlier, we discussed the SAP-1 ring counter (see Fig.
8-16 for the schematic diagram). Figure 10-2a symbolizes
the ring counter, which has an output of
T = T6T5T4T3T2Tl
At the beginning of a computer run, the ring word is

T = 000001

Successive clock pulses produce ring words of

000010
000100
001000
010000
= 100000

I

=]
I

Then, the ring counter resets to 000001, and the cycle
repeats. Each ring word represents one T state.

Figure 10-2b shows the timing pulses out of the ring
counter. The initial state 7, starts with a negative clock
edge and ends with the next negative clock edge. During
this T state, the T, bit out of the ring counter is high.

During the next state, T, is high; the following state has
a high T;; then a high T;; and so on. As you can see, the

Ring counter

<p— CLK
o— CLR

TTTT1T1

Te Ts T, T3 Ty

fa)

T

l‘_state stat l stat lstate state stat I stat_’{

Te

b)
Fig. 10-2 Ring counter: (a) symbol; (b) clock and timing signals.

ring counter produces six T states. Each instruction is
fetched and executed during these six T states.

Notice that a positive CLK edge occurs midway through
each T state. The importance of this will be brought out
later.

Address State

The T, state is called the address state because the address
in the program counter (PC) is_transferred to the memory
address register (MAR) during this state. Figure 10-3a
shows the computer sections that are agtive during this state
(active parts are light; inactive parts are dark).

During the address state, E, and L,, are active; all other
control bits are inactive. This means that the controller-
sequencer is sending out a control word of

CON = CyE,L,CE L,
=010 1 1

during this state

Increment State

Figure 10-3b shows the active parts of SAP-1 during the
T, state. This state is called the increment state because the
program counter is incremented. During the increment state,
the controller-sequencer is producing a control word of
CpE.Ly,CE LELLE,
=1011 1110

0011

CON =

As you see, the Cp bit is active.

Memory State

The T; state is called the memory state because the addressed
RAM instruction is transferred from the memory to the
instruction register. Figure 10-3¢ shows the active parts of
SAP-1 during the memory state. The only active control
bits during this state are CE and L,, and the word out of
the controller-sequencer is

SuEyL:sLo
0011

C:E.LyCE L,E.L,E,
0110

CON =
=0010

Chapter 10 SAP-1 147

(a)
Fig. 10-3 Fetch cycle: (a) T, state; (b) T, state; (c) T, state.

Fetch Cycle

The address, increment, and memory states are called the
fetch cycle of SAP-1. During the address state, E, and Ly,
are active; this means that the program counter sets up the
MAR via the W bus. As shown earlier in Fig. 10-2b, a
positive clock edge occurs midway through the address
state; this loads the MAR with the contents of the PC.

Cp is the only active control bit during the increment
state. This sets up the program counter to count positive
clock edges. Halfway through the increment state, a positive
clock edge hits the program counter and advances the count
by 1.

During the memory state, CE and L, are active. Therefore,
the addressed_ RAM word sets up the instruction register
via the W bus. Midway through the memory state, a positive
clock edge loads the instruction register with the addressed
RAM word.)

10-5 EXECUTION CYCLE

The next three states (T, Ts, and T,) are the execution
cycle of SAP-1. The register transfers during the execution
cycle depend on the particular instruction being executed.
For instance, LDA 9H requires different register transfers
than ADD BH. What follows are the control routines for
different SAP-1 instructions.

LDA Routine

For a concrete discussion, let’s assume that the instruction
register has been loaded with LDA 9H:

IR = 0000 1001
During the T, state, the instruction field 0000 goes to the

controller-sequencer, where it is decoded; the address field
1001 is loaded into the MAR. Figure 10-4a shows the

148 Digital Computer Electronics

fc)

active parts of SAP-1 during the T, state. Note that E, and
L, are active; all other control bits are inactive.

During the T state, CE and L, go high. This means that
the addressed data word in the RAM will be loaded into
the accumulator on the next positive clock edge (see Fig.
10-4b).

Te is a no-operation state. During this third execution
state, all registers are inactive (Fig. 10-4c). This means
that the controller-sequencer is sending out a word whose
bits are all inactive. Nop (pronounced no op) stands for
‘“‘nc operation.”” The T state of the LDA routine is a nop.

Figure 10-5 shows the timing diagram for the fetch and
LDA routines. During the T, state, Ep and L, are active;
the positive clock edge midway through this state will
transfer the address in the program counter to the MAR.
During the T, state, Cp is active and the program counter
is incremented on the positive clock edge. During the T3
state, CE and L, are active; when the positive clock edge
occurs, the addressed RAM word is transferred to the
instruction register. The LDA execution starts with the T,
state, where L,, and E, are active; on the positive clock
edge the address field in the instruction register is transferred
to the MAR. During the T state, CE and L, are active;
this means that the addressed RAM data word is transferred
to the accumulator on the positive clock edge. As you
know, the T state of the LDA routine is a nop.

ADD Routine

Suppose at the end of the fetch cycle the instruction register
contains ADD BH:

IR = 0001 1011

During the T, state the instruction field goes to the controller-
sequencer and the address field to the MAR (see Fig.
10-6a). During this state E, and L,, are active.

Control bits CE and L are active during the T state.
This allows the addressed RAM word to set up the B

CON

(a)

Fig. 10-4 LDA routine: (a) T, state; (b) T state; (c) T, state.

e e 1 oo 1y oo e e 7]

(b)

Ly

Fig. 10-5 Fetch and LDA timing diagram.

(a)

Fig. 10-6 ADD and SUB routines: (a) T, state; (b) Ts state; (c)

T, state.

RAM

IR
02
CON

U
CON

(b)

(c)

A La
0
Add/sub
/sul £,

register (Fig. 10-6b). As usual, loading takes place midway
" through the state when the positive clock edge hits the CLK
input of the B register.

During the T state, £y and L, are active; therefore, the
adder-subtracter sets up the accumulator (Fig. 10-6c).
Halfway through this state, the positive clock edge loads
the sum into the accumulator.

. Incidentally, setup time and propagation delay time
prevent racing of the accumulator during this final execution
state. When the positive clock edge hits in Fig. 10-6¢, the
accumulator contents change, forcing the adder-subtracter
contents to change. The new contents return to the accu-
mulator input, but the new contents don’t get there until
two propagation delays after the positive clock edge (one
for the accumulator and one for the adder-subtracter). By
then it’s too late to set up the accumulator. This prevents
accumulator racing (loading more than once on the same
clock edge).

Figure 10-7 shows the timing diagram for the fetch and
ADD routines. The fetch routine is the same as before: the
T, state loads the PC address into the MAR; the T, state
increments the program counter; the 7, state sends the
addressed instruction to the instruction register.

e

La

Fig. 10-7 Fetch and ADD timing diagram.

150 Digital Computer Electronics

During the T, state, E; and L,, are active; on the next
positive clock edge, the address field in the instruction
register goes to the MAR. During the T state, CE and L,
are active; therefore, the addressed RAM word is loaded
into the B register midway through the state. During the T
state, I—fu and I_‘,., are active; when the positive clock edge
hits, the sum out of the adder-subtracter is stored in the
accumulator.

SUB Routine

The SUB routine is similar to the ADD routine. Figure
10-6a and b show the active parts of SAP-1 during the T,
and T states. During the T state, a high Sy is sent to the
adder-subtracter of Fig. 10-6¢. The timing diagram is almost
identical to Fig. 10-7. Visualize S, low during the T, to T
states and S, high during the T state.

OUT Routine

Suppose the instruction register gontains the OUT instruction
at the end of a fetch cycle. Then

IR = 1110 XXXX

The instruction field goes to the controller-sequencer for
decoding. Then the controller-sequencer sends out the
control word needed to load the accumulator contents into
the output register.

Figure 10-8 shows the active sections of SAP-1 during
the execution of an OUT instruction. Since E, and L, are
active, the next positive clock edge loads the accumulator
contents into the output register during the T, state. The T
and T states are nops.

Figure 10-9 is the timing diagram for the fetch and OUT
routines. Again, the fetch cycle is same: address state,
increment state, and memory state. During the T, state, E,
and L, are active; this transfers the accumulator word to
the output register when the positive clock edge occurs.

oKgo

CON

U
CON

Fig. 10-8 T, state of OUT instruction.

e inipgigigigigh
« ITL
Ly _]___J |

2 I
2 L]

Fig. 10-9 Fetch and OUT timing diagram.

-HLT

HLT does not require a control routine because no registers
are involved in the execution of an HLT instruction. When
the IR contains ' ’

IR = 1111 XXXX

* the instruction field 1111 signals the controller-sequencer

to stop processing data. The controller-sequencer stops the
computer by turning off the clock (circuitry discussed later).

Machine Cycle and Instruction Cycle

SAP-1 has six T states (three fetch and three execute).
These six states are called a machine cycle (see Fig.
10-10a). It takes one machine cycle to fetch and execute
each instruction. The SAP-1 clock has a frequency of 1
kHz, equivalent to a period of 1 ms. Therefore, it takes 6
ms for a SAP-1 machine cycle.

SAP-2 is slightly different because some of its instructions
take more than one machine cycle to fetch and execute.
Figure 10-10b shows the timing for an instruction that
requires two machine cycles. The first three T states are
the fetch cycle; however, the execution cycle requires the
next nine T states. This is because a two-machine-cycle
instruction is more complicated and needs those extra T
states to complete the execution.

The number of T states needed to fetch and execute an
instruction is called the instruction cycle. In SAP-1 the
instruction cycle equals the machine cycle. In SAP-2 and
other microcomputers the instruction cycle may equal two
or more machine cycles, as shown in Fig. 10-10b.

The instruction cycles for the 8080 and 8085 take from
one to five machine cycles (more on this later).

EXAMPLE 10-5

The 8080/8085 programming.manual says that it takes
thirteen T states to fetch and execute the LDA instruction.

Machine cycle

f¢———————————— Instruction cycle ———————————

. Fig. 10-10 (a) SAP-1 instruction cycle; (b) instruction cycle with
two machine cycles.

T | T, I T3 Ta l Ts I Ts 1 l T, I T3 l Ta | Tg I Ts
|«——— Fetch t Execute E t
< Machine cycle Machine cycle ————————————1
B Instruction cycle

Chapter 10 sap-1 151

~

If the system clock has a trequency of 2.5 MHz, how long
is an instruction cycle?

SOLUTION

The period of the clock is

1 1

— = 400
7~ 2.5MHz ns

T =

Therefore, each T state lasts 400 ns. Since it takes thirteen
T states to fetch and execute the LDA instruction, the
instruction cycle lasts for |

13 X 400 ns = 5,200 ns = 5.2 ps

EXAMPLE 10-6

Figure 10-11 shows the six T states of SAP-1. The positive
clock edge occurs halfway through each state. Why is this
important? '

SOLUTION

SAP-1 is a bus-organized computer (the common type
nowadays). This allows its registers to communicate via
the W bus. But reliable loading of a register takes place
only when the setup and hold times are satisfied. Waiting
half a cycle before loading the register satisfies the setup
time; waiting half a cycle after loading satisfies the hold
time. This is why the positive clock edge is designed to
strike the registers halfway through each T state (Fig.
10-11). '

There’s another reason for waiting half a cycle before
loading a register. When the ENABLE input of the sending
register goes active, the contents of this register are suddenly
dumped on the W bus. Stray capacitance and lead inductance
prevent the bus lines from reaching their correct voltage
levels immediately. In other words, we get transients on
the W bus and have to wait for them to die out to ensure
valid data at the time of loading. The half-cycle delay
before clocking allows the data to settle before loading.

+ edge + edge + edge

oo

10-6 THE SAP-1 MICROPROGRAM

We will soon be analyzing the schematic diagram of the
SAP-1 computer, but first we need to summarize the
execution of SAP-1 instructions in a neat table called a
microprogram.

Microinstructions

The controller-sequencer sends out control words, one
during each T state or clock cycle. These words are like
directions telling the rest of the computer what to do.
Because it produces a small step in the data processing,
each control word is calléd a microinstruction. When looking
at the SAP-1 block diagram (Fig. 10-1), we can visualize
a steady stream of microinstructions flowing out of the
controller-sequencer to the other SAP-1 circuits.

Macroinstructions

The instructions we have been programming with (LDA,
ADD, SUB, . . .) are sometimes called macroinstructions
to distinguish them from microinstructions. Each SAP-1
macroinstruction is made up of three microinstructions. For
example, the LDA macroinstruction consists of the mi-
croinstructions in Table 10-3. To simplify the appearince
of these microinstructions, we can use hexadecimal chunk-
ing as shown in Table 10-4.

Table 10-5 shows the SAP-1 microprogram, a listing of
each macroinstruction and the microinstructions needed to
carry it out. This table summarizes the execute routines for
the SAP-1 instructions. A similar table can be used with
more advanced instruction sets.

10-7 THE SAP-1 SCHEMATIC
DIAGRAM '

In this section we examine the complete schematic diagram
for SAP-1. Figures 10-12 to 10-15 show all the chips,
wires, and signals. You should refer to these figures
throughout the following discussion. Appendix 3 gives
additional details for some of the more complicated chips.

+ edge + edge + edge

TR

CLK I

T . l T, T3

Fig. 10-11 Positive clock edges occur midway through T states.

152 Digital Computer Electronics

TABLE 10-3

Macro State C,E,L, CE L EL.E, SVE,L:Lo Active
LDA T, 0001 1010 0011 Ly, E
T; 0010 1100 0011 CE, L,
Ts 001 1 1 10 0011 None
TABLE 104 MAR
. Chip C4, a 74LS173, is a 4-bit buffer register; it serves as
Macro State CON Active ’
the MAR. Notice that pins 1 and 2 are grounded; this
LDA T, 1A3H Ly, E, converts the three-state output to a two-state output. In
Ts 2C3H CE,L, other words, the output of the MAR is not connected to

Ts 3E3H None

TABLE 10-5. SAP-1 MICROPROGRAM

Macro- State CON Active
LDA T, 1A3H L, E
Ts 2C3H CE, L,
Ts 3E3H None
ADD = T, 1A3H Lu. E,
Ts 2EIH CE, L,
T, 3C7H Ls, Ey
SUB T, 1A3H Ly, E,
Ts 2EIH CE, L,
T, 3CFH L,, Sy, Ey
ouT T, 3F2H E., Lo

T, 3E3H None
Te 3E3H None

t CON = C,E,L,CE LEL.E, SuEiLsLo.

Program Counter

Chips C1, C2, and C3-of Fig. 10-12 are the program -

counter. Chip Cl, a 74LS107, is a dual JK master-slave
flip-flop, that produces the upper 2 address bits. Chip C2,
another 74LS107, produces the lower 2 address bits. Chip
C3 is a 74L.S126, a quad three-state normally open switch;
it gives the program counter a three-state output.

At the start of a computer run, a low CLR resets the
program counter to 0000. During the T, state, a high E,
places the address on the W bus. During the T, state, a
high Cpis applied to the program counter; midway through
this state, the negative CLK edge (equivalent to positive
CLK edge) increments the program counter.

The program counter is inactive during the T to T states.

the W bus, and so there’s no need to use the three-state
output.

2-to-1 Multiplexer

Chip C5 is a 74LS157, a 2-to-1 nibble multiplexer. The
left nibble (pins 14, 11, 5, 2) comes from the address
switch register (S;). The right nibble (pins 13, 10, 6, 3)
comes from the MAR. The RUN-PROG switch (S,) selects
the nibble to reach to the output of C5. When S, is in the
PROG position, the nibble out of the address switch register
is selected. On the other hand, when S, is the RUN position,
the output of the MAR is selected.

16 x 8 RAM

Chips C6 and C7 are 74189s. Each chip is a 16 X 4 static
RAM. Together, they give us a 16 X 8 read-write memory.
S, is the data switch register (8 bits), and S, is the read-
write switch (a push-button switch). To program the mem-
ory, S, is put in the PROG position; this takes the CE input
low (pin 2). The address and data switches are then set to
the correct address and data words. A momentary push of
the read-write switch takes WE low (pin 3) and loads the
memory.

After the program and data are in memory, the RUN-
PROG switch (S,) is put in the RUN position in preparation
for the computer run.

Instruction Register

Chips C8 and C9 are 74L.S173s. Each chip is a 4-bit three-
state buffer register. The two chips-are the instruction
register. Grounding pins 1 and 2 of C8 converts the three-

_ state output to a two-state output, I,I¢lsI,. This nibble goes

to the instruction decoder in the controller-sequencer. Signal
E, controls theé output of C9, the lower nibble in the

_ instruction register. When E, is low, this nibble is placed

on the W bus.

Chapter 10 sap-1 153

il

L 1

v| ¢| 8|zl =
m__
H3IX3dILTINW (S1SWL 8 wo,..:w =
1oLz : 80 1)/||_|
: e %
A S+ NNY
ol =
el ofofet] 2] sf 11 vé\
fy
Ty ls
‘y
oy
=
Gl
€LISTPL 8
HVYW X720 n > v oﬂ.v
) _9 1
Wy —— A G+
- 6 91
:_ zi| ef w1
-sng M dz r—r— T T T T T T T T T
| 8 €
| & W, AN o v Vw h V
9Z1SIvL "l Al ||I|l Wnl'llllllll||m| llllll z
410 » »
= o_H m_w o] mﬁ
mig [> m ¢ i
H31NNOD .
X179 ——————d Fe) g 20 9 19 v,
WYHO50Yd L 6 2 3 ' z -
r ol— r o) r o) r 0
8 [1 € -8 S 1 €
Lh)

LOLSWL ' L01SWL

154 Dbigital Computer Electronics

-19)51301

uononnsur pue ‘Alowow ‘19unod werdoixd |[-dvs ZI-0T ‘Si.

vy S 9 4
X712
9] S| ¥| € - 9| S| v| €| -
I T
= 4 Gl 8
43181934 L EL1SIHL 8 > ELISTHL ¢
NOILONYLSNI L 60 L 80 1
oL oL .ﬂltqb
—— A G+ — A G+
6 o1 NS 6 ol
MR] zif el vt
7 -
ETEL) =
vs
avay
= 1| 6| ¢] s 1| e| £| s
ooE.H. L% 8 .y
— — b =
NNY Zs z £ 2 €
Wvy = 68LYL (4 °a | . = 68LYL zt *g
8 X9l _ Lo oL lg S _ 90 oL Sg | &s
8 9 [8 9 9
Ags —8) ~ G Ao ~ e
91 v €q 9l v tag
30 et vifst| 1 .

€Ll vLp S| L

155

-1

Chapter 10

T Y T Y
il 8 9 € I 8
ny o ol o - " - - I —
“ €l oL V _AVM l _ €l Vo— 14 810
! . 610 | 92IS WL 0zISTHL
3 zl 6 g z
L 6) el
6 9 z sL = 6 9 z 51 =
T T H01ovH19ns
€8S el £8S WL zlL /d43aav
A% vl €l 910
i g Nt CHEA 9z1S WL
m I v| o] ot 8| €] ¢ | ¢ v] ot] - ot] 8| g] ¢ M e
wuwl 8l T ol el
T] > _7: 8l 91 g | z m
| ! N
510 10 | _ |6 —\/. 8
S 3 | S 9 o e
eilet]o] 6] sl v[2] ¢ ieifetlo] 6] sl v| 2] o] |
g 1o o o | o o1 & _ g Vf 9
I S W S | N e
z —\[€
3
L {__]
- G
|zt L
_ el b
v - 6 8
3 W
] o e
¥70 N
: 9| s| v| ¢ = 9| s| ¥| ¢ = S V%..m
T N
sl Gl z _\f €
8 8 Ly
. ELSTWL b—e HOLVINWNIOY — 2%.““& >—¢
= Lo] = p— L__%92 |
1
Aot Ao 9zLs L
6 91 6 9l
MENEAED MEAED q;
vy ¢

igital Computer Electronics

156 b

*snaaid Indino pue *1310eNqNs-Iappe ‘s1a1s1331 g pue v €1-01 315

\NH
ST 4T 4T # 4T 4T 4T %
e e
M G N i 1! L A g it
< < < <
X712
9 S v £ = 9 S v € =
—p—- ——
Gl Sl
€LISTVL 8] - SLSWL 8 43181934
p—@
P €20 “L. T (74) z 1ndLno
D
oL 1 ol 1
[—— AG+
6 o1 NS 6)
o, : i L €l vi [zL gl 2_
X192 'S .
9f s| v| ¢ = 9l 5| v| ¢ =
Sl .m;
8 8
£LISIWL £L1STWL
P P71 L 0z W& ¥31S1934 @
p— :
ol 1 oL 1
—— A G+ +
6 9l : 6 o1 NS
MENENED MENENED
a7 ?

157

-1

Chapter 10

Accumulator

Chips C10 and C11, 74LS173s. arc the accumulator (see
Fig. 10-13). Pins 1 and 2 are grounded on both chips to
produce a two-state output for the adder-subtracter. Chips
C12 and C13 are 74LS126s; these three-state switches place
the accumulator contents on the W bus when E, is high.

Adder-subtracter

Chips Cl4 and CI15 are 74LS86s. These EXCLUSIVE-OR
gates are a controlled inverter. When S,-is low, the contents
of the B register are transmitted. When S, is high, the 1's
‘complcmem is transmitted and a 1 is added to the LSB to
form the 2's complement.

Chips €16 and C17 are 74LS83s. These 4-bit full adders
combine to produce an 8-bit sum or difference. Chips C18
and C19. which.are 74LS126s. convert this 8-bit answer
into a three-state output for driving the W bus.

B Register and Output Register

Chips C20 and C21. which are 74LS173s. form the B
register. It contains the data to be added or subtracted from
the accumulator. Grounding pins | and 2 of both chips
produces a two-state output for the adder-subtractef.

Chips C22 and C23 are 74LS173s and form the output
register. It drives the binary display and lets us see the
processed data.

Clear-Start Debouncer

In Fig. 10-14. the clear-start debouncer produces two
outputs: CLR for the instruction register and CLR for the
program counter and ring counter. CLR also goes to C29,
the clock-start flip-flop. Ss is a push-button switch. When
depressed. it goes to the CLEAR position. generating a high
CLR and a low CLR. When Sq is released. it returns to the
START position. producing a low CLR and a high CLR.

Notice that half of C24 is used for the clear-start debouncer
and the other half for the single-step debouncer. Chip C24
is i 7400, a quad 2-input NAND gate.

Single-Step Debouncer

SAP-1 can run in erther of two modes. manual or automatic.
In the manual mode. you press and release S, to generate
one clock pulse. When S, is depressed. CLK is high: when
released. CLK is low. In other words. the single-step
debouncer of Fig. 10-14 generates the T states one at a
time as you press and release the button. This allows you
to step through the different T states while troubleshooting
or debugging. (Debugging means looking for errors in your
program. You troubleshoot hardware and debug software.)

158 Digital Computer Electronics

Manual-Auto Debouncer

Switch S, is a single-pole double-throw (SPDT) switch that
can remain in either thc MANUAL position or the AUTO
position. When in MANUAL. the single-step button is active.
When in AUTO. the computer runs automatically. Two of
the NAND gates in C26 are used to debounce the MANUAL-
AUTO switch. The other two NAND C26 gates are part of a
NAND-NAND network that steers the single-step clock or the
automatic clock to the final CLK and CLK outputs.

Clock Buffers

The output of pin 11. C26, drives the clock buffers. As
you. see in Fig. 10-14, two inverters are used to produce
the final CLK output and one inverter to produce the CLK
output. Unlike most of the other chips, C27 is standard
TTL rather than a low-power Schottky (see SAP-1 Parts
List, Appendix 4). Standard TTL is used because it can
drive 20 low-power Schottky TTL lcads, as indicated in
Table 4-5.

If you check the data sheets of the 74LS107 and 74LS173
for input currents. you will be able to count the following
low-power Schottky (LS) TTL loads on the clock and clear.
signals:

CLK = 19 LS loads
CLK = 2 LS loads
CLR = 1 LS load

CLR = 20 LS loads

This means that the CLK and CLK signals out of C27
(standard TTL) are adequate to drive the low-power Schottky
TTL loads. Also, the CLR and CLR signals out of C24
(standard TTL) can drive their loads.

Clock Circuits and Power Supply

Chip C28 is a 555 timer. This IC produces a rectangular
2-kHz output with a 75 percent duty cycle. As previously
discussed. a stari-the-clock flip-flop (C29) divides the signal
down to 1 kHz and at the same time produces a2 50 percent
duty cycle.

The power supply consists of a full-wave bridge rectifier
working into a capacitor-input filter. The dc voltage across
the 1.000-wF capacitor is approximately 20 V. Chip C30,
an LM340T-5. is a voltage regulator that produces a stable
output of +5 V.

Instruction Decoder

Chip C31. a hex inverter. produces complements of the
op-code bits. I;lIsl; (see Fig. 10-15). Then chips C32.
C33. and C34 decode the op code to produce five output
signals: LDA, ADD. SUB, OUT, and HLT. Remember:

s
CLEAR/
START -E./T CLEAR

CLR

SINGLE
STEP I HIGH

CLOCK
BUFFERS

" 1

$7 l MANUAL

MANUAL/
AUTO I AUTO

CLOCK
CIRCUIT

3/8A

POWER :
SUPPLY

co |2 o
1000 uF LM340-5

Fig. 10-14 Power supply, clock, and clear circuits.

only one of these is active at a time. (HLT is active low;
all the others are active high.)

When the HLT instruction is in the instruction register,
bits LI I, are 1111 and HLT is low. This signal returns
to C25 (single-step clock) and C29 (automatic clock). In
either MANUAL or AUTO mode, the clock stops and the
computer run ends.

Ring Counter

The ring counter, sometimes called a state counter, consists
of three chips, C36, C37, and C38. Each of these chips is
a 74LS107, a dual JK master-slave flip-flop. This counter,
is reset when the clear-start button (Ss) is pressed. The Q,
flip-flop is inverted so that its O output (pin 6, C38) drives

Chapter 10 sAP-1 159

“XLNEU jONUOD PUE ‘IJunod Juml ‘19poosp uononnsu ST-or St

939

I |
I
; ER
v
- oL ’
X14LVIN TOHLNOD 50 /\ | €D T
& § 4300530
o NOILONHLSNI
—H Nk. mnh vnh mnh O.N
CAE ﬁl o] er] o) e oﬂ £1)
8]” O T 5| Oz T |” s T v|” oz T o s T % or
=4 o @] =9 = 0 =9 980 =9 9
Y %13 s Ot gl” Ofs i °f¢ s/ Ols i Ofg
X719 . vy S 8 4y

H43LNNOJ ONIY

160 Digital Computer Electronics

the J input of the Q, flip-flop (pin 1, C38)- Because of this,
the T, output is initia'ly high.

' The CLK signal drives an active low input. This means
that the negative edge of the CLK signal initiates each T
state. Half a cycle later, the positive edge of the CLK signal
produces register loading, as previously described.

Control Matrix

The LDA, ADD, SUB, and OUT signals from the instruction
decoder drive the control matrix, C39 to C48. At the same
time, the ring-counter signals, 7| to Ty, are driving the
matrix (a circuit receiving two groups of bits from different
sources). The matrix produfes CON, a 17-bit microinstruc-
tion that tells the rest of the computer what to do.

In Fig. 10-15, I, goes high, then T, then T3, and so on.
Analyze the control matrix and here is what you will find.
A high T, produces a high E, and a low L, (addrcss state);
a high T, results in a high C, (increment state); and a high
T; produces a low CE and a low L; (memory state). The
first three T states, therefore, are always the fetch cycle in
SAP-1. In chunked notation, the CON words for the fetch
cycle are

State CON Active Bits
T, 5E3H Ep, Ly
T; BE3H _Cp
T, 263H CE, L,

During the execution states, T, through T, go high in
succession. At the same time, only one of the decoded
signals (LDA through OUT) is high. Because of this, the
matrix automatically steers active bits to the correct output
control lines.

For instance, when LDA is high, the only enabled 2-
input NAND gates are the first, fourth, seventh, and tenth.
When T, is high, it activates the first and seventh NAND
gates, resulting in low L, and low E, (load MAR with
address field). When T is high, it activates the fourth and
tenth NAND gates, producing a low CE and a low L, (load
RAM data into accumulator). When Ty goes high, none of
the control bits are active (nop).

You should analyze the action of the control matrix
during the execution states of the remaining possibilities:
high ADD, high SUB, and high OUT. Then you will agree
the control matrix can generate the ADD, SUB, and OUT
microinstructions shown in Table 10-5 (SAP-1 micropro-
gram).

Operation

Before each computer run, the operator enters the program
and data into the SAP-1 memory. With the program in low

memory and thie data in high memory, the operator presses
and releases the clear button. The CLK and CLK signals
drive the registers and counters. The microinstruction out
of the controller-sequencer determines what happens on
each positive CLK edge.

Each SAP-1 machine cycle begins with a fetch cycle. T
is the address state, T, is the increment state, and T3 is the
memory state. At the end of the fetch cycle, the instruction
is stored in the instruction register. After the instruction
field has been decoded, the control matrix automatically
generates the correct execution routine. Upon completion
of the execution cycle, the ring counter resets and the next
machine cycle begins.

The data processing ends when a HLT instruction is
loaded into the instruction register.

10-8 MICROPROGRAMMING

The control matrix of Fig. 10-15 is one way to generate
the microinstructions needed for each execution cycle. With
larger instruction sets, the control matrix becomes very
complicated and requires hundreds or even thousands of
gates. This is why hardwired control (matrix gates soldered
together) forced designers to look for an alternative way to
produce the control words that run a computer.

Microprogramming is the alternative. The basic idea is
to store microinstructions in a ROM rather than produce
them with a control matrix. This approach simplifies the
problem of building a controller-sequencer.

Storing the Microprogram

By assigning addresses and including the fetch routine, we
can come up with the SAP-1 microinstructions shown in
Table 10-6. These microinstructions can be stored in a
control ROM with the fetch routine at addresses OH to 2H,
the LDA routine at addresses 3H to 5H, the ADD routine
at 6H to 8H, the SUB routine at 9H to BH, and the OUT
routine at CH to EH. ,

To access any routine, we need to supply the correct
addresses. For instance, to get the ADD routine, we need
to supply addresses 6H, 7H, and &H. To get the OUT
routine, we supply addresses CH, DH, and EH. Therefore,
accessing any routine requires three steps:

1. Knowing the starting address of the routine
2. Stepping through the routine addresses
3. Applying the addresses to the control ROM.

Address ROM

Figure 10-16 shows how to microprogram the SAP-1
computer. It has an address ROM, a presettable counter,
and a control ROM. The address ROM contains the starting
addresses of each routine in Table 10-6. In other words,

Chapter 10 sAar-1 161

TABLE 10-6. SAi’-l CONTROL ROM

Address Contentst Routine Active
OH SE3H Fetch Ep, Ly
1H BE3H Cr
2H 263H CE, L,
3H 1A3H LDA Ly, E,
4H 2C3H CE, L,
SH 3E3H None
6H 1A3H ADD Lu
7H 2E1H CE, Ly
8H 3C7H L, Ey
9H 1A3H SUB Ly, E
AH 2E1H CE, Ly
BH 3CFH L, Sy, Ey
CH 3F2H ouT Es Lo
DH 3E3H None
EH 3E3H ‘None
FH X X Not used

+ CON = CE.LWCE LEL.E, S(EiLgLo.

Address
ROM
16X 4

L [[]

Ty LOAD

CLK a Presettable

T»‘ counter
CLR

[T 11
= Control -
ROM
16X 12

T 1T 1117

Microinstruction

Fig. 10-16 Microprogrammed control of SAP-1.

the address ROM contains the data listed in Table 10-7.
As shown, the starting address of the LDA routine is 0011,
the starting address of the ADD routine is 0110, and so on.

When the op-code bits ;I 51, drive the address ROM,
the starting address is generated. For instance, if the ADD

162 Digital Computer Electronics

TABLE 10-7. ADDRESS ROM

Address Contents Routine
0000 0011 LDA
0001 0110 ADD
0010 1001 SUB
0011 XXXX None
0100 XXXX None
0101 XXXX None
0110 XXXX None
0111 XXXX None
1000 XXXX None
1001 - XXXX None
1010 XXXX None
1011 XXXX None
1100 XXXX None
1101 XXXX None

1110 1100 ouT
1111 XXXX None

instruction is being executed, IIsIsI, is 0001. This is the
input to the address ROM; the output of this ROM is 0110.

Presettable Counter

When T3 is high, the load input of the presettable counter
is high and the counter loads the starting address from the
address ROM. During the other T states, the counter counts.

Initially, a high CLR signal from the clear-start debouncer
is differentiated to get a narrow positive spike. This resets
the counter. When the computer run begins, the counter
output is 0000 during the T, state, 0001 during the T, state,
and 0010 during the T state. Every fetch cycle is the same
because 0000, 0001, and 0010 come out of the counter
during states T, T,, and T;.

The op code in the instruction register controls the
execution cycle. If an ADD instruction has been fetched,
the I;I¢IsI, bits are 0001. These op-code bits drive the
address ROM, producing an output of 0110 (Table 10-7).
This starting address is the input to the presettable counter.
When T is high, the next negative clock edge loads 0110
into the presettable counter. The counter is. now preset, and
counting can resume at the starting address of the ADD
routine. The counter output is 0110 during the T, state,
0111 during the T state, and 1000 during the T state.

When the T, state begins, the leading edge of the T,
signal is differentiated to produce a narrow positive spike
which resets the counter to 0000, the starting address of
the fetch routine. A new machine cycle then begins.

Coutrol ROM

The control ROM stores the SAP-1 microinstructions.
During the fetch cycle, it receives addresses 0000, 0001,
and 0010. Therefore, its outputs are

SE3H
BE3H
263H

These microinstructions, listed in Table 10-6, produce the
address state, increment state, and memory state.

If an ADD instruction is being executed, the control
ROM receives addresses 0110, 0111, and 1000 during the
execution cycle. Its outputs are

1A3H
2EIH
3C7TH -

These microinstructions carry out the addition as previously
discussed.

For another example, suppose the OUT iunstruction is
being executed. Then the op code is 1110 and the starting
address is 1100 (Table 10-7). During the execution cycle,
the counter output is 1100, 1101, and 1110. The output of
the control ROM is 3F2H, 3E3H, and 3E3H (Table 10-6).
This routine transfers the accumulator contents to the output
port.

Variable Machine Cycle

The microinstruction 3E3H in Table 10-6 is a nop. It occurs
once in the LDA routine and twice in the OUT routine.
These nops are used in SAP-1 to get a fixed machine cycle

for all instructions. In other words, each machine cycle -

takes exactly six T states, no matter what the instruction.
In some computers a fixed machine cycle is an advantage.
But when speed is important, the nops are a waste of time
and can be eliminated.

One way to speed up the operation of SAP-1 is to skip
any T state with a nop. By redesigning the circuit of Fig.
10-16 we can eliminate the nop states. This will shorten
the machine cycle of the LDA instruction to five states (T,
T,, Ty, T,, and Ts).. It also shortens the machine cycle of
the OUT instruction to four T states (T, T, T5, and T},).

Figure 10-17 shows one way to get a variable machine
.cycle. With an LDA instruction, the action is the same as
before during the T to Ts states. When the T state begins,
the control ROM produces an cutput of 3E3H (the nop
microinstruction). The NAND gate detects this nop instantly
and produces a low output signal NOP. NOP is fed back
to the ring counter through an AND gate, as shown in Fig.
10-18. This resets the ring counter to the T state, and a
new machine cycle begins. This reduces the machine cycle
uf the LDA instruction from six states to five.

Address
ROM
16X 4

LT 1 1

T3 LOAL
- CLK ———0 Presettable
T counter
CLR . CLR
— Control
ROM
16X 12

3112

Microinstruction

Fig. 10-17 Variable machine cycle.

Ring counter

=

p—————— CLK

Fig. 10-18

With the OUT instruction, the first nop occurs in the Ts
state. In this case, just after the T state begins, the control
ROM produces an output of 3E3H, which is detected by
the NAND gate. The low NOP signal then resets the ring
counter to the 7, state. In this way, we have reduced the
machine cycle of the OUT instruction from six states to
four.

Chapter 10 sar-1 163

Variable machine cycles are commonly used with micro-
processors. In the 8085, for example, the machine cycles
take from two to six T states because all unwanted nop
states are ignored.

' Advantages

One advantage of microprogramming is the elimination of
the instruction decoder and control matrix; both of these
become very complicated for larger instruction sets. In
other words, it’s a lot easier to store microinstructions in a
ROM than it is to wire an instruction decoder and control
matrix.

Furthermore, once you wire an instruction decoder and
control matrix, the only way you can change the instruction

set is by disconnecting and rewiring. This is not necessary
with microprogrammed control; all you have to do is change
the control ROM and the starting-address ROM. This is <
big advantage if you are trying to upgrade equipment sold
earlier.

Summary

In conclusion, most computers built nowadays use micro-
programmed control instead of hardwired control. The
microprogramming tables and circuits are more complicated
than those for SAP-1, but the idea is the same. Microin-
structions are stored in a control ROM and accessed by

“applying the address of the desired microinstruction.

GLOSSARY

address state The T, state. During this state, the address
in the program counter is transferred to the MAR.
accumulator The place where answers to arithmetic and
logic operations are accumulated. Sometimes called the A
register.

assembly language The mnemonics used in writing a’
program.

B register An auxiliary register that stores the data to be
added or subtracted from the accumulator.

fetch cycle The first part of the instruction cycle. During
the fetch cycle, the address is sent to the memory, the
program counter is incremented, and the instruction is
transferred from the memory to the instruction register.
increment state The T, state. During this state, the pro-
gram counter is incremented.

instruction cycle All the states needed to fetch and execute
an instruction.

instruction register The register that receives the instruc-
tion from the memory.

instruction set The instructions a computer responds to.
LDA Mnemonic for load the accumulator.

machine cycle All the states generated by the ring counter.
machine language The strings of Os and 1s used in a
. program.

macroinstruction One of the instructions in the instruction
set.

MAR Memory address register. This register receives the
address of the data to be accessed in memory. The MAR
supplies this address to the memory. '
memory-reference instruction An Anstruction that calls
for a second memory operation to access data.

memory state The T; state. During this state, the instruc-
tion in the memory is transferred to the instruction register.
microinstruction A control word out of the controller-
sequencer. The smallest step in the data processing.

nop No operation. A state during which nothing happens.
output register The register that receives processed data
from the accumulator and drives the output display of SAP-
1. Also called an output port.)

object program A program written in machine language.
op code Operation code. That part of the instruction which
tells the computer what operation to perform.

program counter A register that counts in binary. Its
contents are the address of the next instruction to be fetched
from the memory.

RAM Random-access memory. A better name is read-
write memory. The RAM stores the program and data
needed for a computer run.

source program A program written in mnemonics.

SELF-TESTING REVIEW

- Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. The _counter, which is part of the con-
trol unit, counts from 0000 to 1111. It sends to the
memory the of the next instruction.

164 Dbigital Computer Electronics

2.- (program, address) The MAR, or —___ reg-
ister, latches the address from the program counter.
A bit later, the MAR applies this address to the
, where a read operation is performed.
3. (memory-address, RAM) The instruction register is

part of the control unit. The contents of the 9. (op, Assembly, Machine) SAP-1 has T
‘register are split into two nibbles. The states, periods during which register contents
upper nibble goestothe . change. The ring counter, or counter,
4. (instruction, controller-sequencer) The controller- produces these T states. These six T states represent
sequencer produces a 12-bit word that controls the one machine cycle. In SAP-1 the instruction cycle
“rest of the computer. The 12 wires carrying this has enly one machine cycle. In microprocessors like
word are called the control the 8080 and the 8085, the cycle may
- . have from one to five machine cycles.
5. (control, bus) The is a buffer register 10. (six, state, instruction) The controller-sequencer
- that stores sums or differences. Its two-state output sends out control words, one during each T state
goes to the adder-subtracter. The pro- or clock cycle. Each control word is called a
duces the sum when S, is low and the difference . Instructions like LDA, ADD, SUB,
when Sy is high. The output register is sometimes etc. are called . Each SAP-1 macroin-
called an output . struction is made up of three .
6. (accumulator, adder-subtracter, port) The SAP-1 11. (microinstruction, macroinstructions, microinstruc-
set is LDA, ADD, SUB, OUT, and tions) With larger instruction sets, the control ma-
HLT. LDA, ADD, and SUB are called trix becomes very complicated. This is why hard-
instructions because they use data stored in the wired control is being replaced by . The
memory. basic idea is to store the in a control
7. (instruction, memory-reference) The 8080 was the ROM.
first widely used microprocessor. The ___ s 12. (microprogramming, microinstructions) SAP-1 uses
an enhanced version of the 8080 with essentially the a fixed machine cycle for all instructions. In other
same instruction set. words, each machine cycle takes exactly six T
8. (8085) LDA, ADD, SUB, OUT, and HLT are states. Microprocessors like the 8085 have variable
coded as 4-bit strings of Os and 1s. This code is machine cycles because all unwanted nop states are
called the code. language eliminated.
uses mnémonics when writing a program.
language uses strings of Os and Is.
PROBLEMS
10-1. Write a SAP-1 program using mnemonics (simi- T n T 7, 7, e
lar to Example 10-1) that will display the result M
o A T B
Z0 N
| | | | |
Use addresses DH, EH, and FH for the data. woL] L
10-2. Convert the assembly language of Prob. 10-1 ! : : :
into SAP-1 machine language. Show the answer G [: : !
in binary form and in hexadecimal form. ! } !
10-3. Write an assembly-language program that per- ce L_,_E—l_:_li—
forms this operation: i ! | I I
z Lot 1
8 +4-3+5-2 oo
' | g Ll
Use addresses BH to FH for the data. I |
10-4. Convert the program and data of Prob. 10-3 into ts L]
machine language. Express the result in both l
binary and hexadecimal form. Eu f : L
10-5. Figure 10-19 shows the timing diagram for the ;
ADD instruction. Draw the timing diagram for La I____I:
the SUB instruction. Fig. 10-19

Chapter 10 sap-1 165

v| L].6]CL

l o~

mr-
H3IX31dILTINW L81SWL 8 08 =
1OLZ B -to) 1 /IH_I
e s
- A G+ R NNy
el ofot]et] z] s i+t
fy
Zy | s
by
\ o‘.\
g1
.
" €172
W v:oI||h D> 9 P> ¢
_2 L
Wy A G+
- 6 9l
e e v
1
sng M a3 jli' I|||I||||H ||||||||||| Dlzll |||||||||||
_ \
et WP VN 7 \A® L
| €2
mﬁmqﬁ L zi 6 S
419 ¢ 2 d ?-
= o] ev | o] el
‘_,F A . v d L ” v
43I1NNOD —_—
412 o) o) —d o) L
WYHD0Hd = 6 dl 6 a ’
r o] r 0 r —
8 5 i € 8 S 1 €
9

L0LSTIVL

LOLSTVL

L1

v, 8 9 ¢

0Z-01 314

X170
9] S| v| € - 9] S| ¥| € -
13 T
2 z st 8
4315193y L L suswe (8 s ¢
NOILONYLSNI L 62 L 80 3
oL oL qtqo
+ —— A G+
6 . o NS 6 9l
ulaje n [ztf el vt
7 -
3L18M =
vs
avay
= MK | e] s
50ud o, QO Q Q -
p— p— -
NNY [23 4 € [4 €
Wvy = 68LYL 4 LD P = 68LYL (4] Ya
8 X9l |_H Lo ot ‘g 90 oL Sg | &
8 9 z 8 9 9g
A G+ — g A G+ ~N
9l 14 £g 9l 14 Lg
39 et vifsi| o

gLl vL} St

o sl ol = -
L 8 9 € 1 8
DW m o ® Py & | P ©- qu €
I et ol v “ €l oL v 1 819
“ 610 | 92ISvL 9z1SThL
| 6 z zl 6 g z
(I P D) . I
6 9 z sl = 6 9 z 51 =
l.ul |I_| H4010vH18NsS
€8SV cL £8ST0L zL /43aav
%) vl el 919
g NS A 9ziSWL
mn Z v ot] ot] o] € ¢t m L v 9| o] 8] ¢| ¢t “I co |
atr—sF—st—=— LS
L 8 9 € _—l _ 8 9 & Izt 0
_ | LNy
G110 ?—O_ _ mm g8 |
S S s _ S ~ I oNe |
etlztfo] 6] sl o] 2] ¢ ieifzifo] 6] o] v 2] o | NS |
ng ® * Y ® l—o * - _ _m 9 |
(IS N S 4 ——1 _ | Z !
Iz e |
| Ne |
L 4_ _
T~ |
|zt T
LNy |
v3 “m —\f 8 _
o
X710 ¢ LIS }
9|l s| v| ¢ = 9] s| v| € = “m—\%..w _
Il 7 |
Gl sl “NJ\/. s |
8 8 | A 2
—p ST g HOLYINWNIOV —p 2%40: P—¢ I |
ol " P ot P L. 22]
AGr Aot 9z1S1YL
6 9l 6 9l
MDD 1] zi] €1 3_
vy ?

sng M

Y

12-01 311

Z Z ST 4T «T %
L V:M V:M V:M L Al NI 1
< < < <
PR)
9] v € = 9 S 14 £ =
GL sl
€L1SL 8 €L1STWL 8 43151934
- bl p—9 P 225 A 1nd1no
Tll Hb—|
ol L 0oL L
. —— Ao+
6 o1 NE* 6 9l
o L L €l vl T z1 €l L
7 *
X7 T
A._x 9] S| v| € = 9] S| v| ¢ =
5l Gl
8 8
£LISWL W ELISTVL
g 120 z) L 029 ¢ 431S1934 g
p— D—-/
oL l oL L
—— A G+ |
6 ol 6 o1 NS
MEAENED M A 1_
mq P

CLR
Ss L.
CLEAR/ START

START -[/T CLEAR

CLR

Se l LOW
SINGLE
STEP T HIGH

CLOCK
BUFFERS
" -

l MANUAL

Sz
MANUAL/
AUTO T AUTO

c27
L%]
cLocK
CIRCUIT
3/8 A .
POWER é' + co |2
SUPPLY 1000 uF LM340-5 6V
D, iI_
3 220 uF
B 11 N
Fig. 10-22

170 Digital Computer Electronics

€2-01 814

939
llllllll g
17H gAreo v
z
llllllll 1
_|I.||.J ﬂv
1l
T
212 _w 618 €60
llllll | | 5
" | MI.-
€ 519 €E0| ¥
12 z
|
— | o | g
II.INLI_ _ “ €l
T
v stgAee0]|?
I | ot
: . I no| | | | 3
J ans _ | —e
d aav _ _ S
— zeo|v
H) oL var ¢ 119
L 4
XIH1VIN TOHLINOD 6£0 6£0 - 1
4 I 4300030
° NOILONY LSNI
g Y 1 'L St i
g1 - »
41 o_H m_w oL B SH m;.
8" o3 v o1 Y ol vl o vy K %9 1k orz
5 8e0 s & 0 s —dq o€ i 90
md Araamn il Cha ey °fs o i P Y °fs i Ofe .
10 _ vy S % 4

H31LNNOD ONIY

10-6.

10-7.

10-8.

10-9.

Suppose an 8085 uses a clock frequency of 3
MHz. The ADD instruction of an 8085 takes
four T states to fetch and execute. How long is
this?

What are the SAP-1 microinstructions for the

LDA routine? For the SUB routine? Express the

answers in binary and hexadecimal form.

Suppose we want to transfer the contents of the

accumulator to the B register. This requires a

new microinstruction. What is this microinstruc-

tion? Express your answer in hexadecimal and
binary form.

Look at Fig. 10-20 and answer the following

questions:

a. Are the contents of the program counter
changed on the positive or negative edge of
the CLK signal? At this instant, is the CLK
signal on its rising or falling edge?

b. To increment the program counter, does Cp
have to be low or high?

¢. To clear the program counter, does CLR have
to be low or high?

d. To place the contents of the program counter
on the W bus, should E, be low or high?

10-10.

10-11.

10-12.

Refer to Fig. 10-21:

a. IfL,is high, what happens to the accumulator
contents on the next positive clock edge?

b. If A = 00101100 and B = 110C 1110, what
is on the W bus if E, is high?

c. IfA = 00001111, B = 0000 0001, and
Sy = 1, what is on the W bus when E is
high?)

Answer the following questions for Fig. 10-22:

a. With Ss in the CLEAR position, is the CLR
output low or high?

b. With S4 in the LOW position, is the output low
or high for pin 115 C24? :

c. To have a clock signal at pin 3 of C29, should
HLT be low or high?

Refer to Fig. 10-23 to answer the following:

a. IfI;LIsl, = 1110, only one of the output pins
in C35 is high. Which pin is this?

b. CLR goes low. Which is the timing signal (T,
to T¢) that goes high?

c. LDA and Ts are high. Is the voltage low or
high at pin 6, C45?

d. ADD and T, are high. Is the signal low or
high at pin 12, C45?

SAP-2

SAP-1 is a computer because it stores a program and data
before.calculations begin; then it automatically carries out
the program instructions without human intervention. And
yet, SAP-1 is a primitive computing machine. It compares

to a modern computer the way a Neanderthal human would

compare to a modern person. Something is missing, some-
thing found in every modern computer.

SAP-2 is the next step in the evolution toward modern
computers because it includes jump instructions. These new
instructions force the computer to repeat or skip part of a
program. As you will discover, jump instructions open up
a whole new world of computing power.

11-1 BIDIRECTIONAL REGISTERS

To reduce the wiring capacitance of SAP-2, we will run
only one set of wires between each register and the bus.
Figure 11-1a shows the idea. The input and output pins are
shorted; only one group of wites is connected to the bus.

Does this shorting the input and output pins ever cause
trouble? No. During a computer run, either LOAD or
ENABLE may be active, but not both at the same time. An
active LOAD means that a binary word flows from the bus
to the register input; during a load operation, the output
lines are floating. On the other hand, an active ENABLE
means that a binary word flows from' the register to the
bus; in this' case, the input lines float.

The IC manufacturer can internally connect the mput and
output pins of a three-state register. This not only reduces
the wiring capacitance; it also reduces the number of /O
pins. For mstance, Fig. ll 1b has four 1/O pins instead of
eight.

Figure 11-1c is the symbol for a three-state register with
internally connected input and output pins. The double-
headed arrow reminds us that the path is bidirectional; data
can move either way. "

11-2 ARCHITECTURE

Figure 11-2 shows the architecture of SAP-2. All register
outputs to the W bus are three-state; those not connected
to the bus are two-state. As before, the controller-sequencer
sends control signals (not shown) to each register. These
control signals load, enable, or otherwise prepare the register
for the next positive clock edge. A brief description of each
box is given now.

Input Ports

SAP-2 has two input ports, numbered 1 and 2. A hexade-
cimal keyboard encoder is connected to port 1. It allows
us to enter hexadecimal instructions and data through port
1. Notice that the hexadecimal keyboard encoder sends a
READY signal to bit 0 of port 2. This signal indicates when
the data in port 1 is valid.

Also notice the SERIAL IN signal going to pin 7 of port
2. A later example will show you how to convert serial
input data to parallel data. ‘

Program Counter
This time, the program counter has 16 bits; therefore, it
can count from

PC = 0000 0000 0000 0000

I

to

PC = 1111 1111 1111 1111

This is equivalent to 0000H ‘to FFFFH, or decnmal 0to
65,535.

A low CLR signal resets the PC before each computer
run; so the data processing starts with the instruction stored

- in memory location 0000H.

173

LOAD
CLK > Threej-state
register
ENABLE
fa)
) Bus
LOAD
Three-state
register
CLK > with internally
connected
1/O pins
ENABLE T
(b)
Bus
L —-o []
CcLK S Bidire{ctional & \>
register < —
E

()’

Fig. 11-1 Bidirectional register.

MAR and Memory

During the fetch cycle, the MAR receives 16-bit addresses
from the program counter. The two-state MAR output then
addresses the desired memory location. The memory has a
2K ROM with addresses of 0000H to 07FFH. This ROM
contains a program called a monitor that initializes the
computer on power-up, interprets the keyboard inputs, and
so forth. The rest of the memory is- a 62K RAM with
addresses from 0800H to FFFFH.

Memory Data Register

The memory data register (MDR) is an 8-bit buffer register.

Its output sets up the RAM. The memory data register
receives data from the bus before a write operation, and it
sends data to the bus after a read operation. -

Instruction Register

Because SAP-2 has more instructions than SAP-1, we will
use 8 bits for the op code rather than 4. An 8-bit op code
can- accommodate 256 instructions. SAP-2 has only 42

174 Digital Computer Electronics

instructions, so there will be no problem coding them witl
8 bits. Using an 8-bit op code also allows upward compat
ibility with the 8080/8085 instruction set because it is base
on an 8-bit op code. As mentioned earlier, all SAl
instructions are identical with 8080/8085 instructions.

Controller-Sequencer

The controller-sequencer produces the control words o
microinstructions that coordinate and direct the rest of the
computer. Because SAP-2 has a bigger instruction set, th
controller-sequencer has more hardware. Although the COM
word is bigger, the idea is the same: the control word o
microinstruction determines how the registers react to th
next positive clock edge.

Accumulator

The two-state output of the accumulator goes to the ALU
the three-state output to the W bus. Therefore, the 8-bi
word in the accumulator continuously drives the ALU, bu
this same word appears on the bus only when E, is active

’ ACKNOWLEDGE —»

READY

—

Hexadecimal
keyboard
encoder

0
L—>

7 .
SERIAL IN —> 2

PC

<7
MAR @

16

&

64K
Memory

2N\
' 8] ACCUMULATOR

N
/ \
K 8 ALU 2 FLAGS
< —

T™MP

Controller/
sequencer

U

[of0)

Fig. 11-2 SAP-2 block architecture.

ALU and Flags

Standard ALUs are commercially available as integrated
circuits. These ALUs have 4 or more control bits that
determine the arithmetic or logic operation performed on
words A and B. The ALU used in SAP-2 includes arithmetic
and logic operations.

In this book a flag is a flip-flop that keeps track of a
changing condition during a computer run. The SAP-2
computer has two flags. The sign flag is set when the
accumulator contents become negative during the execution

5 AN Out;r)tut _BA Hexadecimal
) po i
‘ o ﬁ/ display
0
\ Output —> SERIAL OUT
N
8 port 7
—— 4 —> ACKNOWLEDGE

of some instructions. The zero flag is set when the accu-
mulator contents become zero.

TMP, B, and C Registers

Instead of using the B register to hold the daia being added
or subtracted from the accumulator, a temporary (TMP)
register is used. This allows us more freedom in using the
B register. Besides the TMP and B registers, SAP-2 includes
a C register. This gives us more flexibility in moving data
during a computer run.

Chapter 11 sap2 175

Output Ports

SAP-2 has two output ports, numbered 3 and 4. The
contents of the accumulator can be loaded into port 3,
which drives a hexadecimal display. This allows us to see
the processed data.

The contents of the accumulator can also be sent to port
4. Notice that pin 7 of port 4 sends an ACKNOWLEDGE
signal to the hexadecimal encoder. This ACKNOWLEDGE
signal and the READY signal are part of a concept called
handshaking, to be discussed later.

Also notice the SERIAL OUT signal from pin O of port
4; one of the examples will show you how to convert-
parallel data in the accumulator into serial output data.

11-3 MEMORY-REFERENCE
INSTRUCTIONS

The SAP-2 fetch cycle is the same as before. T, is the
address state, T, is the increment state, and T, is the memory
state. All SAP-2. instructions therefore use the memory
during the fetch cycle because a program instruction is
transferred from the memory to the instruction register.

During the execution cycle, however, the memory may
or may not be used; it depends on the type of instruction
that has been fetched. A memory-reference instruction
(MR]) is one that uses the memory during the execution
cycle. - '

The SAP-2 computer has an instruction set with 42
instructions. What follows is a description of the memory-
reference instructions.

LDA and STA

LDA has the same meaning as before: load the accumulator
with the addressed memory data. The only difference is
that more memory locations can be accessed in SAP-2
because the addresses are from 0000H to FFFFH. For
example, LDA 2000H means to load the accumulator with
the contents of memory location 2000H. '

To distinguish the different parts of an instruction, the
mnemonic is sometimes called the op code and the rest of
the instruction is known as the operand. With LDA 2000H,
LDA is the op code and 2000H is the operand. Therefore,
‘‘op code’’ has a double meaning in microprocessor work;
it may stand for the mnemonic or for the binary code used
to represent the mnemonic. The intended meaning is clear
from the context.

STA is a mnemonic for store the accumulator. Every
STA instruction needs an address. STA 7FFFH means to
store the accumulator contents at memory location 7FFFH.
If ‘

A = 8AH

the execution of STA 7FFFH stores 8 AH at address 7FFFH.

176 Digital Computer Electronics

MVI

MVI is the mnemonic for move immediate. It tells the
computer to load a designated régister with the byte that
immediately follows the op code. For instance,

MVI A,37TH

tells the computer to load the accumulator with 37H. After
this instruction has been executed, the binary contents of
the accumulator are

A = 00110111

You can use MVI with the A, B, and C registers. The
formats for these instructions are

MVI A,byte
MVI B,byte
MVI C,byte

Op Codes

Table 11-1 shows the op codes for the SAP-2 instruction
set. These are the 8080/8085 op codes. As you can see,
3A is the op code for LDA, 32 is the op code for STA, -
etc. Refer to this table in the remainder of this chapter.

EXAMPLE 11-1

Show the mnemonics for a program that loads the accu-
mulator with 49H, the B register with 4AH, and the C
register with 4BH; then have the program store the accu-
mulator data at memory location 6285H.

SOLUTION

Here’s one program that will work:
/ .
Mnemonics

MVI A ,49H
MVIB,4AH
MVIC,4BH
STA 6285H
HLT

The first three instructions load 49H, 4AH, and 4BH into
the A, B, and Cregisters. STA 6285H stores the accumulator
contents at 6285H. ‘

Note the use of HLT in this program. It has the same
meaning as before: halt the data processing.

TABLE 11-1. SAP-2 OP CODES

Instruction Op Code Imstruction Op Code
ADD B 80 MOV B,A 47
ADD C 81 ~ MOVB,C 41
ANA B A0 MOV C,A 4F
ANA C Al MGV C,B 48
ANI byte E6 MVI A, byte 3E
CALL address CD MVI B,byte 06
CMA * 2F MVI C,byte OE
DCR A 3D NOP 00
DCR B 05 ORA B BO
DCR C oD ORA C ' B1
HLT 76 ORI byte F6
IN byte DB OUT byte D3
INR A 3C RAL 17
INR B 04 RAR IF
INR C ocC RET C9
JM address FA STA address 32
JMP address C3 SUB B 90
JNZ address C2 SUB C 91
JZ address CA XRA B A8
LDA address 3A XRA C A9
MOV A.B 78 XRI byte EE
MOV A,C 79

EXAMPLE 11-2

Translate the foregoing program into 8080/8085 machine
language using the op codes of Table 11-1. Start with
address 2000H.

SOLUTION

Address Contents Symbolic
2000H 3EH ‘MVI A,49H
2001H 49H

2002H 06H MVI B,4AH
2003H 4AH

2004H OEH MVI C,4BH
2005H 4BH

2006H 32H STA 6285H
2007H 85H

2008H 62H

2009H 76H HLT

There are a couple of new ideas in this machine-language
program. With the '

MVI A,49H

instruction, notice that the op code goes into the first address
and the byte into the second address. This is true of all 2-
byte instructions: op ~ode into the first available memory
location and byte into the next. '

The instruction

STA 6285H

is a 3-byte instruction (1 byte.for the op code and 2 for the
address). The op code for STA is 32H. This byte goes into
the first available memory location, which is 2006H. The
address 6285H has 2 bytes. The lower byte 85H goes into
the next memory location, and the upper byte 62H into the
next location.

Why does the address get programmed with the lower
byte first and the upper byte second? This is a peculiarity
of the original 8080 design. To keep upward compatibility,
the 8085 and some other microprocessors use the same
scheme: lower byte into lower memory, upper byte into
upper memory.

The last instruction HLT has an op code of 76H, stored
in memory location 2009H. :

In summary, the MVI instructions are 2-byte instructions,
the STA is a 3-byte instruction, and the HLT is a 1-byte
instruction.

11-4 REGISTER INSTRUCTIONS

Memory-reference instructions are relatively slow because
they require more than one memory access during the
instruction cycle. Furthermore, we often want to move data
directly from one register to another without having to go
through the memory. What follows are some of the SAP-
2 register instructions, designed to move data from one
register to another in the shortest possible time.

MOV

MOV is the mnemonic for move. It tells the computer to
move data from one register to another. For instance,

MOV A,B
tells the computer to move the data in the B register to the
accumulator. The operation is nondestructive, meaning that
the data in B is copied but not erased. For example, if
A = 34H and B= 9DH
then the executién of MOV A,B results in

A = 9DH
B = 9DH

bhapter 11 sap2 177

You can move data between the A, B, and C registers.
The formats for all MOV instructions are

MOV A,B
MOV A,C
MOV B,A
MOV B,C
MOV C,A
MOV C,B

These instructions are the fastest in the SAP-2 instruction
set, requiring only one machine cycle.

ADD and SUB

ADD stands for add the data in the designated register to
the accumulator. For instance,

. ADD B

means to add the contents of the B register to the accu-
mulator. If

A = 04H -and B= 02H

then the execution of ADD B results in
A = 06H

Similarly, SUB means subtract the data in the designated
register from the accumulator. SUB C will subtract the
contents of the C register from the accumulator.

The formats for the ADD and SUB instructions are

ADDB
ADDC
SUBB
SUBC

INR and DCR

Many times we want to increment or decrement the contents
of one of the registers. INR is the mnemonic for increment;
it tells the computer to increment the designated register.

DCR is the mnemonic for decrement, and it instructs the .

computer to decrement the designated register. The formats
for these instructions are

INR A
INR B
INRC
DCR A
DCR B
DCRC

As an example, if
B = 56H and C = 8AH

178 Digital Computer Electronics

then the execution of INR B results in »
B= 57H
and the execution of a DCR C produces

C = 89H

EXAMPLE 11-3

Show the mnemonics for adding decimal 23 and 45. The
answer is to be stored at memory location S600H. Also,
the answer incremented by 1 is to be stored in the C register.

SOLUTION

As shown in Appendix 1, decimal 23 and 45 are equivalent
to 17H and 2DH. Here is a program that will do the job:

Mnemonics

MVI A,17H
MVIB,2DH
ADD B
STA 5600H
INR A
MOV C,A
HLT

EXAMPLE 11-4

To hand-assemble a program means to translate a source
program into a machine-language program by hand rather
than machine. Hand-assemble the program of the preceding
example starting at address 2000H.

SOLUTION

Address ‘Contents Symbolic
2000H ‘3EH MVI A,17TH
2001H 17H

2002H 06H MVI B,2DH

- 2003H " 2DH

2004H ' 80H ADD B
2005H 32H STA 5600H
2006H 00H
2007H 56H

2008H 3CH INR A
2009H 4FH MOV C,A
200AH 76H HLT

Notice that the ADD, INR, MOV, and HLT instructions
are 1-byte instructions; the MVI instructions are 2-byte
instructions, and the STA is a 3-byte instruction.

11-5 JUMP AND CALL
INSTRUCTIONS

SAP-2 has three jump instructions; these can change the
program sequence. In other words, instead of fetching the
next instruction in the usual way, the computer may jump
or branch to another part of the program.

JMP

To begin with, JMP is the mnemonic for jump; it tells the
computer to get the next instruction from the designated
memory location. Every JMP instruction includes an address
that is loaded into the program counter. For instance,

JMP 3000H

tells the computer to get the next instruction from memory
location 3000H.

2000H — 2000H —_—
2006H JMP 3000H 2005H JM 3000H ————
2006H — ' 2006H —_—
L]
. .-
L]
3000H _— 3000H —_—
(a) (b)

Fig. 11-3 (a) Unconditional jump; (b) conditional jump.

Here is what happens. Suppose JMP 3000H is stored at
2005H, as shown in Fig. 11-3a. At the end of the fetch
cycle, the program counter contains

- PC = 2006H

‘During the execution cycle, the JMP 3000H loads the
program counter with the designated address: :

PC = 3000H

When the next fetch cycle begins, the next instruction
comes from 3000H rather than 2006H (see Fig. 11-3a).

JM

SAP-2 has wvo flags called the sign flag and the zero flag.
During the execution of some instructions, these flags will
be set or-reset, depending on what happens to the accu-
mulator contents. If the accumulator contents become

negative, the sign flag will be set; othcrwise, the sign flag
is cleared. Symbolically,

0

s=1{8

where S stands for sign flag. The-sign flag will remain set
or clear until another operation that affects the flag.

JM is a mnemonic for jump if minus; the computer will
jump to a designated address if and only if the sign flag is
set. As an example, suppose a JM 3000H is stored at
2005H. After this instruction has been fetched,

ifA=0
ifA<O0

PC = 2006H

If § = 1, the execution of JM 3000H loads the program
counter with

PC = 3000H

Since the program counter now points to 3000H, the next
instruction will come from 3000H. ,

If the jump condition is not met (S = 0), the program
counter is unchanged during the execution cycle. Therefore,
when the next fetch cycle begins, the instruction is fetched
from 2006H.

Figure 11-3b symbolizes the two possibilities for a JM
instruction. If the minus condition is satisfied, the comguter
jumps to 3000H for the next instruction. If the minus
condition is not satisfied, the program falls through to the
next instruction. '

JZ

The other flag affected by accumulator operations is the
zero flag. During the execution of some instructions, the
accumulator will become zero. To record this event, the
zero flag is set; if the accumulator contents do not go to
zero, the zero flag is reset. Symbolically,

0

2=

JZ is the mnemonic for jump if zero; it tells the computer
to jump to the designated address only if the zero flag is
set. Suppose a JZ 3000H is stored at 2005H. If Z = 1
during the exection of JZ 3000H, the next instruction is

fetched from 3000H. On the other hand, if Z = 0, the next
instruction will come from 2006H.

whenA # 0
whenA =0

JNZ

INZ stands for jump if not zero. In this case, we get a jump
when the zero flag is clear and no jump when it is set.
Suppose a INZ 7800H is stored at 2100H. If Z = 0, the
next instruction will come from 7800H; however, if Z =
1, the program falls through to the instruction at 2101H.

Chapter 11 sap2 179

IM, JZ, and INZ are called conditional jumps because
the program jump occurs only if certain conditions are
" satisfied. On the other hand, JMP is unconditional; once
this instruction is fetched, the execution cycle always jumps
the program to the specified address.

CALL and RET

A subroutine is a program stored in the memory for possible
use in another program. Many microcomputers have sub-
routines for finding sines, cosines, tangents, logarithms,
square roots, etc. These subroutines are part of the software
supplied with the computer.

CALL is the mnemonic for call the subroutine. Every
CALL instruction must include the starting address of the
desired subroutine. For instance, if a square-root subroutine
starts at address SO00H and a logarithm subroutine at
6000H, the execution of

CALL 5000H

will jump fo the square-root subroutine. On the other hand,
a

CALL 6000H

produces a jump to the logarithm subroutine.

RET stands for return. It is used at the end of every
subroutine to icll the computer to go back to the original
program. A RET instruction is to a subroutine as a HLT is
to a program. Both tell the computer that something is
finished. If you forget to use a RET at the end of a
subroutine, the computer cannot get back to the original
program and you will get computer trash.

When a CALL is executed in the SAP-2 computer, the
contents of the program counter are automatically saved in
memory locations FFFEH and FFFFH (the last two memory
locations). The CALL address is then loaded into the

CALL 5000H —
—_— -
5000H —
RET —

Fig. 11-4 CALL instruction.

180 Digital Computer Electronics

program counter, so that execution begins with the fi
instruction in the subroutine. After the subroutine is finishe
the RET instruction causes the address in memory locatic
FFFEH and FFFFH to be loaded back into the progr:
counter. This returns control to the original program.

Figure 11-4 shows the program flow during a subroutir
The CALL 5000H sends the computer to the subrouti
located at SO00H. After this subroutine has been complete
the RET sends the computer back to the instruction followi
the CALL.

CALL is unconditional, like JMP. Once a CALL h
been fetched into the instruction register, the computer w
jump to the, starting address of the subroutine.

More on Flags

The sign or zero flag may be set or reset during certa
instructions. Table 11-2 lists the SAP-2 instructions th
can affect the flags. All these instructions use the acc
mulator during the execution cycle. If the accumulator go
negative or zero while one of these instructions is beir
executed, the sign or zero flag will be set.

For instance, suppose the instruction is ADD C. TI
contents of the C register are added to the accumulat
contents. If the accumulator contents become negative
zero in the process, the sign or zero flag will be set.

A word about the INR and DCR instructions. Since the:
instructions use the accumulator to add or subtract 1 fro
the designated register, they also affect the flags. - F
instance, to execute a DCR C, the contents of the C regist
are decremented by sending these contents to the accum
lator, subtracting 1, and sending the result back to the
register. If the accumulator goes negative while the DC
C is executed, the sign flag is set; if the accumulator go«
to zero, the zero flag is set.

TABLE 11-2, INSTRUCTIONS
AFFECTING FLAGS

Instruction Flags Affected
ADD S,Z
SUB S, Z
INR S, Z
DCR S,Z
ANA S,Z
ORA S,Z
XRA S, Z
ANI S, Z
ORI S,z
XRI S,Z

EXAMPLE 11-5

Hand-assemble the following program starting at address .
2000H:

MVIC,03H

DCRC

1Z 0009H

IMP 0002H

HLT

SOLUTION

Address Contents Symbolic
2000H OEH MVI C,03H
2001H 03H
2002H ODH DCR C
2003H CAH JZ 2009H
2004H 09H
2005H 20H '
2006H C3H JMP 2002H
2007H 02H
2008H 20H

2000 76H HLT

EXAMPLE 11-6

In the foregoing program, how many times is the DCR
instruction executed?

SOLUTION

Figure 11-5 illustrates the program flow. Here is what
happens. The MVI C,03H instruction loads the C register
with 03H. DCR C reduces the contents to 02H. The contents
are greater than zero; therefore, the zero flag is reset, and
the JZ 2009H is ignored. The JMP 2002H returns the
computer to the DCR C instruction.

The second time the DCR C is executed, the contents
drop to O1H; the zero flag is still reset. JZ 2009H is again
ignored, and the JMP 2002H returns the computer to DCR
C.

The third DCR C reduces the contents to zero. This time
the zero flag is set, and the JZ 2009H jumps the program
to HLT instruction.

A loop is part of a program that is repeated. In this
example, we have passed through the loop (DCR C and JZ
2009H) 3 times, as shown in Fig. 11-5. Note that the
number of passes through the loop equals the number
initially loaded into the C register. If we change the first
instruction to

MVI C,07H

2000H: mMVIC, 03H

2002H: DCRC <+

Three
passes
through
loop

2000H: JZ 2009H —
2006H: JMP 2002H

[N)

2009H: HLT -~

Fig. 11-5 Looping.

the computer will loop 7 times. Similarly, if we wanted to
pass through the loop 200 times (equivalent to C8H), the
first instruction would be

MVI C,C8H

The C register acts like a presettable down counter. This
is why it is sometimes referred to as a counter.

The point to remember is this. We can set up a loop by
using an MVI, DCR, JZ, and JMP in a program. The
number loaded into the designated register (the counter)
determines the number of passes through the loop. If we
put new instructions inside the loop, these added instructions
will be executed X times, the number preset into the counter.

EXAMPLE 11-7

When you buy a microcomputer, you often purchase
software to do different jobs. One of the programs you can
buy is an assembler. The assembler allows you to write
programs in mnemonic form. Then the assembler converts
these mnemonics into machine language. In other words,
if you have an assembler, you no longer have to hand-
assemble your programs; the computer does the work for
you.

Show the assembly-language version of the program in
Example 11-5. Include labels and comments.

SOLUTION
Label Instruction Comment
MVI C,03H ;Load counter with decimal 3
REPEAT: DCR C ;Decrement counter
JZ END :Test for zero

‘JMP REPEAT :Do it again
END: HLT

Chapter 11 SAP-2 181

When you write a program, it helps to include your own
comments about what the instruction is supposed to do.
These comments jog your memory if you have to read the
program months later. The first comment reminds us that
we are presetting the down counter with decimal 3, the
second comment reminds us that we are decrementing the
counter, the third comment tells us: that we are testing for
zero before jumping, and the fourth comment tells us that
the program will loop back.

When the assembler converts your source program into
an object program, it ignores everything after the semicolon.
Why? Because that’s the way the assembler program is
written. The semicolon is a coded way to tell the computer
that your personal comments follow. (Remember the ASCI1
code. 3BH is the ASCII for a semicolon. When the assembler
encounters 3BH in your source programs, it knows com-
ments follow.)

Labels are another programming aid used with jumps
and calls. When we write an assembly-language program,
we often have no idea what address to use in a jump or
call instruction. By using a label instead .of a numerical
address we can write programs that make sense. to us. The
assembler will keep track of our labels and automatically
assign the correct addresses to them. This is a great
laborsaving feature of an assembler.

For instance, when the assembler converts the foregoing

program to machine language, it will replace JZ by CA (op
code of Table 11-1) and END by the address of the HLT
instruction. Likewise, it will replace JMP by C3 (op code)
and REPEAT by the address of the DCR C instruction.
The assembler determines the addresses of the HLT and
JMP by counting the number of bytes needed by all
instructions and figuring out where the HLT and DCR C
instructions will be in the final assembled program.
. All you have to remember is that you can make up any
label you want for jump and call instructions. The same
label followed by a colon is placed in front of the instruction
you are trying to jump to. When the assembler converts
your program into machine language, the colon tells it a
label is involved. '

One more point about labels. With SAP-2, the labels can
be from one to six characters, the first of which must be a
letter. Labels are usually words or abbreviations, but
numbers can be included. The following are examples of
acceptable labels:

REPEAT |
DELAY
RDKBD
A34
B12C3

The first two are words; the third is an abbreviation for

read the keyboard. The last two are labels that include
numbers. The restrictions on length (no more than six

182 Dbigital Computer Electronics

characters) and starting character (must be letter) are typical
of commercially available assemblers.

EXAMPLE 11-8

Show a program that multiplies decimal 12 and 8.

SOLUTION

The hexadecimal equivalents of 12 and 8 are OCH and
O8H. Let us set up a loop that adds 12 to the accumulator
during each pass. If the computer loops 8 times, the
accumulator contents will equal 96 (decimal) at the end of
the looping.

Here’s one assembly-language program that will do the
job:

Label Mnemonic Comment

MVI A,00H ;Clear accumulator
MVI B,0CH ;Load decimal 12 into B
MVI C,08H ;Preset counter with 8

REPEAT: ADD B ‘;Add decimal 12

: DCR C ;Decrement the counter

JZ DONE ;Test for zero
JMP REPEAT ;Do it again

DONE: HLT ;Stop it

The comments tell most of the story. First, we clear the
accumulator. Next, we load decimal 12 into the B register.
Then the counter is preset to decimal 8. These first three
instructions are part of the initialization before entering a
loop.

_ The ADD B begins the loop by adding decimal 12 to
accumulator, The DCR C reduces the count to 7. Since the
zero flag is clear, JZ DONE is ignored the first time through
and the program flow returns to the ADD B instruction.

You should be able to see what will happen. ADD B is
inside the loop and will be executed 8 times. After eight
passes through the loop, the zero flag is set; then the JZ
DONE will take the program out of the loop to the HLT
instruction.

Since 12 is added 8 times,

2+ 12+ 12+ 12+ 12+ 12+ 12+ 12 =96

(Because decimal 96 is equivalent to hexadecimal 60, the

accumulator contains 0110 0000.) Repeated addition like
this is equivalent to multiplication. In other words, adding
12 eight times is identical to 12 X 8. Most microprocessors
do not have multiplication hardware; they only have an
adder-subtracter like the SAP computer. Therefore, with
the typical microprocessor, you have to use some form of
programmed multiplication such as repeated addition.

EXAMPLE 11-9

Modify the foregoing multiply program by using a INZ
instead of a JZ.

SOLUTION

Look at this:

Label Mnemonic Comment

MVI A,00H :Clear accumulator
MVI B,0CH ;Load decimal 12 into B
MVI.C,08H :Preset counter with 8

REPEAT: ADD B ;Add decimal 12
DCR C ;Decrement the counter
JNZ REPEAT ;Test for zero
HLT ;Stop it '

This is simpler. 1t eliminates one JMP instruction and one
label. As long as the counter is greater than zero, the INZ
will force the computer to loop back to REPEAT. When
the counter drops to zero, the program will fall through the
INZ to the HLT.

EXAMPLE 11-10

Hand-asse}nble the foregoing program starting at address
2000H.

SOLUTION
Address Contents Symbolic
2000H 3EH MVI A,00H
2001H 00H
2002H 06H MVI B,0CH
2003H OCH
2004H OEH MVI, C,08H
2005H 08H
2006H 80H ADD B .
2007H ~ ODH DCR C
2008H - C2H JNZ 2006H
2009H 06H
200AH 20H
200BH 76H HLT

The first three instructions initialize the registers before the
multiplication begins. If we change the initial values, we
can multiply other numbers.

EXAMPLE 11-11

Change the multiplication part of the foregoing program
into a subroutine located at starting address FOO6H.

SOLUTION
Address Contents Symbolic
FOO6H 80H ADD B
FOO7H ODH DCR C
FOO8H C2H JNZ FO06H
FOO9H 06H
FOOAH FOH
FOOBH C9H RET

Here’s what happened. The initializing instructions depend
on the numbers we are multiplying, so they don’t belong
in the subroutine. The subroutine should contain only the
multiplication part of the program.

In relocating the program we mapped (converted) ad-
dresses 2006H-200BH to FOO6H-FOOBH. Also, the HLT
was changed to a RET tn» get us back to the original
program.

EXAMPLE 11-12

The multiply subroutine of the preceding example is used
in the following program. What does the program do?

MVI A,00H
MVIB,10H
MVIC,0EH -
CALL FOO6H
HLT

SOLUTION

Hexadecimal 10H is equivalent to decimal 16, and hexa-
decimal OEH is equivalent to decimal 14. The first three
instructions clear the accumulator, load the B register with
decimal 16, and preset the counter to decimal 14. The
CALL sends the computer to the multiply subroutine of the
preceding example. When the RET is executed, the accu-
mulator contents are EOH, which is equivalent to 224.

Incidentally. a parameter is a piece of data that the
subroutine needs to work properly. The multiply subroutine
located at FOO6H needs three parameters to work properly
(A, B, and C). We pass these parameters to the multiply
subroutine by clearing the accumulator. loading the B
register with the multiplicand, and presetting the C register
with the multiplier. In other words, we set A = O00H,
B = 10H, and C = OEH. Passing data to a subroutine in
this way is called register parameter passing.

Chapter 11 SAP-2 183

11-8 LOGIC INSTRUCTIONS

A microprocessor can do logic as well as arithmetic. What
follows are the SAP-2 logic instructions. Again, they are a
subset of the 8080/8085 instructions.

CMA

CMA stands for ‘‘complement the accumulator.”” The
execution of a CMA inverts each bit in the accumulator,
producing the 1’s complement.

ANA

ANA means to AND the accumulator contents with the
designated register. The result is stored in-the accumulator.
For instance,

ANA B
means to AND the contents of the accumulator with the

contents of the B register. The ANDing is done on a bit-by-
bit basis. For example, suppose the two registers contain

A = 1100 1100 (11-1)

and
B

1111 0001 (11-2)

The execution of an ANA B results in
A = 1100 0000

Notice that the ANDing is bitwise, as illustrated in Fig.
11-6. The ANDing is done on pairs of bits; A; is ANDed
with B,, A with By, As with Bs, and so on, with the result
stored in the accumulator.

Two ANA instructions are available in SAP-2: ANA B
and ANA C. Table 11-1 shows the op codes.

ORA

ORA is the mnemonic for OR the accumulator with the
designated register. The- two ORA instructions in SAP-2
are ORA B and ORA C. As an example, if the accumulator
and B regisgér contents are given by Eqs. 11-1 and 11-2,
then executing ORA B gives

A = 1111 1101

XRA

XRA means XOR the accumulator with the designated
register. The SAP-Z instruction set contains XRA B and

184 Digital Computer Electronics

[o]

[NEEERE
e vt
Lo i

oo oo o

Fig. 11-6 Logic instructions are bitwise.

XRA C. If the accumulator and B contents are given by
Egs. 11-1 and 11-2, the execution of XRA B produces

A = 0011 1i01

ANI

SAP-2 also has immediate logic instructions. ANI means
AND immediate. It tells the computer to AND the accumulator
contents with the byte that immediately follows the op code.
For instance, if

A = 0101 1110
the execution of ANI C7H will AND

10101 1110 with 1100 0111

to produce new accumulator contents of
A = 0100 0110

ORI

ORI is the mnemonic for OR immediate. The accumulator
contents are orRed with the byte that follows the op code.
If-

A = 0011 1000

the execution of ORI SAH will orR

0011 1000 with 0101 1010
to produce new accumulator contents of

0111 1010

XRI
XRIi means XOR immediate. If
A=0001 1100
the execution of XRI D4H will XOR
0001 1100 with 1101 0100

to produce

A= 1100 1000

11-7 OTHER INSTRUCTIONS

This section looks at the last of the SAP-2 instructions.
Since these instructions don’t fit any particular category,
they are being collected here in a miscellaneous group.

NOP

NOP stands for no operation. During the execution of a
NOP, all T states are do nothings. Therefore, no register
changes occur during a NOP.

The NOP instruction is used to waste time. It takes four
T states to fetch and execute the NOP instruction. By
repeating a NOP a number of times, we can delay the data
processing, which is useful in timing operations. For
instance, if we put a NOP inside a loop and execute it 100
times, we create a time delay of 400 T states.

HLT

We have already used this. HLT stands for halt. It ends
the data processing.

IN

IN is the mnemonic for input. It tells the computer to
transfer data from the designated port to the accumulator.
Since there are two input ports, you have to designate which
one is being used. The format for an input operation is

IN byte
For instance,

IN 02H

means to transfer the data in port 2 to the accumulator.

ouT

OUT stands for output. When this instruction is executed,
the accumulator word is loaded into the designated output
port. The format for this instruction is

OUT byte

Since the output ports are numbered 3 and 4 (Fig. 11-2),
you have to specify which port is to be used. For instance,

OUT 03H
will transfer the contents of the accumulator to port 3.

RAL

RAL is the mnemonic for rotate the accumulator left. This
instruction will shift all bits to the left and move the MSB

L MSB LSB ——J)

L‘ MSB LSB -—J

(a) b)
Fig. 11-7 Rotate instructions: (a) RAL; (b) RAR.

into the LSB position, as illustrated in Fig. 11-7a. As an
example, suppose the contents of the accumulator are

A=10110100
Executing the RAL will produce
A = 0110 1001

As you see, all bits moved left, and the MSB went to the
LSB position. :

RAR
RAR stands for rotate the accumulator right. This time,
the bits shift to the right, the LSB going to the MSB
position, as shown in Fig. 11-7b. If

A = 1011 0100

the execution of a RAR will result in

A = 0101 1010

EXAMPLE 11-13

The bits in a byte are numbered 7 to 0 (MSB to LSB).
Show a program that can input a byte from port 2 and
determine if bit 0 is a 1 or a 0. If the bit is a 1, the program
is to load the accumulator with an ASCIL Y (yes). If the
bit is a 0, the program should load the accumulator with
an ASCII N (no). The yes or no answer is to be sent to
output port 3.

SOLUTION
Label Mnemonic Comment
IN 02H ;Get byte from port 2
ANI 01H ;Isolate bit 0
JNZ YES ;Jump if bit 0 is a 1
MVI A,4EH ;Load N into accumulator
JMP DONE ;Skip next instruction
YES: MVI A,59H ;Load Y into accumulator
DONE: OUT 03H :Send answer to port 3
HLT

Chapter 11 SAP-2 185

The IN 02H transfers the contents of input port 2 to the
“accumulator to get

A = A7A6A5A4A3A2AlA0
The immediate byte in ANI OIH is
0000 0001

This byte is called a mask because its Os will mask or blank
out the corresponding high bits in the accumulator. In other
words, after the execution of ANI O1H the accumulator
contents are :

A = 0000 000A,

If A, is 1, the JNZ YES will produce a jump to the MVI
A,59H; this loads a 59H (the ASCII for Y) into the
accumulator. If A, is 0, the program falls through to the
MVI A,4EH. Thi§ loads the accumulator with the ASCII
for N. ‘

The OUT 03H loads the answer, either ASCII Y or N,
into port 3. The hexadecimal display therefore shows either
S9H or 4EH.

EXAMPLE 11-14

Instead of a parallel output at port 3, we want a serial
output at port 4. Modify the foregoing program so that it
converts the answer (S9H or 4EH) into a serial output at
bit 0, port 4.

SOLUTION
Lahel Mnemonic Comment

IN 02H
ANI 01H
JNZ YES
‘MVI A ,4EH
JMP DONE

YES: MVI1 A,59H

DONE: MVI C,08H ;Load counter with 8

AGAIN: OUT 04H ;Send LSB to port 4
RAR ;Position next bit
DCR C ;Decrement count
INZ AGAIN ;Test count
HLT :

In converting from parallel to serial data, the A, bit is sent
first, then the A, bit, then the A, bit, and so on.

186 Digital Computer Electronics

EXAMPLE 11-15

Handshaking is an interaction between a CPU and a
peripheral device that takes place during an I/O data transfer.

In SAP-2 the handshaking takes place as follows. After
you enter two digits (1 byte) into the hexadecimal encoder
of Fig. 11-2, the data is loaded into port 1; at the same
time, a high READY bit is sent to port 2.

Before accepting input data, the CPU checks the READY
bit in port 2. If the READY bit is low, the CPU waits. If °
the READY bit is high, the CPU loads the data in port 1.
After the data transfer is finished, the CPU sends a high
ACKNOWLEDGE signal to the hexadecimal keyboard en-
coder; this resets the READY bit to 0. The ACKNOWLEDGE
bit then is reset to low.

After you key in a new byte, the cycle starts over with
new data gning to the port 1 and a high READY bit to port
2. : .
-The sequence of SAP-2 handshaking is

1. READY bit (bit 0, port 2) goes high.

2. Input the data in port 1 to the CPU.

3. ACKNOWLEDGE bit (bit 7, port 4) goes high to reset
READY bit.

4. Reset the ACKNOWLEDGE bit.

Write a program that inputs a byte of data from port 1
using handshaking. Store the byte in the B register.

SOLUTION
Label Mnemonic Comment
STATUS: IN 02H :Input byte from port 2
ANI O1H ;Isolate READY bit

JZ STATUS ;Jump back if not ready -

IN O1H ;Transfer data in port 1

MOV B,A ;Transfer from A to B

MVI A,80H ;Set ACKNOWLEDGE bit
OUT 04H ;Output high ACKNOWLEDGE
MVI A,00H ;Reset ACKNOWLEDGE bit
OUT 04H ;Output low ACKNOWLEDGE
HLT

If the READY bit is low, the ANI O1H will force the
accumulator contents to go to zero. The JZ STATUS
therefore will loop back to IN 02H. This looping will
continue until the READY bit is high, indicating valid data
in port 1. . :

When the READY bit is high, the program falls through
the JZ STATUS to the IN O1H. This transfers a byte from
port 1 to the accumulator. The MOV sends the byte to the
B register.The MVI A,80H sets the ACKNOWLEDGE bit

(bit 7). The OUT 04H sends this high ACKNOWLEDGE
to the hexadecimal encoder where the internal hardware
resets the READY bit. Then the ACKNOWLEDGE bit is
reset in preparation for the next input cycle.

11-8 SAP-2 SUMMARY

This section summarizes the SAP-2 T states, flags, and
addressing modes.

T States

The SAP-2 controller-sequencer is microprogrammed with
a variable machine cycle. This means that some instructions
take longer than others to execute. As you recall, the idea
behind microprogramming is to store the control routines
in a ROM and access them as needed.

Table 11-3 shows each instruction and the number of T
states needed to execute it. For instance, it takes four T
states to execute the ADD B instruction, seven to execute
the ANI byte, eighteen to execute the CALL, and so on.
Knowing the number of T states is important in timing
applications.

Notice that the JM instruction has T states of 10/7. This
means it takes 10 T states when a jump occurs but only 7
without the jump. The same idea applies to the other
conditional jumps; 10 T states for a jump, 7 with no jump.

Flags

As you know, the accumulator goes negative or zero during
the execution of some instructions. This affects the sign
and zero flags. Figure 11-8 shows the circuits used in
SAP-2 to set the flags.

When the accumulator contents are negative, the leading
bit A7 is a 1. This sign bit drives the lower AND gate. When
the accumulator contents are zero, all bits are zero and the
output of the XOR gate is a 1. This XOR output drives the
upper AND gate. If gating signal L is high, the flags will

be updated to reflect the sign and zero condition of the -

accumulator. This means the Z,,; will be high when the
accumulator contents are zero; the Sr; 46 will be high when
the accumnulator contents are negative.

Not all instructions affect the flags. As shown in Table
11-3, the instructions that update the flags are ADD, ANA,
ANI, DCR, INR, ORA, ORI, SUB, XRA, and XRI. Why
only these instructions? Because the L, signal of Fig. 11-8
is high only when these instructions are executed. This is
accomplished by microprogramming an L, bit for each
instruction. In other words, in the control ROM we store a
high L bit for the foregoing instructions, and a low Ly bit
for all others.

Accumulator

D—_—- b QI ZeLac
—P Flzag
Q
} b QI SkLac
P> Flsag ~
Lg CLK a

Fig. 11-8 Setting the flags.

Conditional Jumps

As mentioned earlier, the conditional jumps take ten T
states when the jump occurs but only seven T states when
no jump take place. Briefly, this is accomplished as follows

During the execution cycle the address ROM sends the
computer to the starting address of a conditional-jump
microroutine. The initial microinstruction looks at the flags
and judges whether or not to jump. If a jump is indicated,
the microroutine continues; otherwise, it is aborted and the
computer begins a new fetch cycle.

Addressing Modes

The SAP-2 instructions access data in different ways. It.is
the operand that tells us how the data is to be accessed.
For instance, the first instructions discussed were

LDA address
STA address

These are examples of direct addressing because we specnfy
the address where the data is to be found.

Immediate addressing is different. Instead of giving an
address for the data, we give the data itself. For instance,

MVI A,byte
accesses the data to be loaded into the accumulator by using
the byte in memory that immediately follows the op code.
Table 11-3 shows the other immediate instructions.

An instruction like

MOV A,B

Chapter 11 sap-2 187

TABLE 11-3. SAP-2 INSTRUCTION SET

Instruction Op Code T States Flags Addressing Bytes

ADD B - 80 4 S,Z Register 1
ADD C 81 4 S,Z Register 1
ANA B A0 4 S,Z Register 1
ANA C Al 4 S, Z Register 1
ANI byte E6 7 S, Z Immediate 2
CALL address CD 18 None Immediate 3
CMA 2F 4 None Implied 1
DCR A 3D 4 S,Z Register 1
DCR B 05 4 S, Z Register 1
DCR C 0D 4 S,Z Register: 1
HLT 76 5 None — 1
IN byte DB 10 None Direct 2
INR A 3C 4 S,Z Register 1
INR B 04 4 S,Z Register 1
INR C 0C 4 S,Z Register 1
JM address FA 10/7 None Immediate 3
JMP address C3 10 None Immediate 3
INZ address -2 10/7 None Immediate 3
JZ address CA 10/7 None Immediate 3
LDA address 3A 13 None Direct 3
MOV A,B 78 4 None Register 1
MOV A,C 79 4 None Register 1
MOV B,A 47 4 None Register 1
MOV B,C 41 4 None Register 1
MOV C,A 4F 4 None Register 1
MOV C,B 48 4 None Register 1
MVI A byte 3E 7 None Immediate 2
MVI B, byte 06 7 None = Immediate 2
MVI C,byte 0E 7 None = Immediate 2
NOP 00 4 None . — 1
ORA B BO 4 S,Z Register 1
ORA C Bl 4 S,Z Register 1
ORI byte F6 7 S,Z Immediate 2
OUT byte D3 10 None Direct 2
RAL 17 4 None Implied 1
RAR IF 4 None Implied 1
RET C9 10 None Implied 1
STA address 32 13 None Direct 3
SUB B 90 4 S, Z Register 1
SUB C 91 . 4 S, Z Register 1
XRA B A8 4 S,Z Register 1
XRA C A9 4 S,Z Register 1
XRI byte EE 7 S, Z Immediate 2
is an example of register addressing. The data to be loaded Implied addressing means that the location of the data is
is stored in a CPU register rather than in the memory. contained within the op code itself. For instance,
Register addressing has the advantage of speed "because '
fewer T states are needed for this type of instruction. RAL

188 Digital Computer Electronics

tells us to rotate. the accumulator bits left. The data is in.

the accumulator; this is why no operand is needed with
implied addressing.

Bytes

Each instruction occupies a number of bytes in the memory.
SAP-2 instructions are either 1, 2, or 3 bytes long. Table
11-3 shows the length of each instruction. As you see,
ADD instructions are 1-byte instructions, ANI instructions
are 2-byte instructions, CALLSs are 3-byte instructions, and
so forth. ‘

EXAMPLE 11-16

SAP-2 has a clock frequency of 1 MHz. This means that
each T state has a duration of 1 ps. How long does it take
to execute the following SAP-2 subroutine?

Label Mnemonic Comment
MVI C.,46H ;Preset count to decimal 70
AGAIN: DCR C ;Count down
JNZ AGAIN ;Test count
NOP ;Delay
RET
SOLUTION

The MVI is executed once to initialize the count. The DCR
is executed 70 times. The JNZ jumps back 69 times and
falls through once. With the number of T states given in
Table 11-3, we can calculate the total execution time of
the subroutine as follows:

MVI: 1 XT X 1lpus= Tps
DCR: 70 X 4 X 1 ps = 280

INZ: 69 X 10 X 1 ps = 690 (jump)
INZ: IXT7X1lps= 7 (no jump)
NOP: I X4X1ps= 4
RET: I X 10X 1ps=_10

998 us = 1 ms

As you see, the total time needed to execute the subroutine
is approximately 1 ms.

A subroutine like this can produce a time delay of 1 ms
whenever it is called. There are many applications where
you need a delay.

According to Table 11-3, the instructions in the foregoing
subroutine have the following byte lengths:

Instruction | MVI | DCR | INZ | Nop | RET

Bytes |2|1]3]1}1

The total byte length of the subroutine is 8. As part of the
SAP-2 software, the foregoing subroutine can be assembled
and relocated at addresses FO10H to FO17H. Hereafter, the
execution of a CALL FOIOH will produce a time delay of
1 ms.

EXAMPLE 11-17

How much time delay does this SAP-2 subroutine produce?

Label Mnemonic Comment
MVI B,0AH :Preset B counter with
decimal 10
LOOPI: MVI C,47H :Preset C counter with
decimal 71
LOOP2: DCR C . ;Count down on C
JNZ LOOP2 ;Test for C count of zero
DCR B :Count down on B
JNZ LOOPI :Test for B count of zero
RET

SOLUTION

This subroutine has two loops. one inside the other. The
inner loop consists of DCR C and JNZ LOOP2. This inner
loop produces a time delay of

DCR C: 71 X 4 X 1 us = 284 ps ,
JNZ LOOP2: 70 X 10 X 1 us = 700 (jump)
INZ LOOP2: I X7Xlpus=_17 (no jump)

991 s

When the C count drops to zero, the program falls through
the INZ LOOP2. The B counter is decremented. and the
JNZ LOOPI sends the program back to the MVI C.47H.
Then we enter LOOP?2 for a second time. Because LOOP2
is inside LOOPI, LOOP2 will be executed 10 times and
the overall time delay will be approximately 10 ms.

Here are the calculations for the overall subroutine:

MVI BOAH: [X7 X lps= 7 s

MVI C47H: 10X 7 X 1lps= 70

LOOP2: 10 X 991 ps = 9910

DCR B: 10 X4 X lpus= 40

JNZ LOOPl: 9X 10X Ips= 90 (jump)
JNZ LOOPI: I X7 X lus= 7 (no jump)
RET: I X10X 1pus=_10

10,134 s = 10 ms
This SAP-2 subroutine has a byte length of

2+2+1+3+1+3+1=13

Chapter 11 SApP-2 189

It n be assembied and located at addresses FO20H to
FO2CH. From now on, a CALL F020H will produce a time
delay of approximately 10 ms.

By changing the first instruction to

MVI B,64H

the B counter is preset with decimal 100. In this case, the
inner loop is executed 100 times and the overall time delay
is approximately 100 ms. This 100-ms subroutine can be
located at addresses FO30H to FO3CH.

EXAMPLE 11-18

Here is a subroutine with three loops nested one inside the
other. How much time delay does it produce?

Label Mnemonic Comment
MVI A,0AH ;Preset A counter with
decimal 10
LOOP1: MVI B.64H :Preset B counter with
decimal 100
LOOP2: MVI C,47H ;Preset C counter with
decimal 71
LOOP3: DCR C ;Count down C
JINZ LOOP3 ;Test C for zero
DCR B ;Count down B
JNZ LOOP2 ;Test B for zero
DCR A ;Count down A
JNZ LOOPI1 ;Test A for zero
RET
SOLUTION

LOOP3 still takes approximately 1 ms to get through.
LOOP2 makes 100 passes through LOOP3, so it takes about
100 ms to complete LOOP2. LOOP1 makes 10 passes
through LOOP2; therefore, ii takes arcund 1 s to complete
the overall subroutine.)

What do we have? A 1-s subroutine. It will be located
in FO40H to FO52H. To produce a 1-s time delay, we
would use a CALL FO40H. '

By changing the initial instruction to

MVI A,64H

LOOPI will make 100 passes through LOOP2, which
makes 100 passes through LOOP3. The resulting subroutine
can be located at FO60H to FO72H and will produce a time
delay of 10 s.

Table 11-4 summarizes the SAP-2 time delays. With
these subroutines, we can produce delays from 1 ms to
10 s.

190 Digital Computer Electronics

TABLE 11-4. SAP-2 SUBROUTINES

Label Starting Address Delay Registers Used

DIMS FO10H 1 ms C
DIOMS FO20H- 10 ms B,C
D100MS F030H 100 ms B, C
DISEC FO40H . ls A,B,C
D10SEC A,B,C

FO60H 10 s

EXAMPLE 11-19

The traffic lights on a main road show green for 50 s,
yellow for 6 s, and red for 30 s. Bits 1, 2, and 3 of
port 4 are the control inputs to peripheral equipment that
runs these traffic lights. Write a program that produces time
delays of 50, 6, and 30 s for the traffic lights.

SOLUTION
Label Mnemonic Comment
AGAIN: MVI A,32H ;Preset counter with
* decimal 50
STA SAVE ;Save accumulator
‘ contents
MVI A,02H ;Set bit 1
. OUT 04H ;Turn on green light
LOOPGR: CALL DISEC ;Call 1-s subroutine
- LDA SAVE ;Load current A count
‘DCR A ;Decrement A count
- STA SAVE ;Save reduted A count
JNZ LOOPGR ;Test for zero
MVI A,06H ;Preset counter with
decimal 6
STA SAVE i :
MVI A,04H ;Set bit 2
OUT 04H ;Turn on yellow light
LOOPYE: CALL DISEC
LDA SAVE
DCR A
STA SAVE
JNZ LOOPYE
- MVI A,1EH ;Preset counter with
decimal 30
STA SAVE
MVI A,08H ;Set bit 3
OUT 04H ;Turn on red light
LOOPRE: CALL DISEC
LDA SAVE
DCR A
STA SAVE
JNZ LOOPRE
. JMP AGAIN
SAVE: Data

Let’s go through the green part of the program; the yellow
and red are similar. The green starts with MVI A,32H,
which loads decimal 50 into the accumulator. The STA
SAVE will store this initial value in a memory location
called SAVE. The MVI A,02H sets bit 1 in the accumulator;
then the OUT 04H transfers this high bit to port 4. Since
this port controls the traffic lights, the green light comes
on.
The CALL DISEC produces a time delay of 1 s. The
LDA SAVE loads the accumulator with decimal 50. The
DCR A decrements the count to decimal 49. The STA
SAVE stores this decimal 49. Then the JNZ LOOPGR
-takes the program back to the CALL DISEC for another
1-s delay.

The CALL DI1SEC is executed 50 times; therefore, the
green light is on for 50 s. Then the program falls through
the JNZ LOOPGR to the MVI A,06H. The yellow part of
the program then begins and results in the yellow light
being on for 6 s. Finally, the red part of the program is
executed and the red light is on for 30 s. The JMP AGAIN
repeats the whole process. In this way, the program is
controlling the timing of the green, yellow, and red lights.

EXAMPLE 11-20

. Middle C on a piano has a frequency of 261.63 Hz. Bit 5
of port 4 is connected to an amplifier which drives a
loudspeaker. Write a program that sends middle C to the
loudspeaker. -~

SOLUTION

* To begin with, the period of middle C is

What we are going to do is send to port 4 a signal like Fig.
11-9. This square wave is high for 1,911 s and low for
1,911 ps. The overall period is 3,822 us, and the frequency
is 261.63 Hz. Because the signal is square rather than
sinusoidal, it will sound distorted but it will be recognizable
as middle C. ' '

Here is a program that sends middle C to the loudspeaker.
Label Mnemonic Comment

LOOPI: OUT 04H :Send bit to speaker

MVI C,86H :Preset counter with decimal
134
LOOP2: DCR C ;Count down
JNZ LOOP2 ;Test count -
CMA ;Reset bit 5
NOP ;Fine tuning
NOP ;Fine tuning
JMP LOOP1 = ;Go back for next half cycle

.

. I<—— 3822 us
1911 us

Fig. 11-9 Generating middle C note.

The OUT 04H sends a bit (either low or high) to the
loudspeaker. The MVI presets the counter to decimal 134.
Then comes LOOP2, the DCR and JNZ, which produces
a time delay of 1,866 ps. The program then falls through
to the CMA, which complements all bits in the accumulator.
The two NOPs add a time delay of 8 ws. The JMP LOOPI1
then takes the program back. When the OUT 04H is
executed, bit 5 (complemented) goes to the loudspeaker.
In this way the loudspeaker is driven into the opposite state.
The execution time for both half cycles is 3,824 us, close
enough to middle C.
Here are the calculations for the time delay:

OUT 04H:

I X 10X lus = 10 us
MVI C,86H: IX7X1ps= 7
DCR C: 134 x4 X 1ps = 536
JNZ LOOP2: 133 X 10 X 1 us = 1,330
JNZ LOOP2: I X7 X 1ps= 7
CMA: I X4X 1ps= 4 -
2 NOPs: 2X4X 1lpus = 8
JMP LOOPI: I X10X 1ps=__10
: 1,912 ps

This is the half-cycle time. The period is 3,824 ps.

EXAMPLE 11-21

Serial data is sometimes called a serial data stream because
bits flow one after another. In Fig. 11-10 a ‘serial data
stream drives bit 7 of port 2 at a rate of approximately 600
bits per second. Write a program that inputs an 8-bit
character in a serial data stream and stores it in memory
location 2100H.-

SOLUTION

Since approximately 600 bits are received each second, the
period of each bit is

1
600z 1,667 ps

The idea will be to input a bit from port 2, rotate the
accumulator right, wait approximately 1,600 ws, then input
another bit, rotate the accumulato: right, and so on, until
all bits have been received.

Chapter 11 sap2 191

W bus

 ACKNOWLEDGE —a Hexadecimal 16
keyboard
encoder

33
3%
H'

0
READY input

;ACCUMU LATOR

N

7
SERIAL IN —] 2

] U

PC 16

16

i ¢

gd4d il

&
b d

ALU FLAGS

U

- OQutput 8 Hexadecimal
Dg" display

Output % seiaL our
port 7

Controlier/
sequencer

Y

CON

Fig. 11-10

Here is a program that will work:
Label Mnemonic Comment

MVI B,00H ;Load zero into B register
MVI C,07H ;Preset counter with decimal 7

~ BIT: IN 02H ;Input data
ANI 80H ;Isolate bit 7
ORA B ;Update character
RAR ;Move bits right

MOV B,A ;Save bits in B
MVI A,73H ;Begin a delay of 1,600 ps

DELAY: DCR A ;Count down A
JNZ DELAY ;Test A count for zero
DCR C ;Count down C
JNZ BIT ;Test C count for zero
IN 02H ;Input last bit
ANI 80H ;Isoiate bit 7
ORA B

STA 2100H ;Save character

192 Digital Computer Electronics

4 —> ACKNOWLEDGE

The first instruction clears the B register. The second
instruction loads decimal 7 into the C counter. The IN 02H
brings in the data from port 2. The ANI mask isolates bit
7 because this is the SERIAL IN bit from port 2. The ORA
B does nothing the first time through because B is full of
0s. The RAR moves the accumulator bits to the right. The
MOV B, A stores the accumulator contents in the B register.

MVI A,73H presets the accumulator with decimal 115."
Then comes a delay loop, DCR A and JNZ DELAY, that
takes approximately 1,600 ps to complete.

The DCR C reduces the C count by 1, and the INZ BIT
tests the C count for zero. The program jumps back to the
IN 02H to get the next bit from the serial data stream. The
ANI mask isolates bit 7, which is then orRed with the
contents of the B register; this combines the previous bit
with the newly received bit. After another RAR, the two
received bits are stored in the B register. Then comes
another delay of approximately 1,600 ps.

The program continues to loop and each time a new bit
is input from the serial data stream. After 7 bits have been

received, the program will fall through the JNZ BIT
instruction.

The last four instructions do the following. The IN 02H
brings in the eighth bit. The ANI isolates bit 7. The ORA
B combines this new bit with the other seven bits in the B
register. At this point, all received bits are in the accu-
mulator. The STA 2100H then stores the byte in the
accumulator at 2100H,

A concrete example will hcip. Suppose the 8 bits being
received are 57H, the ASCII code for W. The LSB is
received first, the MSB last. Here is how the contents of
the B register appear after the execution of the ORA B:

A = 1000 0000 (First pass through loop)

~ A = 1100 0000 (Second pass)
A = 11100000 (Third pass)
A = 01110000 (Fourth pass)
A = 1011 1000 (Fifth pass)
A = 01011100 (Sixth pass)
A =10101110 (Seventh pass)
A = 01010111 (Final contents)

Incidentally, the ASCII code only requires 7 bits; for this
reason, the eighth bit (A;) may be set to zero or used as a
parity bit.

GLOSSARY

assembler A program that converts a source program into
a machine-language program.

comment Personal notes in an assembly-language program
that are not assembled. They refresh the programmer’s
memory at a later date.

conditional jump A jump that occurs only if certain
conditions are satisfied.

direct addressing Addressing in which the instruction
contains the address of the data to be operated on.

Slag A flip-flop that keeps track of a changing condition
during a computer run.

hand assembling Translating a source -program into a
machine-language program by hand rather than computer.
handshaking Interaction between a CPU and a peripheral
device that takes place during an I/O operation. In SAP-2
it involves READY and ACKNOWLEDGE signals.
immediate addressing Addressing in which the data to be
operated on is the byte immediately following the op code
of the instruction.

implied addressing Addressing in which the location of
the data is contained within the mnemonic.

label A name given to an instruction in an assémbly-
language program. To jump to this instruction, you can use
the label rather than the address. The assembler will work

_ out the correct address of the label and will use this address

in the machine-language program.

mask - A byte used with an ANI instruction to blank out
certain bits.

register addressing ~ Addressing in which the data is stored
in a CPU register.

relocate 'To move a program or subroutine to another part
of the memory. In doing this, the addresses of jump
instructions must be converted to new addresses.
subroutine A program stored in higher memory that can
be used repeatedly as part of a main program.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. The controller-sequencer produces
words or microinstructions.

2. (control) A flag is a that keeps track of
a changing condition during a computer run. The
sign flag is set when the accumulator contents go
negative. The flag is set when the accu-

 mulator contents go to zero.

3. (flipflop, zero) In coding the LDA address and
STA address instructions, the byte of
the address is stored in lower memory, the
byte in upper memory.

4. (lower, upper) The JMP instruction changes the
program sequence by jumping to another part of the
program. With the JM instruction, the jump is exe-
cuted only if the sign flag is . With the
JNZ instruction, the jump is executed only if the
zero flag is

5. (set, clear) Every subroutmc must terminate with a
— instruction. This returns the program to
the instruction following the CALL. The CALL
instruction is unconditional; it sends the computer to
the starting address of a

6. (RET, subroutine) An assembler allows you to write
programs in mnemonic form. Then the assembler

Chapter 11 sar-2 193

lan-
fol-

converts these mucmonics into
guage. The assembler ignores the

isolate a bit; it does this because the ANI sets all
other bits to zero.

lowing a semicolon and assigns addresses to the 10. (mask) Handshaking is an interaction between a -
labels. Labels can be up to six characters the first and a peripheral device. In SAP-2 the
of which must be a bit tells the CPU whether the input data

7. (machine, comments, letter) Repeated addition is is valid or not. After the data has been transferred

one way to do . Programmed multiplica- into the computer, the CPU sends an
tion is used in most microprocessors because their bit to the peripheral device.
ALUs can only add and subtract. 11. (CPU, READY, ACKNOWLEDGE) The SAP—2

8. (multiplication) A parameter is a piece of data computer is microprogrammed with a

passed to a . When you call a subrou- machine cycle. This means that some instructions
tine, you often need to pass for the , take longer than others to execute.
- subroutine to work properly. 12. (variable) The types of addressing covered up to

9. (subroutine, parameters) A is used to now are direct, immediate, register, and implied.

PROBLEMS

11-1. Write a source program that loads the accumula- e. T
tor with decimal 100, the B register with deci- f. REPEAT
mal 150, and the C register with decimal 200. 11-9. Write a program that multiplies decimal 25 and

11-2. Hand-assemble the source program of the pre- 7 and stores the answer at 2000H. (Use the
ceding problem starting at address 2000H. : multiply subroutine located at FOO6H.)

11-3. Write a source program that stores decimal 50 at 11-10. 'Write a program that inputs a byte from port 1
memory location 4000H, decimal 51 at 4001H, and determines if the decimal equivalent is even
and decimal 52 at 4002H. or odd. If the byte is even, the program is to

11-4. Hand-assemble the source program in the pre- send an ASCII E to port 3; if odd, an ASCII O.
ceding problem starting at address 2000H. 11-11. Modify the foregging program so that it sends

11-5. Write a source program that adds decimal 68 and) the answer in serial form to bit O of port 4.

34, with the answer stored at memory location 11-12. Write a program that inputs a byte from port 1
5000H. using handshaking. Store the byte at address

11-6. Hand-assemble the preceding program starting at 4000H.
address 2000H. 11-13. Hand assemble the foregoing program starting at

11-7. Here is a program: address 2000H. _ :

11-14. Write a subroutine that produces a time delay of
. approximately 500 ps.
Label Mnemonic 11-15. Hand-assemble the ‘preceding program starting at
LOOP: MVI C,78H address 2000H.
DCR C 11-16. Write a subroutine that produces a time delay of
JNZ LOOP _ approximately 35 ms using a SAP-2 subroutine.
HLT " Hand-assemble this subroutine and locatc it at
starting address EOOOH.
_ , 11-17. Write a subroutine that produces a time delay of
a. How many times (decimal) is the DCR C 50 ms. (Use a SAP-2 subroutine.) Hand-assem-
executed? ble the program at starting address E100H.
b. How many times does the program jump to 11-18. Write a subroutine that produces a delay of 1
LOOP? min. (Use CALL FO60H.)
¢. How can you change the program to loop 210 11-19. Hand-assemble the preceding subroutine at start-
times? : ing addresses FOSOH.

11-8. Which of the following are valid labels? 11-20. The C note one octave above middle C has a
a. G100 " frequency of 523.25 Hz. Write a program that
b. UPDATE sends this note to bit 4 of port 4.

c. STIMES 11-21. Hand-assemble the foregoing program starting at
d. 678RED address 2000H.
194 _ Digital Computer Electronics

The SAP-3 computer is an 8-bit microcomputer that is
upward-compatible with the 8085 microprocessor. In this
chapter, the emphasis is on the SAP-3 instruction set. This
instruction set includes all the SAP-2 instructions of the
preceding chapter plus new instructions to be discussed.

Appendix 5 shows the op codes, T states, flags, and so
forth, for the SAP-3 instructions. In the remainder of this
chapter, refer to Appendix 5 as needed.

12-1 PROGRAMMING MODEL

All you need to know about SAP-3 hardware is the
programming model of Fig. 12-1. This is a diagram showing
the CPU registers needed by a programmer.

Some of the CPU registers are familiar from SAP-2. For
instance, the program counter (PC) is a 16-bit register that
can count from 0000H to FFFFH or decimal 0 to 65,535.
As you know, the program counter sends out the address
of the next instruction to be fetched. This address is latched
into the MAR.

CPU registers A, B, and C are the same as in SAP-2.
These 8-tit registers are used in arithmetic and logic
operations. Since the accumulator is only 8 bits wide, the
range of unsigned numbers is O to 255; the range of signed
2’s-complement numbers is — 128 to +127.

SAP-3 has additional CPU registers (D, E, H, and L)
for more efficient data processing. These 8-bit registers can
be loaded with MOV and MVI instructioris, the same as
the A, B, and C registers. Also notice the F register, which
stores flag bits S, Z, and others. .

Finally, there is the stack pointer (SP), a 16-bit register.
This new register controls a portion of memory known as
the stack. The stack and the stack pointer are discussed
later in this chapter.

Figure 12-1 shows all the CPU registers needed to
understand the SAP-3 instruction set. With this program-
ming model we can discuss the SAP-3 instruction set,
which is upward-compatible with the 8080 and 8085. At
the end of this chapter, you will know almost all of the
8080/8085 instruction set.

12-2 MOV AND MVI

The MOV and MVI instructions work the same as in SAP-
2. The only difference is more registers to choose from.
The format of any move instruction is

MOV regl, reg2
whereregl = A,B,C,D,E,H,orL
reg2 = A,B,D,D,E,H,orL

-
S—
m
L

Fig. 12-1 SAP-3 programming model.

195

The MOV instructions send- the data in reg2 to regl.
Symbolically, ‘ .

regl «reg2
where the arrow indicates that the data in register 2 is
copied nondestructively into register 1. At the end of the
execution
regl = reg2
For instance,

MOVL,A

copies A into L, so that

L=A
Similarly,
- MOV E,H
gives.
E=H

The immediate moves have the format of
MVI reg,byte

where reg = A, B, C, D, E, H, or L. Therefere, the
execution of

MVI D,0EH
will result in
D = OEH
Likewise,
MVI L,FFH
produces
L = FFH

What is the advantage of more CPU registers? As you
may recall, MOV and MVI instructions use fewer T states
“than memory-reference instructions (MRIs). The extra CPU
registers mean that we can use more MOV and MVI
instructions and fewer MRIs. Because of this, SAP-3
programs can run faster than SAP-2 programs; furthermore,
having more CPU registers for temporary storage simplifies
program writing.

196 Digital Computer Electronics

12-3 ARITHMETIC INSTRUCTIONS

Since the accumulator is only: 8 bits wide, its contents can
represent unsigned numbers from 0 to 255 or’signed 2’s
complement numbers from — 128 to + 127. Whether signed
or unsigned binary numbers are used, the programmer needs
to detect overflows, sums or differences that lie outside the
normal range of the accumulator. This is where the carry

flag comes in.

Carry Fiag' ' »
As shown in Fig. 6-7, a 4-bit adder-subtracter produces a
sum S55,S,S, and a carry. In SAP-1, two 74LS83s (equiv-

_ alent to eight full adders) produce an 8-bit sum and a carry.

In this simple computer, the carry is disregarded. SAP-3,
however, takes the carry into account.

Figure 12-2a shows the logic circuit used for the SAP-3
adder-subtracter. When SUB.is low, the circuit adds the A
and B inputs. If a final carry is generated, CARRY will be
high and CY will be high. If there is no final carry, CY is
low.) . .

On the other hand, when SUB is high, the circuit forms
the 2’s complement of B, which is then added to A. Because
of the final XOR gate,. a high CARRY out of the last full-

- adder produces a low CY. If no carry occurs, CY is high.

In summary,

_) CARRY
cr= {CARRY

for ADD instructions
for SUB instructions

During an add operation, CY is called a carry. During a
subtract operation, CY is referred to as a borrow.

The 8-bit sum S,5¢555,535,8,S, is stored in the accu-
mulator of Fig. 12-2b. The carry (or borrow) is stored in a
special flip-flop called the carry flag, designated CY in Fig.
12-2b. This flag acts like the next higher bit of the
accumulator. That is, '

CY =Ag

Carry-Flag Instructions
There are two instructions we can use to control the carry
flag. The STC instruction will set the CY flag if it is not
already set. (STC stands for set carry.) So, if

CY =0
the execution of a STC irstruction produces

CY = 1-

The other carry-flag instruction is the CMC, which stands
for complement the carry. When executed, a CMC com-

Ag Ag Ag Aq Ag Ay A, Ag
;R Bg - By B, By By B, B,
[[[. [[[I I
RRY ')
e FA H FfA H FA [FA | FA | FA [FA | FA
cy S5 - Se Ss S, S, S, S, So
(a)
cy Ayl ag | 45| Adl As] 4| A | 4

Fig. 12-2 (a) SAP-3 adder 2 subtracter; (b) carry flag and
accumulator.

plements the value of CY. If CY = 1, CMC produces a CY
of 0. On the other hand, if CY = 0, CMC results in a CY
of 1.

If you want to reset the carry flag and its current status
is unknown, you have to set it, then complement it. That
is, execution of

STC
CMC

guarantees that the final value of CY will be 0 if the initial
value of CY is unknown.

ADD Instructions

The format of the ADD instruction is
ADD reg

where reg = A, B, C, D, E, H, or L. This instruction
adds the contents of the specified register to the accumulator
contents. The sum is stored in the accumulator and the
carry flag is set or reset, depending on whether there is a
final carry or not.

For instance, suppose
E = 0000 1000

A = 1111 0001 and

The instruction

ADDE

(b)

produces the binary addition
11110001
+ 0000 1000
1111 1001

There is no final carry; therefore, at the end of the instruction
cycle,

CY =0 and A = 1111 1001
As another example, suppose
A = 1111 1111 and L = 0000 0001

Then executing an ADD L produces

11111111
+ 0000 0001

1 0000 0000

At the end of the instruction cycle

CY =1 and A = 0000 0000

ADC Instructions
The ADC instruction (add with carry) is formatted like this:

ADC reg

Chapter 12 sap3 197

where reg = A. B, C, D. E. H. or L. This instruction
adds the contents of the specified register plus the carry
flag to the contents of the accumulator. Because it includes
the CY flag. the ADC instruction allows us to add numbers
outside the unsigned 0 to 255 range or the signed — 128 to
+ 127 range.

As an example. suppose

A = 10000011

E = 0001 0010
and CY =1
The execution of
ADCE

produces the following addition:

1000 0011
0001 0010
+ 1

1001 0110
Therefore. the new accumulator and carry flag contents are

CcY =20 A = 1061 0110

SUB Instructions

The SUB instruction is formatted as
SUB reg

where reg = A. B. C. D. E. H. or L. This instruction will
subtract the contents of the specified register from the
accumulator contents; the result is stored in the accumulator.
If a final borrow occurs. the CY flag is set. If there is no
borrow. the CY flag is reset. In other words, during
subtraction the CY flag functions as a borrow flag.

For example, if

A = 0000 1111 and C = 0000 0001
then
SUBC
results in
0000 1111
— 0000 0001
0000 1110

198 Digital Computer Electionics

Notice that there is no final borrow. In terms of 2’s-
complement addition, the foregoing subtraction appears like
this:
0000 1111
+ 11111111
100001110

The final CARRY is 1, but this is complemented during
subtraction to get a CY of 0 (Fig. 12-2a). This is why the
execution of SUB C produces

CY =0 A = 00001110

Here is another example. If

A = 0000 1100 and C = 00010010

then a SUB C produces
0000 1100
— 0001 0010
111111010

Notice the final borrow. This borrow occurs because the
contents of the C register (decimal 18) are greater than the
contents of the accumulator (decimal 12). In terms of 2’s-
complement arithmetic, the foregoing looks like

0000 1100
+11101110

011111010

In this case, CARRY is 0 and CY is 1. The final register
and flag contents are

cYy =1 and A = 1111 1010

SBB Instructions

SBB stands for subtract with borrow. This instruction goes
one step further than the SUB. It subtracts the contents of
a specified register and the CY flag from the accumulator
contents. If '

A= 11111111
E = 00000010
and cYy =1

the instruction SBB E starts by combining E and CY to get
0000 0011 and then subtracts this from the accumulator as
follows: :)

INRTRENS!
— 00000011

11111100

The final contents are

CY=0 and A = 11111100

EXAMPLE 12-1

In unsigned binary, 8 bits can represent O to 255, whereas
16 bits can represent 0 to. 65,535. Show a SAP-3 program
that adds 700 and 900, with the final answer stored in the

H and L registers.

SOLUTION

Double bytes can represent decimal 700 and 900 as follows:

700, = 02BCH = 0000 0010 1011 1100,
900,, = 0384H = 00000011 1000 0100,

Here is how to add 700 and 900:

Label Instruction Comment .

MVI A,00H ;Clear the accumulator
MVI B,02H ;Store upper byte (UB) of
700
MVI C,BCH ;Store lower byte (LB) of

' 700
MVI D,03H ;Store UB of 900
MVI E,84H ;Store LB of 900
ADD C ;Add LB of 700
ADD E ;Add LB of 900
MOV LA ;Store partial sum
MVI A,00H ;Clear the accumulator
-ADC B ;Add UB of 700 with carry
ADD D ;Add UB of 900
MOV H,A ;Store partial sum
HLT ;Stop

The first five instructions initialize registers A through E.
The ADD C and ADD E add the lower bytes BCH and
84H; this addition sets the carry flag because

BCH =
+ 84H =

1011 1100,
1000 0100,

1 40H = 10100 0000,

The sum is stored in the L register and the final carry in

the CY flag.

Next, the accumulator is cleared. The ADC B adds the
upper byte plus the carry flag to get

00H = 0000 0000,
+ 02H = 0000 0010,

+ 1H =

1,

“03H = 00000011,

Then the ADD D produces

03H = 0000 0011,
+ 03H = 00000011,

06H = 00000110,

The MOV H,A stores this upper sum in the H régister.
So the program ends with the answer stored in the H and
L registers as follows:

H = 06H = 00000110,
and L = 40H = 0100 0000,

The complete answer is 0640H, which is equxvalent to
decimal 1,600.

12-4 INCREMENTS, DECREMENTS,
AND ROTATES

This section is about increment; decrement, and rotate
instructions. The increment and decrement are similar to
those of SAP-2, but the rotates are different because of the

carry flag.

Increment
The increment instruction appears as

INR reg

wherereg = A, B, C, D, E, H, or L. It works as prev1ously

 described. Therefore, given

L =00001111
the execution of INR L produces
| L = 0001 0000
The INR instruction has no effect on the carry flag, but,
as before, it does affect the sign and zero flags. For instance,
if
B = 1111 ilil
and the initial flags are
Ss=1 z=0 Cr=o0
then INR B produces

B = 0000 0000
§=0 Z=1 cY =0

Chapter 12 SAP-G* 199

As you see, the carry flag is unaffected even though the B
register overflowed. At the same time, the zero flag has
been set and the sign flag reset.

Decrement
The decrement is similar. It looks like
DCR reg
where reg = A, B, C, D, E, H, or L. If
E = 01110110
then a DCR E produces
E = 01110101

The DCR affects the.sign and zero flags but not the carry
flag.- This is why the initial values may be

E = 0000 0000
§=0 Z=1 Cr=0

Executing a DCR E results in

E = 11111111
§=1 Z=0 CY=0

Q CY e ms8 A

(a)

<4~ cYy msB A LsB —)

(b)
Fig. 12-3 (a) RAL; (b) RAR.

LS BD

Rotate All Left

Figure 12-3a illustrates the RAL instruction used in
SAP-3. The CY flag is included in the rotation of bits.
RAL stands for rotate all left, which is a reminder that all
. bits including the CY flag are rotated to the left.

If the initial values are

CY =1 A =.01110100
then executing a RAL instruction produces

CY=20 A = 11101001

200 Dbigital Computer Electronics

As you see, the original CY goes to the LSB position, and »

- the original MSB :goes to the CY flag.

Rotate All Right

The rotate—all-rig_ht instruction (RAR) rotates all bits in-
cluding the CY flag to the right, as shown in Fig. 12-3b.
If)

CY =1 A = 01110100
an RAR will result in
CY=20 A = 1011 1010

This time, the original CY goes to the MSB position, and
the original LSB goes into the CY flag.

D)

(a)

e

(b)

Fig. 12-4 (a) RLC; (b) RRC.

Rotate Left with Carry

Sometimes you don’t want to treat the CY flag as an
extension of the accumulator. In other words, you may not
want to rotate all bits. Figure 12-4a illustrates the RLC
instruction. The accumulator bits are rotated left, and the
MSB is saved in the CY flag. For instance, given

CYy =1 A = 01110100

executing an RLC produces

CY=0 A=11101000
Rotate Right with Carry

Figure 12-4b shows how the RRC instruction rotates the
bits. In this case, the accumulator bits are rotated right and
the LSB is saved in the CY flag. So, given

cYy=1 A = 01110100
an RRC will result in
CY=0 A = 00111010

. Multiply and Divide by 2

Example 11-14 showed a program where the RAR instruc-
tion was used in converting from parallel to serial data.
Parallel-to-serial conversion, and vice versa, is one of the
main uses of rotate instructions.

There is another use for rotate instructions. Rotating has
the effect of multijlying or dividing the accumulator contents
by a factor of 2. Specifically, with the carry flag reset, an
RAL has the effect of multiplying by 2, while the RAR
divides by 2. This can be proved algebraically, but it’s
much easier to examine a few specific examples to see how
it. works.

Suppose
| CY=90 A = 00000111
Then an RAL produces
CY=20 A = 00001110

The accumulator contents have changed from decimal 7 to
decimal 14. The RAL has multiplied by 2.
Likewise, if

CY=0 A = 00100001
then an RAL results in -
CY=0 A =01000010

In this case, A has changed from decimal 33 to 66.
RAR instructions have the opposite effect; they divide
by 2. If '

-

Ccy=0 A = 0001 1000

an RAR gives

CY=0 A = 0000 1100

The-decimal contents of the accumulator have changed from

decimal 24 to 12. ’
Remember the basic idea. RAL instructions have the

effect of multiplying by 2; RAR instructions divide by 2.

12-5 LOGIC INSTRUCTIONS

The SAP-3 logic instructions are almost the same as in
SAP-2. For instance, three of the logic instructions are

ANA reg
ORAreg-
XRA reg

where reg = A, B, C, D, E, H, or L. These instructions
will AND, OR, or XOR the contents of the specified register
with the contents of the accumulator on a bit-by-bit basis.

The only new logic instruction is the CMP, formatted as

CMP reg

where reg = A, B, C, D, E, H, or L. CMP-compares the
contents of the specified register with the contents of the
accumulator. The zero flag indicates the outcome of this
comparison as follows:

1
z-{s

SAP-3 carries out a CMP as follows. The contents of
the accumulator are copied in a temporary register. Then
the contents of the specified register are subtracted from
the contents of the temporary register. Since the ALU does
the subtraction, the zero flag is affected. If the 2 bytes
being compared are equal, the zero flag is set. If the bytes
are unequal, the zero flag is reset. Because the temporary
register is used, the accumulator contents are not changed
by a CMP instruction.

For example, if

if A = reg
if A # reg

A = F8H
. D = F8H
and Z =0

executing a CMP D results in

A = F8H
D = F8H
and Z=1

CMP has no effect on A and D; only the flag changes to
indicate that A and D are equal. (If they were not equal, Z
would be 0.)

CMP is a powerful instruction because it allows us to
compare the accumulator contents with the data in a specified
register. By following a CMP with a conditional zero jump,
we can control loops in a new way. Later programs will
show how this is done.

12-6 ARITHMETIC AND LOGIC
IMMEDIATES

~ So far, we have introduced these arithmetic and logic

instructions: ADD, ADC, SUB, SBB, ANA, ORA, XRA,
and CMP. Each of these has the accumulator as an implied
register; the data comes from a specified register (A, B, C,
D,E,H,orL).

Chapter 12 SAP-3 201

The immediate instructions from SAP-2 that carry over
to SAP-3 are ANI, ORI, and XRI. As you know, each of
these Has the format of

ANI byte
ORI byte
XRI byte

where the immediate byte is ANDed, ORed, or xORed with
the accumulator byte.)

Besides the foregoing, SAP-3 has these immediate in-
structions:)

ADI byte
ACI byte -
SUI byte
SBI byte
CPI byte

The ADI adds the immediate byte to the accumulator byte.
The ACI adds the immediate byte plus the CY flag to the
accumulator byte. The SUI subtracts the immediate byte
from the accumulator byte. The SBI subtracts immediate
byte and the CY flag from the accumulator byte. The CPI
compares the immediate byte with the accumulator byte; if
the bytes are equal, the zero flag is set; if not, it is reset.

EXAMPLE 12-2

Show a program that subtracts 700 from 900 and stores the
answer in the H and L registers.

SOLUTION

We need double bytes to represent 900 and 700 as follows:

900,, = 0384H = 00000011 1000 0100,
700, = 02BCH = 00000010 1011 1100,

Here’s the program for subtracting 700 from 900:
Comment

MVI A, 84H ;Load LB of 900

SUI BCH ;Subtract LB of 700

MOV LA ;Save lower half answer

MVI A, 03H ;Load UB of 900

SBI 02H ;Subtract UB of 700 with borrow
MOV H,A ;Save upper half answer

Label Instruction

The first two instructions subtract the lower bytes as follows:

1000 0100
— 1011 1100

1 1100 1000

202 Digital Computer Electronics

At this point,

CY =1 A = C8H
The high CY flag indicates a borrow. °

After saving C8H in the L register, the program loads
the upper byte of 900 into the accumulator. The SBI is
used instead of a SUI because of the borrow that occurred
when subtracting the bytes. The execution of the SBI gives

00000011
— 0000 0010
- 1

0000 0000

This part of the answer is stored in the H register, so that
the final contents are

H = 00H = 00000000,
L = C8H = 1100 1000,
12-7 JUMP INSTRUCTIONS

Here are the SAP-2 jump instructions that become part of .
the SAP-3 instruction set:

JMP address (Unconditional jump)
- JM address (Jump if minus)

JZ address (Jump if zero)

JNZ address (Jump if not zero)

Here are some more SAP-3 jump instructions.

JpP

IM stands for jump if minus. When the program encounters
a JM.address, it will jump to the specified address if the
sign flag is set.

The JP instruction has the opposite effect. JP stands for
Jump if positive (including zero). This means that

JP address

produces a jump to the specified address if the sign flag is
reset.

JC and JNC

The instruction

JC address

means to jump to the specified address if the carry flag is
set. In short, JC stands for jump if carry. Similarly,

JNC address

means to jump to the specified address if the carry flag is
not set. That is, jump if no carry.
Here is a program segment to illustrate JC and JNC:

Label Instruction Comment

MVI A ,FEH
ADI 01H
JNC REPEAT
MVI A,C4H
JC ESCAPE

REPEAT:

ESCAPE: MOV LA

The MVI loads the accumulator with FEH. The ADI adds
1 to get FFH. Since no carry takes place, the JNC takes
the program back to the REPEAT point, where a second
ADI is executed. This time the accumulator overflows to
get contents of 0OH with a carry. Since the CY flag is set,
the program falls through the JNC. The accumulator is
loaded with C4H. Then the JC produces a jump to the
ESCAPE point, where the C4H is loaded into the L register.

JPE and JPO

Besides the sign, zero, and carry flag, SAP-3 has a parity
flag designated P. During the execution of certain instruc-
tions (like ADD, INR, etc.), the ALU result is checked for
parity. If the result has an even number of 1s, the parity
flag is set; if an odd number of 1s, the flag is reset.

The instruction

JPE address

produces a jump to the specified address 'when the parity
flag is set (even parity). On the other hand,

JPO address

results in a jump when the parity flag is reset (odd parity).
For instance, given these flags,

S=1 Z=0 CY =90 P =1

the program would jump if it encountered a JPE instruction;
but it would fall through a JPO instruction.

Incidentally, we now have discussed all the flags in the
SAP-3 computer. For upward compatibility with the 8085

s|lz]lo}lolofer| o]cr

Fig. 12-5 F register stores ﬂags..

microprocessor, these flags are stored in the F register, as
shown in Fig. 12-5. For instance, if the contents of the F
register are

F = 0100 0101

then we know that the flags are

EXAMPLE 12-3

What does the following program segment do?

SOLUTION
Label Instruction Comment
MVI E,00H ;Initialize counter
LOOP:. INRE ;JIncrement counter
MOV AE ;Load A with E
CPI FFH ;Compare to 255
JINZ LOOP ;Go back if not 255

The E register is being used as a counter. It starts at 0. The
first time the INR and MOV are executed

A = OIH

After executing the CPI, the zero flag is 0 because 01H
and FFH are unequal. The JNZ then forces the program to
return to the LOOP point.

The looping will continue until the INR and MOV have
been ‘executed 255 times to get

A = FFH

On this pass through the loop, the CPI sets the zero flag
because the accumulator byte and the immediate byte are
equal. With the zero flag set for the first time, the program
falls through the JNZ instruction.

Do you see the point? The computer will loop 255 times
before it falls through the JNZ. One use of this program
segment is to set up a time delay. Another use is to insert
additional instructions inside the loop as follows:

Chapter 12 sar3 203

Label Instruction Comment

MVI E,00H
LOOP: -

IR E
MOV AE
CPI FFH
JNZ LOOP

The instructions at the beginning of the loop (symbolized
by dots) will be executed 255 times. If you want to change
the number of passes through the loop, modify the CPI
instruction as required.

12-8 EXTENDED-REGISTER
INSTRUCTIONS

Some SAP-3 instructions use pairs of CPU registers to
process 16-bit data. In other words, during the execution
of certain instructions, the CPU registers are cascaded, as
shown in Fig. 12-6. The pairing is always as shown: B
with C, D with E, and H with L. What follows are the
SAP-3 instructions that use register pairs. Throughout these
instructions, you will notice the letter X, which stands for
extended register, a reminder that register pairs are involved.

Fig. 12-6 Register pairs.

Load Extended Immediate

Since there are three register pairs (BC, DE, and HL), the
LXI instruction can appear in any of these forms:

LXIB,dble
LXID,dble .
“LXIH,dble

where B stands for BC
D stands for DE
H stands for HL

dble stands for double byte

The LXI instruction says to load the specified register pair
with the double byte. For instance, if we execute

LXI B,90FFH

204 Digital Computer Electronics

the B and C registers are loaded with the upper and lower
bytes to get

B = 90H
C = FFH

Visualizing B and C paired off as shown in Fig. 12-6, we
can write

BC = 90FFH

DAD Instructions

DAD stands for double-add. This instruction has three
forms:

DADB

DADD

DADH
where B stands for BC
D stands for DE
H stands for HL

The DAD instruction adds the contents of the specified
register pair to the contents of the HL register pair; the
result is then stored in the HL register pair. For instance,
given

BC = F521H
HL = 0003H

the execution of a DAD B produces
HL = F524H

As you see, F521H and 0003H are added to get F524H.
The result is stored in the HL register pair.

The DAD instruction affects the CY flag. If there is a
carry out of the HL register pair, the CY flag is set;
otherwise it is reset. As an example, if

DE = 0001H
HL = FFFFH

a DAD D will result in

HL = 0000H
CY =1

Incidentally, a DAD H has the effect of adding the data
in the HL register pair to itself. In other words, a DAD H
doubles the value of HL. If

HL = 1234H

aDADH ;esulls in
HL = 2468H

INX and DCX

INX stands for increment the extended register, and DCX
means decrement the extended register. The extended
increment instructions are

INX B
INXD
INXH

where B stands for BC
D stands for DE
H stands for HL

The DCX instructions have a similar format: DCX B, DCX
D, and DCX H.

The INX and DCX instructions have no effect on the
flags. For instance, if

BC = FFFFH
S:
Z=0
P=1
cYy=0

executing an INX B results in

BC = 0000H
=1
Z=0
P=1
CY=0

Notice that all flags are unaffected.

In summary, the extended register instructions are LXI,
DAD, INX, and DCX. Of the three register pairs, the HL
combination is special. The next section tells you why.

12-9 INDIRECT INSTRUCTIONS

As discussed in Chap. 10, the program counter is an
instruction pointer, it points to the memory location where
the next instruction is stored.

The HL register pair is different; it points to memory

locations where data is stored. In other words, SAP-3 has.

several instructions where the HL register pair acts like a
data pointer. The following discussion clarifies the idea.

Visualizing the HL Pointer

Figure 12-7a shows a 64K memory; it has 65,636 memory
registers or memory locations where data is stored. The

Moooon MooooH
Mooo1H Mooo1H
MooozH Mooo2H

| 20504 |—> Magson

IoHe | —] My

MerepH MeerpH

Meeren Mereen |-

Meepey Meppey
fa) . (b)

Fig. 12-7 (a) HL pointer; (b) pointing to 2050H.

first memory location is Mgggu, the next is Mggoi, and so
on. The memory location with address HL is My; .]

With some SAP-3 instructions, the contents of the HL
register pair are used as the address for data in memory.
That is, the contents of the HL register pair are sent to the
MAR, and then a memory read or write is performed. It’s
as though the HL register pair were pointing to the desired
memory location, as shown in Fig. 12-7a.

For instance, suppose

HL = 2050H

If HL is acting as a pointer, its contents (2050H) are sent
to the MAR during one T state. During the next T state,
the memory location whose address is 2050H undergoes a
read or write operation. As shown in Fig. 12-7b the HL
register pair points to the desired memory location.

Indirect Addressing

With direct addressing like LDA 5000H and STA 6000H,
the programmer knows the address of the memory location
because the instruction itself directly gives the address.
With instructions that use the HL pointer, however, pro-
grammers do not know the address; all they know is that
the address is stored in the HL register pair. Whénever an
instruction uses the HL pointer, the addressing is called
indirect addressing.

Indirect Read
One of the indirect instructions is

MOV reg,M

Chapter 12 sAP-3 2085

wherereg = A,B,C,D,E,H, orL
M = My

This instruction says to load the specified register with the
data addressed by HL. After execution of this instruction,
the designated register contains My .

For instance, if

HL = 3000H and Mpon = 87H
executing a
MOV C,M
produces
C = 87H
HL . HL

{ 9850H | —| cEH

[3000H [—] 87H

(a) (b)

HL A
| Esoon | —=| F2H

(c)
Fig. 12-8 Examples of indirect addressing.

Figure 12-8a shows how to visualize the MOV C,M. The
HL pointer points to 87H, which is the data to be read into
register C.

206 Digital Computer Electronics

As another example, if
HL = 9850H ahd Mgson = CEH
a MOV A,M results in
A = CEH
Figure 12-8b illustrates the MOV A,M. The HL pointer

points to CEH, which is the data to be loaded into the A
register.

Indirect Write

Here is another indirect MOV instruction:
MOV M,reg

where M = My,
reg = A,B,C,D,E,H,orL

This says to load the memory location addressed by HL
with the contents of the specified register. After execution

of this instruction,

My, = reg

As an example, if
HL = E300H
B = F2H

the execution of a MOV M,B produces
Mgspon = F2H

Figure 12-8c illustrates the idea.

Indirect-Immediate Instructions

Sometimes we want to write immediate data into the memory
location addressed by the HL pointer: The instruction to
use in this case is

MVI M,byte
Here is an example. If HL = 3000H, executing a

MVI M,87H

produces

M3000H = §7H

Other Pointer Instructions
Here are more instructions using the HL pointer:

ADDM
ADCM
SUBM
SBBM
INR M

DCRM
ANAM
ORAM
XRAM
CMPM

In each of these, M is the meimory location addressed by
HL. Think of M as another register where data is stored.
Each of the foregoing instructions operates on this data as
previously described.

EXAMPLE 12-4

Suppose 256 bytes of data are stored in memory between
addresses 2000H and 20FFH. Show a program that will
copy these 256 bytes at addresses 3000H to 30FFH.

SOLUTION

Label Instruction Comment
LXI H,IFFFH :Initialize pointer

LOOP: INX H :Advance pointer
MOV B.M :Read byte
MOV A H :Load 20H into accumulator
ADI 10H :Add offset to get 30H
MOV H.A :Offset pointer
MOV M.B :Write byte in new location
SuUl 10H :Subtract offset
MOV H.A :Restore H for next read
MOV AL :Prepare for compare
CP1 FFH :Check for 255
JNZ LOOP JIf not done, get next byte
HLT :Stop

This looping program transfers cach successive byte in the
2000H-20FFH area of memory into the 3000H-30FFH area
of memory. Here are the details.

The LXI initializes the pointer with address 1FFFH. The
first time into the loop. the INX will advance the HL pointer
to 2000H. The MOV B.M then reads the first byte into the
B register. The next three instructions

MOV A.H
ADI 10H
MOV H.A

offset the HL pointer to 3000H. Then the MOV M,B writes
the first byte into location 3000H. The next two instructions,
SUI and MOV, restore the HL pointer to 2000H. The MOV
A,L puts O0H into the accumulator. Because the CPI FFH
resets the zero flag, the JNZ forces the program to return
to the LOOP entry point.

On the second pass through the loop, the computer will
read the byte at 2001H and it will store this byte at 3001H.
The looping will continue with successive bytes being
moved from the 2000H-20FFH section of memory to the
3000H-30FFH area. Since the first byte is read from 2000H,
the 256th byte is read from 20FFH. After this-byte is stored
at 30FFH, the pointer is restored to 20FFH. The MOV A,L
then loads the accumulator to get '

A = FFH

This time, the CPI FFH will set the zero flag. Therefore,
the program will fall through the JNZ to the HLT.

12-10 STACK INSTRUCTIONS

SAP-2 has a CALL instruction that sends the program to a
subroutine. As you recall, before the jump takes place, the
program counter is incremented and the address is saved at
addresses FFFEH and FFFFH. The addresses FFFEH and
FFFFH are set aside for the purpose of saving the return
address. At the completion of a subroutine, the RET
instruction loads the program counter with the return
address, which allows the computer to get back to the main
program.

The Stack

A stack is a portion of memory set aside primarily for
saving return addresses. SAP-2 has a stack because addresses
FFFEH and FFFFH are used exclusively for saving the
return address of a subroutine call. Figure 12-9a shows
how to visualize the SAP-2 stack.

SAP-3 is different. To begin with, the programmer
decides where to locate the stack and how large to make
it. As an example, Fig. 12-9h shows a stack between
addresses 20EOH and 20FFH. This stack contains 32
memory locations for saving return addresses. Programmers
can locate the stack anywhere they want in memory, but
once they have set up the stack. they no longer use that
portion of memory for program and data. Instead, the stack
becomes a special space in memory, used for storing the
return addresses of subroutine calls.

Stack Pointer

The instructions that read and write into the stack are called
stack instructions; these include PUSH. POP, ‘CALL. and

Chapter 12 SAP-3 207

20EQH
|
Stack ; 32 iocations
|
20FFH
SAP-2 FFFEH
stack FFFFH
(a) (b)

Fig. 12-9 (;1) SAP-2 stack; (b) example of a stack; (c) stack
pointer addresses the stack; (d) SP points to 20FFH.

others to be discussed. Stack instructions use indirect
addressing because a 16-bit register called the stack pointer
(SP) holds the address of the desired memory location. As
shown in Fig. 12-9c¢, the stack pointer is similar to the HL
pointer because the contents of the stack pointer indicate
which memory location is to be accessed. For instance, if

SP = 20FFH

the stack pointer points to memory location Myoeey (see
Fig. 12-9d). Depending on the stack instruction, a byte is
then read from, or written into, this memory location.

To initialize the stack pointer, we can use the immediate
load instruction

LXI SP,dble
For instance, if we execute

LXI SP,20FFH -

" the stack pointer is loaded with 20FFH.

PUSH Instructions

The contents of the accumulator and the flag register are
known as the program status word (PSW). The format for
this word is

PSW = AF

where A = contents of accumulator
F = contents of flag register

The accumulator contents are the high byte, and the flag
contents the low byte. When calling subroutines, we usually
have to save the program status word, so that the main

208 Digital Computer Electronics

| sp |—=[Mg - | 20FFH | —[Mager

(c) ' (d)

program can resume after the subroutine is executed. We
may also have to save the contents of the other registers.

PUSH instructions allow us to save data in a stack. Here
are the four PUSH instructions:

PUSHB
PUSHD
PUSHH
PUSH PSW

where B stands for BC
D stands for DE
H stands for HL

PSW stands for program status word

When a PUSH instruction is executed, the following things
happen:

1. The stack pointer is decremented to get a new value
of SP — 1.

2. The high byte in the specified register pair is stored in
Mg .

3. The stack pointer is decremented again to get SP —
2.

4. The low byte in the specified register pair is stored i1
Mgp _ 5. ' ' ‘

Here is an example. Suppose

BC = 5612H
SP = 2100H

When a PUSH B is executed,

1. The stack pointer is decremented to get 20FFH.

2. The high byte 56H is stored at 20FFH (Fig. 12-10a
3. The stack pointer is again decremented to get 20FE]
4. The low byte 12H is stored at 20FEH (Fig. 12-10b;

SP

sp [20FEn |—[121
| 20FFH |—[s56H 56H
(a) (b}
sp
[20FAH | —[254 | 20FaH sp 25H | 20FAH 25H | 20FAH
9AH | 20FBH | 20F8H | —=| oaH | 20FBH sp 9AH | 20FBH
78H | 20FCH 78H | 20FCH [20FcH | —[784 | 20FcH
56H | 20FDH 56H | 20FDH , 56H | 20FDH -

34H | 20FEH 34H | 20FEH 34H | 20FEH
12H | 20FFH 12H | 20FFH 12H | 20FFH

(c) (d) _ (e)

Fig. 12-10 Push operations: (a) high byte first; (b) low byte’
second; (c¢) 6 bytes pushed on stack; (d) popping a byte off the
stack; (e) incrementing stack pointer.

Here’s another example. Suppose stores 9AH at 20FBH and 25H at 20FAH. Notice how the
stack builds. Each new PUSH shoves data onto the stack.
SP = 2100H
AF = 1234H
DE = 5678H POP Instructions
HL = 9A25H Here are four POP instructions:
then executing POPB
POPD "
PUSH PSW POP H
PUSHD POP PSW
PUSHH .
where B stands for BC
loads the stack as shown in Fig. 12-10c. The first PUSH D stands for DE
stores 12H at 20FFH and 34H at 20FEH. The next PUSH H stands for HL
stores 56H at 20FDH and 78H at 20FCH. The last PUSH PSW stands for program status word

Chapter 12 SAP-3 209

When a POP is executed, the following happens:

1. The low byte is read from the memory location
addressed by the stack pointer. This byte is stored in
the lower half of the specified register pair.

The stack pointer is incremented.

The high byte is read and stored in the upper half of
the specified register pair.

4. The stack pointer is incremented.

Rl

Here’s an example. Suppose the stack is loaded as shown
in Fig. 12-10c §vith the stack pointer at 20FAH. Then
execution of POP B does the following:

1. Byte 25H is read from 20FAH (Fig. 12-10c) and stored
in the C register.

2. The stack pointer is incremented to get 20FBH. Byte
9AH is read from 20FBH (Fig. 12-10d) and stored in
the B register. The BC register pair now contains

BC = 9A25H

3. The stack pointer is incremented to get 20FCH (Fig.
12-10e).

Efth time we execute a POP, 2 bytes come off the stack.
If we were to execute a POP PSW and a POP H in Fig.
12-10e, the final register contents would be

AF = 5678H
HL = 1234H

and the stack pointer would contain

SP = 2100H

CALL and RET

The main purpose of the SAP-3 stack is to save return
addresses automatically when using CALLs. When a

CALL address

is executed, the contents of the program counter are pushed

onto the stack. Then the starting address of the subroutine

is loaded into the program counter. In this way, the next

instruction fetched is the first instruction of the subroutine.

On completion of the subroutine, a RET instructien pops

the return address off the stack into the program counter.
Here is an example:

Address' Instruction
2000H LXI SP,2100H
2001H
2002H

210 Digital Computer Electronics

Address Instruction
2003H CALL 8050H
2004H
2005H
2006H MVI A,0EH
20FFH HLT
8050H
8059H RET

To begin with, LXI and CALL instructions take 3 bytes
each when assembled: 1 byte for the op code and 2 for the
data. This is why the LXI instruction occupies 2000H to
2002H and the CALL occupies 2003H to 2005H.

The LXI loads the stack pointer with 2100H. During the
execution of CALL 8050H, the address of the next instruc-
tion is saved in the stack. This address (2006H) is pushed
onto the stack in the usual way; the stack pointer is
decremented and the high byte 20H is stored; the stack
pointer is decremented again, and the low byte 06H is
stored (see Fig. 12-11a). The program counter is then
loaded with 8050H, the starting address of the subroutine.

When the subroutine is completed, the RET instruction
takes the computer back to the main program as follows.
First, the low byte is popped from the stack into the lower
half of the program counter; then the high byte is popped
from the stack into the upper half of the program counter.

SP
| 20Fen | —| o6H 06H
20H sp 20H
| 21000 | —=

(a) (b)

Fig. 12-11 (a) Saving a return address during a subroutine call;
(b) popping the return address during a RET. *°

After the second increment, the stack pointer is back at
2100H, as shown in Fig. 12-11b.
" The stack operation is automatic during CALL and RET
instructions. All we have to do is initialize the setting of
" the stack pointer; this is purpose of the LXI SP,dble
instruction. It sets the upper boundary of the stack. Then a
CALL automatically pushes the return address onto the
stack, and a RET automatically pops this return address off
the stack.

Conditional Calls and Returns
Here is a list of the SAP-3 conditional calls:

CNZ address
CZ address
CNC address
CC address
CPO address
CPE address
CP address
CM address

They are similar to the conditional jumps discussed earlier.
The CNZ branches to a subroutine only if the zero flag is
reset, the CZ branches only if the zero flag is set, the CNC
branches only if the carry flag is reset, and so forth.

The return from a subroutine may also be conditional.
Here is a list of the conditional returns:

RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

The RNZ will return only if the zero flag is reset, the RZ
returns only when the zero flag is set, the RNC returns
only if the carry flag is reset, and so on.

EXAMPLE 12-5

SAP-3 has a clock frequency of 1 MHz, the same as SAP-
2. Write a program that provides a time delay of approxi-
mately 80 ms.

SOLUTION
Label Mnemonic Comment

LXI SP,E000H :Initialize stack pointer
MVI E,08H :Initialize counter

LOOP: CALL F020H ;:Delay for 10 ms
DCR E :Count down
JNZ LOOP ;Test for 8 passes
HLT

You almost always use subroutines in complicated programs;
this means that the stack will be used to save return
addresses. For this reason, one of the first instructions in
any program should be a LXI SP to initialize the stack
pointer.

The 80-ms time delay program shown here starts with a
LXI SP,EO00H. This implies that the stack grows from
address DFFFH toward lower memory. In other words, the
stack pointer is decremented before the first push operation;
this means that the stack begins at DFFFH.

The remainder of the program is straightforward. The E
register is used as a counter. The program calls the 10-ms
time delay 8 times. Therefore, the overall time delay is
approximately 80 ms.

GLOSSARY

data pointer Another name for the HL register pair because
some instructions use its contents to address the memory.

extended register A pair of CPU registers that act like a
16-bit register with certain instructions.

indirect addressing Addressing in which the address of
data is contained in the HL register pair.

overflow A sum or difference that lies outside the normal
range of the accumulator.

pop To read data from the stack.

push To save data in the stack.

stack A portion of memory reserved for return addresses
and data.

stack pointer A 16-bit register that addresses the stack.
The stack pointer must be initialized by an LXI instruction
before calling subroutines.

‘ Chapter 12 sAap3 211

SELF-TESTING REVIEV’

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

mulator. If the two are equal, the zero flag is
. The CPI compares an immediate byte to
the contents of the

1. An___— s a sum or difference that lies out-
. i 6. (set, accumulator) JM stands for jump if
side the normal range of the accumulator. One way
S _ . The program will branch to a new address if the:
to detect an overflow is withthe _____~ flag. . o .

2. (overflow, carry) To reset the carry flag, you may With this i ftlag :s setthNZ meansbjumilf notl ze;o.
usean — followed by a CMC. STC stands ! 1s instruction, the program branches ony 1
for ______the carry flag. ‘ the - flag is reset.

3. (STC, set) The ADC instruction adds the 7. (minus, sign, zero) The LXI instruction is used to

: . . load register pairs. B is paired off with C, D with E,
flag and the contents of the specified register to the
‘ and Hwith - The HL register pair acts
contents of the . SBB stands for subtract . - . . .
. likea___- pointer withr some instructions.
with) This type of addressing is called
4. (carry, accumulator, borrow) The RAL rotates all yP . g . .
. . . 8. (L, data, indirect) The stack is a portion of memory
bitstothe ____ with CY going to the LSB. .
. . . - reserved primarily for return addresses. The stack
RRC rotates the accumulator bits to the right with the . . : .
. pointer is a 16-bit register that addresses the stack. It
LSB going to the carry .ﬂag. is necessary to initialize the stack pointer before
5. (left) The CMP instruction compares the contents of calling any subroutines
the designated register with the contents of the accu- g any ’
PROBLEMS

12-1. Write a program that adds decimal 345 and 753. 12-7. Suppose that 512 bytes of data are stored at ad-

(Use immediate bytes for the data.) ' dresses 6000H to 61FFH and write a program that
12-2. Write a program that subtracts decimal 456 from outputs these bytes to port 22H at a rate of ap-

983. (Use immediate data.) proximately 100 bits per second. (Use CALL
12-3. Suppose that 1,024 bytes of data are stored be- FO20H.)

tween addresses S000H and 53FFH. Write a pro- 12-8. A peripheral device is sending serial data to bit 7

gram that copies these bytes at addresses 9000H of port 21H at a rate of 1,000 bits per second.

to 93FFH. Write a program that converts any 8 bits in the
12-4. Show a program that provides a delay of approxi- serial data stream to an 8-bit parallel word, which

mately 35 ms. If you use the SAP subroutines of is then sent to port 22H. (Use CALL FO10H.)

Chap. 11, start your program with LXI SP,EO00H. 12-9. Suppose that 256 bytes are stored at addresses

12-5. Write a program that sends 1, 2, 3, . . . , 255 to
port 22 with a time delay of 1 ms between OUT
22 instructions. (Use a LXI SP,EO00H and a
CALL FO10H.)

12-6. Bytes arrive a port 21H at a rate of approx1mately
1 per millisecond. Write a program that inputs
256 bytes and stores them at addresses 8000H to
80FFH. (Use CALL FO10H.)

5000H to 50FFH and write a program that con-
verts each of these bytes into a serial data stream
at bit 0 of port 22H. Output the data at a rate of
approximately 1,000 bits per second. (Use CALL
FO10H.)

' The 8085

Intel Corporation introduced the 8080 in 1973. This 8-bit
microprocessor set off the microcomputer explosion now
taking place throughout the world. Although it was the
most popular microprocessor of the early 70s, it had several
disadvantages, such as needing two power supplies plus
externally generated clock and control signals. In other
words, the 8080 is not a CPU on a chip because the clock
and controller are on separate chips.

Intel’s 8085 is a 40-pin chip that is an enhanced version
of the 8080. The 8085 has almost the same instruction set
as the 8080, but it needs only one power supply (+5 V).
Furthermore, the 8085 includes its own on-chip clock and
control circuits. This means that the 8085 is truly a CPU
on a chip. It is an ideal microprocessor to study because
its principles are used in more advanced microprocessors.

Since the 8085 is only a CPU., it is necessary to connect
memory and [/O chips to get a microcomputer or micro-
processor-based system. As you will see later in this chapter,
a minimum system can be built with three chips. One of
these chips is the 8085. '

The complete chip number is 8085A. A faster version
of this basic chip is the 8085A-2. For simplicity. we will
use the designation 8085 for either chip. Only when
discussing specific differences will the complete numbers
8085A and 8085A-2 be used.

13-1 BLOCK DIAGRAM

Figure 13-1 shows the block diagram of the 8085. Refer to
this block diagram throughout the following discussion.
The drawing does not include the control signals driving
each register. As you know, three-state registers need load
and enable signals to communicate properly along a common
bus. Therefore, even though they are not shown, control
signals drive all the internal registers in Fig. 13-1.

Address, Data, and Control Buses

Near the top of the drawing is an 8-bit internal data bus.
This carries instructions and data between the CPU registers.

The external buses are the ones we have to connect to
other chips like memory, I/O, and so forth. Near the bottom
left of the drawing is the external control bus (RD, WR,
ALE, . . .). On the bottom right are the external address
and address-data buses.

The upper 8 address bits are on a separate bus always
used for address bits; this upper section of the address bus
is designated A s-Ag. The lower 8 bits are multiplexed.
This means that the eight lower bus lines are used for
address bits during some T states and for data bits during
other T states. This is why the bus is labeled address-data
bus, designated AD,—AD,. (Recall that SAP-1 and SAP-2
had a W bus; it was a multiplexed address-data bus.)

Why is multiplexing used in the 80857 Because at the
time this chip was developed, the practical limit on the
number of pins was 40. The only solution was to multiplex
part of the address bus with the data bus.

Accumulator

The accumulator is connected to the 8-bit internal data bus.
The bidirectional arrow between the accumulator and the
bus indicates a three-state connection that allows the ac-
cumulator to send or receive data. The two-state output of
the accumulator drives the ALU.

Temporary Register

The other input for the ALU comes from the temporary
register (Temp. Reg. in Fig. 13-1). This 8-bit register stores
the operands of arithmetic-logic operations. For instance,
during an ADD C the contents of the C register are copied
in the temporary register during one T state and added
during another 7T state.

ALU and Flags

The ALU carries out the arithmetic and logic operations.
As shown, the contents of the accumulator and the temporary
register are the inputs to the ALU. The ALU result then is
stored back in the accumulator.

213

INTA RST 6.5 TRAP

INTR I RSTS5 1 RST 75 j SID SOD
Serial 1/0
Interrupt control control

8-bit internal data bus

S O S SN |

®) ®) Fl () Instruction ®) B (@ c @
i kal ag . R . R .
Accumulator Temp. reg. flip-flops register eg. eg
- D (8) E (8)
. T U Reg. Reg.
. — H®e| L®
@ Instruction Reg. Reo. Register
Arithmetic decoder Stack (16) array
logic — and pointer
unit machine
. Program (16)
S (ALU) . _ovcle counter
- encoding
4 Incrementer/{16)
I decrementer
: address latch)
Power J 5 V-—> : - ‘
|
SUPPLY | GND—> Timing and control -)
Xy =] \
X CLK ‘ . (8) Address/ (8)
2= cen CONTROL STATUS DMA RESET Address buffer data buffer
cLK oUT RD WR ALE So S1 10M HLDA RESET OUT U’ @
. Aqs-Ag AD3-ADqy
READY HOLD RESETIN ADDRESS BUS 'ADDRESS/DATA BUS
Fig. 13-1 8085 block diagram, (Intel Corporation.)
You already know about four flags: zero, sign, carry, ° the instructions. After each instruction is fetched and stored
and parity. The 8085 includes a fifth flag, called the auxiliary in the instruction register, the op code is decoded to get
carry flag. It is used in BCD operations to be described the starting address of the desired microroutine. As each

later. ' microinstruction is read out of the control ROM, control

4 : signals are sent to the internal and external data buses. The
effect is to move data between registers, to perform
arithmetic-logic operations, to input or output data, etc.
During the fetch cycle, the op code of an instruction is The control ROM is sometimes called the control store.
stored in the instruction register. This op code then drives) ‘ '
the instruction decoder and machine-cycle encoder.’

Instruction Register and Decoder

CPU Registers C

Notice the array of CPU registers (B, C, D, etc.). This

T g and Control register array is like a small on-chip RAM with addressable

The nming and control section of Fig. 13-1 includes an: memory locations. Control signals select the register for a
oscillator and a controller-sequencer. The oscillator gen- read or write operation. This means that the CPU can either
erates the two-phase clock signals (CLK and CLK) that load a register from the 8-bit internal data bus or output
synchronize all registers. The controller-sequencer also the register contents to this data bus.
procuces the control signals needed for internal and external Included in the register array are the stack pointer,
control. , program counter, and incrementer-decrementer. The incre-
The controller-sequencer is microprogrammed; it has a menter-decrementer can add 1 or subtract 1 from the contents
ROM that stores all the microroutines needed for executing of the stack pointer or program counter.

214 Digital Computer Electronics

Address Buffer and Address-Data Buffer

At the bottom right are two buffer registers called the
address buffer and the address-data buffer. The contents
of the stack pointer or program counter can be loaded into
the address buffer and address-data buffer. The output of
these buffers then drives the external address bus. and
address-data bus. Memory and I/O chips (not shown) are
connected to these buses. In this way, the CPU can send
the address of desired data to the memory or I/O chips.

The 8-bit internal data bus is also connected to the
address-data buffer. The bidirectional arrow indicates a
three-state connection that allows the address-data buffer
to send or receive data from the 8-bit internal data bus.

Interrupt Control

Sometimes it is necessary to interrupt the execution of the
main program to answer a request from an 1/O device. For
instance, an I/O device may send an interrupt signal to the
interrupt control unit (top left of Fig. 13-1) to indicate that
data is ready for input. The computer temporarily stops
what it is doing, inputs the data, then returns to what it
was doing. '

The interrupt concept is analogous to your reading a
book (main program), hearing the phone (interrupt), an-
swering the phone (servicing the interrupt), then returning
to your reading -(main program).

Chapter 14 is about interrupts, how the 8085 handles
them, what program instructions are used, and so on.

Serial I/0 Control

Sometimes, I/O devices work with serial data rather than
parallel. In this case, the serial data stream from an input
device must be converted to 8-bit parallel data before the
computer can use it. Likewise, the 8-bit data out of a
computer must be converted to serial form before a serial
output device can use it. ,

The SID input at the upper right of Fig. 13-1 is where
serial input data enters the 8085. The SOD output is where
the serial data leaves the 8085. Two new instructions known
as SIM and RIM allow us to perform the serial-parallel
conversions needed for serial /O devices. More is said
about these instructions in Chap. 14.

13-2 PINOUT DIAGRAM

Figure 13-2 is the pinout diagram for the 8085. To use the
8085 in a microprocessor-based system you need a general
idea of what each pin does. What follows is a brief
description of each pin.

X, g1 40 3 Ve
X, 02 39 QHoLD
RESETOUTOQ 3 38 [J HLDA
sop 4 37 QJ cLk (ouT)
sipOs 36 3 RESET IN
TRAP [} 6 35 [J READY
RST7507 34 10Mm
RST65[]8 3PS,
RST550 9 320 RD
INTR 0 10 31 A WR
. INTA O M 30 QALE
ADy [12 295,
AD, Q13 2800 A
AD, [14 270 Ay,
AD; O 15 26 [0 A,
AD, 16 25 A,,
ADg O 17 240 Ay,
ADg [18 23 Ay,
AD, Q19 22 1 Aqg
Vss O 20 21 Ag

Fig. 13-2 8085 pinout.

Pins 1 and 2

Oscillators are crystal-, LC-, or RC-controlled. The 8085
has an on-chip oscillator with all the required circuitry
except for the crystal, LC tank, or RC network that controls
the frequency. This is the purpose of pins 1 and 2; you
connect a crystal, LC circuit, or RC network to-X, and X,.
In typical microcomputers a crystal is used for its frequency
stability.

Pin 3

This pin carries the RESET OUT signal. When high, it
indicates that the CPU is being reset; that is, the program
counter, instruction register, and so on, are being reset to
zero. The RESET OUT signal goes to peripheral chips.
When you first power up, the whole system including the

8085 and peripheral chips is reset or initialized. After the
RESET OUT goes low, the processing begins.

Pins 4 and 5

SOD stands for -serial out data. Later, you will see a
program that converts accumulator data into a serial data
stream. This serial data comes out of pin 4, which can be
connected to a serial output device.

SID stands for seriai in data. Pin 5 is the input pin for
serial -data. Later, you will see instructions that convert
serial input data to 8-bit form.

Pins 6to 11

These pins are part of the interrupt control unit. The 8085
has five inputs for interrupt requests (analogous to the phone

Chapter 13 Thesoss 215
y

ringing. someone knocking, the bathtub overflowing. etc.).
As will be discussed in Chap. 14, a priority exists among
the interrupt pins; some are more important than sthers. In
order of their importance the five interrupt signals are
designated TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR.
If two or more interrupts go high at the same time. the
8085 will service them in order of their importance (TRAP
first, RST 7.5 second, and so on).

Pins 6 to 10 are input pins for the interrupt signals. Pin
I'l, however, is an output pin with a signal called the in-
terrupt acknowledge (INTA). This particular signal is used
in response to an /NTR interrupt. More about this in Chap.
14. o

Pins 12 to 28

Pins 12 to 19 carry the lower 8 address bits or the 8 data

bits. As mentioned earlier. the lower half of the address -

bus is multiplexed with the data bus to keep the pin count
at 40. Pin 20. labeled V. is the system ground. Pins 21
to 28 are the rest of the address bus.

Pins 29 and 33

Pins 29 and 33 carry output signals known as status signals.
Labeled S, and S,. these status signals (and the 10/M signal)
indicate whether an instruction fetch. memory read. memory
write, or other operation is taking place.

Pin 30

The 8085 is a microprocessor (sometimes abbreviated pP).
To work properly. it needs one or more memory chips
connected to it. Each memory chip has its own MAR.
usually called an address latch. This latch stores the
incoming address from the address bus and address-data
bus.

" At what point in the machine cycle does a memory chip
store the incoming address? This is where the ALE signal
comes in. ALE stands for address latch enable. The ALE
signai comes out of pin 30 and goes to peripheral chips
such as memory'chips. The falling edge of the ALE signal
strobes (loads) the address on the address bus and address-
data bus into the MAR or address latch of the memory
chips.

Pins 31, 32, and 34

These three pins function together. They are connected to
memory and I/O chips. To begin with. pin 34 carries the
10/M signal. A low /O/M indicates a memory operation.
and a high /O/M means that an /O instruction is being
executed. In other words. a low JO/M signal enables the
memory chips. and a high /O/M enables the /O chips.
The WR and RD determine whether a write or a read is
done. Since these signals are active low. a low WR means

216 Digital Computer Electronics

a write operation and a low RD means a read operation.
(They are never both low at the same time.)

As an example, during a memory read, /O/M goes low,
WR goes high. and RD goes low. When an OUT instruction
is executed, /O/M goes high, WR goes low, and RD goes
high. '

Pin 35

Some peripheral devices are slow: they are unable to run
at the same speed at the 8085. One way to slow down the
8085 is with the READY signal (pin 35).

Here is the idea. The 8085 addresses a peripheral device
as the first step’ in sending or receiving data from that
device. If the device is not ready. it wiil return a low
READY bit to the 8085. The 8085 then generates a number
of nop T states (called WAIT states). Eventually, when the
peripherat device is ready. it will send a high READY signal
to the 8085. Then the 8085 can complete the data transfer.
(The action is a form of handshaking, described in Chap.
1)

Pins 36 and 37

Pin 36 is an input carrying the RESET IN signal. This signal
may- come from an operator reset button or other source.
When RESET IN is low, the CPU will reset the program
counter, instruction register. and other circuits. It also sends
a high RESET OUT to pin 3. as previously described. The
CPU remains in reset until the RESET IN signal goes high.
Then the data processing begins.)

The CLK signal out of pin 37 is derived from the on-
chip oscillator. CLK is the system clock: each cycle
represents one 7T state. The CLK signal goes to peripheral
chips and synchronizes their timing.

Pins 38 to 40

The IN instruction is the usual way to input data from
peripheral devices. The accumulator is involved because it
receives the input data. Similarly, the OUT instruction
transfers data from the accumulator to output devices. In
either case, going through the accumulator slows down
1/O transfers.

The solution to speeding up memory-peripheral transfers
is called direct memory access (DMA). In this approach,
the 8085 turns over control of the buses to a DMA controller,
a chip optimized for high-speed memory transfers. The
HOLD and HLDA signals (pins 39 and 38) are used in
DMA operations. With the DMA approach. largc amounts
of data can be transferred in a short time. Chapter 14
discusses this in more detail.

Pin 40 is last pin. It connects to a source of +5 V. The
tolerance on the supply voltage is =5 percent. The power
dissipation-is less than 1.5 W.

13-3 DRIVING THE X, AND X,
INPUTS :

The data sheet of an 8085A specifies these limits on the
clock frequency:

Swin = 500 kHz f.. = 3.125 MHz
This means that the manufacturer guérantees correct oper-
ation only when the clock frequency is greater than 500

kHz and less than 3.125 MHz. (The 8085A-2 is a bit faster:
500 kHz to 5 MHz.)

J Q [
X
j[—j—-bo—ﬂ—o
- K a ¢,
[2]x
|-
37
cLK (ouT) —{]
(a)
1 1 '
==
115 pF
L c m‘* 10 kQ
2d 16 | 20 pF 2
(b) fc)

Fig. 13-3 (a) Crystal-driven; (b) LC tank; (¢) RC network.

Divide-by-2

When a crystal is connected to the X, and X, inpuis. as
shown in Fig. 13-3q, it determines the frequency of the
on-chip oscillator. The oscillator output from the Schmitt
trigger drives a flip-flop that produces two clock signals,
&, and &, (equivalent to CLK and CLK). These signals
drive the internal 8085 circuits. The CLK signal also goes
to pin 37 to drive peripheral chips. '

Because the flip-flop divides by 2, the clock frequency
is half the driving frequency of the timing element. For
instance, a 6-MHz crystal will produce a 3-MHz clock. In
general, the frequency of the driving network connected to
the X,-X, inputs must be twice the desired clock frequency.

As mentioned earlier, the typical microcomputer uses a
crystal because it provides a stable driving frequency. This
ensures a fixed clock period, needed for accurate time
delays.

LC Drive

You can use an LC-resonant tank instead of a crystal. This
saves money and is all right in applications where a
frequency tolerance of 10 percent is acceptable. Figure
13-3b shows how to connect the LC tank. The input
capacitance C;, is approximately 15 pF, and the resonant
frequency is given by

1
f= 2 VL + Cy)

The manufacturer recommends that C be greater than 30
pF to minimize frequency variations caused by Cj, (it
changes with temperature). Because of the divide-by-2

" action described earlier, the clock frequency is half the

resonant frequency.

RC Network

When an RC network is used to drive the X;-X, terminals,
the clock frequency has wide variations over the temperature
and voltage range specified by the manufacturer. For this
reason the manufacturer recommends the RC clock driver
shown in Fig. 13-3c. This RC circuit results in driving
frequency of approximately 3 MHz, which means a nominal
clock frequency of 1.5 MHz. This way, the wide drifts in
clock frequency will not exceed the 3.125-MHz limit of
the 8085A.

' 13-4 NEW INSTRUCTIONS

The 8085 includes all the SAP-3 instructions. In addition,
here are some new ones.

XCHG
The instruction

XCHG

will exchange the contents of the HL and DE register pairs.
For instance, if

DE = 1234H
HL = 5678H

then execution of an XCHG results in

'DE = 5678H
HL = 1234H

Chapter 13 The8085 217

STAX
The STAX instruction has two forms:

STAX B
STAX D

where B stands for BC, and D for DE. This indirect
instruction loads the contents of the accumulator into the
memory locationi addressed by the specified register pair.
In other words, the BC register pair or the DE register pair
acts like a pointer. ’

As an example, if

A = FFH
- BC = 2000H

execution of an STAX B will produce
MZOOOH = FFH

In this case, the BC register pair acts like a pointer, as
shown in Fig. 13-4a.

LDAX

LDAX is similar to STAX, except the addressed contents
of memory are loaded into the accumulator. Either LDAX
B or LDAX D may be used. If

DE = 3000H
Mip00u = 4CH

then execution of LDAX D results in

A = 4CH

This time, the DE register pair acts like a pointer (Fig.
13-4b).

LHLD
The format of this instruction is

LHLD address
This instruction will load the HL register pair with two
successive bytes starting with the specified address. The
low byte from the specified address goes into the L register;

the high byte from the next address goes into the H register.
For instance, given :

M,y = 00H and M,;3s: = S0H
as shown in Fig. 13-4c, an LHLD 1234H produces

HL = 5000H

SHLD

This is similar to the LHLD, except that the 2 bytes in the
HL register pair are stored at the specified address and the
next higher address. If

HL = 47F9H
an SHLD 6200H results in
and

Mg,00n = FOH Mg = 47H

Figure 13-4d illustrates this example.

BC DE

FFH | 3000H | —

4CH

00H 1234H F9H 6200H

[zo00n] —+

50H 1235H 47H 6201H

fa) (b)

Fig. 13-4 (a) STAX; (b) LDAX; (c) LHLD: (d) SHLD.

218 Digital Computer Electronics

fc) (d)

sP P
[21004 | —[344 | 21004 | —=| FFH
12H 90H
78H 78H
56H 56H
BCH BCH
9AH 9AH
(a) (b)

Fig. 13-5 XTHL.

PCHL

JMP is an unconditional jump instruction. Here is another
unconditional jump:

PCHL

When this instruction is executed, the contents of the HL
register pair are loaded into the program counter. For
example, if

PC = 2000H and HL =2090H
a PCHL results in
PC = 2090H

Therefore, the next instruction cycle will fetch the instruction
at address 2090H:

SPHL

The SPHL instruction loads the contents of the HL register
pair into the stack pointer. Given

SP = 2200H and HL = 2075H
execution of a SPHL produces
SP = 2075H

XTHL

The XTHL instruction exchanges the contents of the HL
register pair with the 2 bytes at the top of the stack. Here

is an example. Suppose the stack pointer is at 2100H, as
shown in Fig. 13-5a. The 2 bytes at the top of the stack
are 34H (low byte) and 12H (high byte). If

HL = 90FFH
executing an XTHL will result in
HL = 1234H

and the top of the stack will contain FFH and 90H, as
shown in Fig. 13-5b. The XTHL preserves the contents of
the stack pointer; in Fig. 13-5b the stack pointer contains
2100H after the XTHL is executed.

13-5 THE DAA INSTRUCTION

In some applications, BCD numbers are processed. Because
BCD numbers are different from binary numbers, a problem
arises when we try to add them. This section describes the
problem and its solution.

Sums Greater than 9

Given decimal 539, each digit is encoded into its equivalent
nibble:

5 3 9

R
0101 0011 1001

The largest possible nibble is 1001; combinations like 1010,
1011, 1100, 1101, 1110, and 1111 do not exist in the BCD
code. In other words, nibbles 1010 to 1111 are forbidden
in BCD processing. Because of this, we run into a problem
when trying to add BCD numbers whose sum exceeds 9.

For instance, if we add 8 and 5 using binary addition,
we get

8 1000
+5 +0101
13 1101

The answer 1101 is okay in binary, but it is meaningless
in BCD code. The BCD answer should be 0001 0011.
The problem arises because the BCD code uses only 10
of 16 possible nibbles. When the decimal sum of a BCD
addition exceeds 9, we must somehow skip the six forbidden

. nibbles to restore the answer to BCD form.

Add 6 When Greater than 9

To skip forbidden nibbles, we can add 6 (0110) to the sum
when it exceeds 9. For example, the BCD addition of 8
and 5 looks like this: :

219

Chanter 12 The RNRS

1000
+ 0101
1101 binary equivalent of 13
+ 0110 add 6 to return to BCD form

0001 0011 BCD equivalent of 13

After the first addition, the sum e¢xceeds decimal 9. To
correct this sum, we add 6.
As another example, here’s the BCD addition of 9 and

8:
1001
+ 1000
10001 binary equivalent of 17
+ 0110 add 6 to return to BCD form
00010111 BCD equivalent of 17

The carry in this example is called an auxiliary carry AC
to keep it distinct from the final carry CY discussed earlier.
The accumulator contents are

A= A7A6A5A4A3A2A]Ao

In the 8085, the AC flag is set whenever there is a carry
out of bit 3, whereas the CY flag is set whenever there is
a carry out of bit 7.

Rules for BCD Addition

When the sum of two nibbles is 9 or less, the answer is
right as is. When the sum of two nibbles is greater than 9,
we have to add 0110 to return to BCD form. How do we
know when the sum is greater than 9? Either the nibble
will be a forbidden group (1010 through 1111), or there
will be a cairy to the next higher nibble.

Here are the rules for BCD addition:

1. If the sum of two nibbles is greater than 9, add 0110
to the sum to return to BCD form.

2. If the sum of two nibbles is 9 or less, leave it alone
because it already is in BCD form.

Here’s an example:

98 1001 1000
+ 84 + 1000 0100
182 1 0001 1100 binary sum
"__+ 01100110 correct nibbles for BCD form

0001 1000 0010 answer in BCD form

The least significant nibbles produce a suin greater than 9;
therefore, 0110 is added. The sum of the most significant
nibbles also exceeds 9; so, 0110 must be added.

220 Digital Computer Electronics

Here’s another example:

48 0100 1000
+ 39 + 0011 1001
87 1000 0001 binary sum .
+ 0000 0110 correct nibbles for BCD form
1000 0111 answer in BCD form

In this case, the sum of the least significant nibbles exceeds
9; therefore, 0110 is added. The sum of the most significant
nibbles is less than 9, so no correction is needed.

DAA

The ALU of the 8085 produces binary sums. If you are
processing BCD numbers, you must use the DAA instruction
to return these sums to BCD form (DAA stands for decimal
adjust accumulator.) When a DAA is executed, the com-
puter automatically checks for nibble sums greater than 9.
If there are any, the computer adds 0110 as needed to return
the answer to BCD form.

There are no instructions that allow you to test the
auxiliary carry flag. The AC flag exists only to allow the
DAA instruction to do its work. In other words, testing the
AC flag is automatic, so you don’t have to worry about
whether it’s set or not.

You should use the DAA instruction after any ALU
operation involving BCD numbers. This will correct the
accumulator contents before they are used by other instruc-
tions.

EXAMPLE 13-1

Here’s a program segment:
MVI A,39H
ADI97H
DAA

What dogs it do?

SOLUTION

The first two instructions represent

0011 1001
+ 10010111

1101 0000

At this point, the accumulator contents and flags are

A = 1101 0000
cY=20
AC =1

When the DAA is executed, the sum is corrected to get

1101 0000
+ 01100110

100110110

Because of the final carry, the CY flag is set. Therefore,
the accumulator contents and flags are

A = 00110110
cy=1
AC =1

13-6 THE MINIMUM SYSTEM

The 8085 is not a stand-alone device; you must connect
memory and I/O chips to get a useful system. This section
examines the minimum system, a connection of three chips
that form a microprocessor-based system.

8085A

Figure 13-6 shows an 8085A connected to two other chips,
the 8156 and the 8355. These chips are part of the MCS-
85 family, a group of connectable chips that allow you to
build systems.

The 8085A has an address bus (A5 to Ag) and an address-
data bus (AD; to ADy). During certain T states, the 16-bit
contents of the program counter are placed on the address
bus and address-data bus. During other T states, 8-bit data
is placed on the address-data bus. When A,; is low, the
8156 is disabled.

ALE

In Fig. 13-6 notice the control signals coming out of the
8085A. ALE, the address latch enable, goes high at the
beginning of each machine cycle. Midway through the first
T state, ALE goes low. The falling edge of ALE strobes
(loads) the address on the address bus and address-data bus
into the memory chips.

CLK OUT, I0/M, READY, and RESET OUT

CLK OUT is the system clock. The frequency is haif the
driving frequency of the crystal. Typically, a 6-MHz crystal
is used, so that CLK OUT has a frequency of 3 MHz. The
10/M signal is high during /O operations and low during
memory operations. The READY signal is an input to the
8085A; it indicates that a peripheral device is ready for a
data transfer. The RESET OUT goes high when the 8085A
is being reset or initialized.

RD and WR

During I/O and memory operations, a low RD means that
data will be read from an /O device or memory chip. A
low WR, on the other hand, means that data will be sent
to an I/O device or memory chip.

8156

The 8156 is a 2,048-bit static RAM organized as 256 words
of 8 bits each. This means that it can store 256 bytes in a
read-write memory. Furthermore, the 8156 has three I/O
ports (not shown) that can be programmed to act as input
or output ports. Chapter 15 goes into the details of the 8156
and how to use its I/O ports. Right now, all we are
concerned with is the memory part of this chip.

The address-data pins of the 8156 (AD; to AD,) are tied
to the address-data bus of the 8085. The addresses or data
on this bus vary from

0000 0000 to 11111111

equivalent to decimal O to 255.

8156 Control Signals

Look at the control signals driving the 8156. As mentioned
earlier, the falling edge of the ALFE signal is used to strobe
an address into the MAR or address latch of the memory
chips. When ALE goes from high to low, the address on
the address-data bus is latched inside the 8156.

The chip-enable signal CE is connected to A 3; therefore,
the 8156 is enabled only when A ,; is high. During a memory
operation, IO/M is low; for a read, RD is low:; for a write,
WR is low. Finally, the RESET comes from the RESET
OUT of the 8085. When high, RESET initializes the 8156.

8355

The 8355 is a 16,384-bit ROM organized as 2,048 words
of 8 bits each. This means that it can store 2,048 bytes of
instructions and fixed data. Address lines A, to Ay and
AD; to AD, are connected to the 8085. These 11 lines can
address 2,048 locations.

Again, notice how the ALE, CLK, I0/M, RD, and
RESET pins are connected to the corresponding pins of the
8085. As before, the falling edge of the ALE signal loads
the address into the 8355. During a memory operation,
[0/M is low and a low RD reads the data in the selected
memory location.

The 8355 has two chip enables, CE, and CE,. In the
minimum system of Fig. 13-6, CE, is made active high by

Chapter 13 The8085 221

A G+ —

Ogv

lav

tav
13s3d4 Ctav
Aaviy 'av
ay Sav
wor- Sav
479 tay
Nmo gee8 M.\
30 v
ERl4 Oly

"wsAs wnwiurpy 9-¢y “Sig

am Ogy
p
av
13534
tav
ay Egy
9s18
wsol av
Sav
30
Sgv
ERl4 tgy b—
vy

“m
ay

100 13534
NI 13STY
AQv3IY

wol

1N0 X170

ENL4

VvS808

dn

tying it to +5 V. On the other hand, CE, is connected to
A,;. Because CE, is active low, the 8355 is enabled only
when A,; is low. ' :

The READY signal is low while the address is being
loaded into the 8355. After the address has been latched,
READY goes high, signaling the 8085 to proceed with the
read operation.

ok] 0000H
ROM | o7FFH
256 bytes 2000H
RAM | 20FFH

Fig. 13-7 ROM and RAM for minimum system.

Addressing the Memory Chips

When A3 is Tow, the ROM is enabled. The lowest addresses
the 8355 responds to .are

0000 0000 0000 0000
to 00000111 1111 1111

equivalent to 0000H to O7FFH. This js illustrated in Fig.
13-7, where you see the ROM occupying the first 2K of
memory. Since the program counter starts at 0000H, the
first instruction is fetched from ROM.

When A,; is high, the RAM is enabled. The lowest
addresses the 8156 responds to are

0010 0000 0000 0000
to 00100000 1111 1111

This is equivalent to 2000H to 20FFH. In the minimum
system of Fig. 13-6, therefore, the lowest area of RAM
that we can address is 2000H to 20FFH, as shown in Fig.
13-7.

Folded Memory

The 16 address lines of the 8085 can address a total of
65,536 locations. In the minimum system of Fig. 13-6, we
use only 2K of ROM and 256 bytes of RAM. The unused
address lines are don’t cares, they can.be either Os or Is.
Because some of the address lines are don’t cares, the ROM
and RAM sections of memory fold back (repeat).

For instance, the valid range of ROM addresses is

XX0X X000 0000 0006
to XX0X X111 11111111

where the Xs can be Os or 1s. When the Xs are Os, we get

0000 0000 0000 0000
to 00000111 1111 1111

or 0000H to O7FFH. This is the first ROM range shown in
Fig. 13-8a.

If A;, is high and all other don’t cares are low, the valid
range of ROM addresses is

0000 1000 0000 0000

- to 0000 1111 1111 1111
2K ROM | 0000H-07FFH
Shadow — | 2K ROM | 0800H-OFFFH
Shadow — | 2K ROM | 1000H-17FFH
Shadow — | 2K ROM | 1800H-1FFFH
2K ROM | 4000H-47FFH
More 2K ROM | 4800H-4FFFH
shadows | | 2K ROM | 5000H-57FFH
2K ROM | 5800H-5FFFH
0000H
0800H
1000H First ROM
1800H memory
2K ROM | 8000H-87FFH ! location
More 2K ROM | 8800H-8FFFH l
shadows] | 2K ROM | 9000H-97FFH D80OH
2K ROM | 9800H-9FFFH
(b)
2K ROM | COOOH-C7FFFH
More 2K ROM | CBOOH-CFFFH
shadows | | 2k ROM | DOOOH-D7FFH
2K ROM | DBOOH-DFFFH
(a)
Fig. 13-8 Folded. memory.
Chapter 13 The 8085 223

equivalent to 0800H to OFFFH. The ROM will respond to
these addresses because A,; is still low. The second range
of addresses shown in Fig. 13-8a is called a shadow.

Similarly, if A, is high and all other don’t cares are low,
the valid range of addresses becomes

0001 0000 0000 0000
to 00010111 1111 1111

This is from 1000H to 17FFH, as shown in Fig. 13-8a.
By checking the remaining don’t-care combinations, we
can find a total of 15 shadows, areas where the ROM folds
back or repeats (see Fig. 13-8a). What this all amounts to
is that several addresses can access the same memory
location in the ROM. For example, addresses 0OOOH,

0800H, 1000H, and so on all point to the first memory -

location in the ROM (Fig. 13-8b). If any of these addresses
appears on the address bus and address-data bus, the 8355
will access its first memory location.

The RAM also folds back. When A; is high, the valid
RAM address range is from

XX1X XXXX 0000 0000
to © XXIX XXXX 1111 1111

which is equivalent to the following ranges:

2000H-20FFH
2100H-21FFH
2200H-22FFH

FFOOH-FFFFH

. This means that the first RAM range is from 2000H to
20FFH and all the rest are shadows.

Foldback (also known as foldover) causes no problems
as long as we agree which ROM and RAM ranges will be
used in programming. Usually, the lowest ROM and RAM
areas are used; the shadows are not. From here on, the
minimum system described in this book will use the lowest
ROM and RAM ranges:

ROM 0000H-07FFH
RAM. - 2000H-20FFH
Typical Memory Map

By connecting more memory chips to the 8085 we can
make the memory any sizc we want up to 64K. Almost all

" microprocessor-based systems have the memory laid out as.

shown in Fig. 13-9. The lowest part of memory is reserved
for fixed instructions and data. In a microcomputer this
area stores subroutines that operate the keyboard, the video
display, and so forth..A ROM, PROM, or EPROM is used

224 Digital Computer Electronics

Fixed instructions
and data

ROM/PROM/EPROM

e]—

Variable data
65,536

bytes

RAM
[]—| o=
RAM

Fig. 13-9 Typical memory map.

for this section of memory with the program counter acting
as a pointer.

Next comes the variable data area, which uses a RAM.
In a microcomputer this is where the user programs are
stored. Also, intermediate results of data processing may
be saved in this section of the memory. During the execution
of indirect instructions, the HL pointer controls this area.

The stack is usually in the highest part of memory, the
stack pointer automatically indicating where data is to be
pushed or popped.

13-7 FETCHING AND EXECUTING
INSTRUCTIONS

Figures 13-10 and .13-11 show how each of the 8085
instructions are fetched and executed. These figures tell
you what happens during each T state of a specific instruc-
tion. This section discusses a few of the instructions to give
you an idea of how to follow an instruction all the way
through its fetch and execute cycles.

Basic Timing

To begin with, the shaded T states of Figs. 13-10 and
13-11 indicate unused states, A glance at both figures shows
that an instruction cycle may take from one to five machine
cycles. Furthermore, the first machine cycle has either four
or six T states; the remaining machine cycles have either
two or three T states.

The NOP has the shortest instruction cycle: one machine
cycle with four T states. The CALL instruction has the
longest instruction cycle: five machine cycles with 18 T
states.

Register Move
Let’s take a look at the register-move instruction

MOV regl,reg2

Refer to Fig. 13-10 throughout this discussion. During the
first T state, the contents of the program counter are placed
on the address bus and address-data bus (PC OUT). Midway
through this T state, the ALE signal goes from high to low;
this latches the address into the selected memory chip.

During the second T state the program counter is incre-
mented (PC + 1 — PC). During the third T state, the op
code for the MOV instruction is read out of the memory
and sent to the instruction register (INSTR — IR). In the
T, state, the contents of register 2 are copied in the temporary
register. The Ts and Ty states are shaded; this means they
are not used.

The word FEO in the T, state of the second machine
cycle stands for fetch-execute overlap. This will be explained
later. As far as the MOV instruction is concerned, ncthing
happens during this T state.

During the T, state of M, the contents of the temporary
register are copied into register 1. This completes the
instruction cycle of the register-move instruction.

Indirect Memory Read

An indirect read instruction takes longer because two
memory operations are needed, one for the instniction fetch
and one for the data. Consider the instruction

MOV reg, M

This will copy the addressed memory data into a designated
register. In Fig. 13-10 the first three T states are the same
fetch cycle as before, PC OUT, PC + 1— PC, and INSTR
— IR. The X in the fourth T state means that this 7T state
is needed for instruction decoding and other internal oper-
ations that must take place before the execution cycle can
begin.

In the second machine cycle M,, the contents of the HL
register are placed on the address bus and address-data bus
during the T, state. Midway through this T state, the falling
edge of the ALE signal strobes the address into the memory
chips. Because of the memory access time, it takes two

states (7, and T3) to read the data and copy it into. the -

selected register. This is why the arrow straddles states T,
and 7.

Notice that two machine cycles and seven T states are
needed to fetch and execute a memory MOV instruction.
With a 3-MHz clock, this means that it takes

7 X 330ns = 2.31 ps
to fetch and execute an indirect memory read instruction.

Indirect Memory Write

The next instruction we want to discuss is

MOV M, reg

As shown in Fig. 13-11, the first three T states are the fetch
portion. During the fourth T state, the contents of the
desTgnated register are copied in the temporary register. T
and T are skipped.

In the second machine cycle, the contents of the HL
pointer are placed on the address bus and address-data bus
during the T, state. Midway through this T state, the ALE
signal latches the address into the memory chip.

During T, and T; of the second machine cycle, the
contents of the temporary register are transferred to the
addressed memory location.

Immediate MOV -
The instruction

MVI reg,byte

begins with a fetch (7', T,, and T3) in Fig. 13-11. The T,
state is for decoding.

In the second machine cycle, the contents of the program
counter are placed on the address bus and address-data bus
during T,. During T, the PC is incremented. While this is
happening, the memory is being accessed; then the imme-
diate data is read and loaded into the designated register
during 7.

ADD

The add instruction
ADD reg

starts with the usual fetch. Then during the T, state of M|,
the contents of the selected register are loaded into the
temporary register.

The second machine cycle begins with an FEO in the T,
state (explained in detail later). As far as the ADD instruction
is concerned, nothing happens during the T, state. During
the T, state the contents of the accumulator and temporary
register are added; the result is stored back in the accu-
mulator.

JMP

The unconditional jump instruction is
JMP address

After the op code is fetched, decoding takes place during
the fourth T state (see Fig. 13-10).

In the second machine cycle, the contents of the program
counter are placed on the address bus and address-data bus;
midway through the T, state, this address is latched into a
memory -chip. States 7, and 7 increment the program

Chapter 13 The8085 225

Mnemonic M My
T T T3 N Ts Tg T T T
ACl byte PC OUT PC+1-PC INSTR—IR X PC OUT PC+1-PC byte—>TMP
ADC reg f f ? reg~>TMP FEO A+TMP+CY A
| : —
ADCM ! | | X HLOUT My — TMP
1 I
T T T
ADD reg | | | reg—>TMP FEO A+TMP—>A
1 i L
T T T
ADDM | | | X HL OUT My - THP
} } +-
ADI byte | | | X PCOUT PC+1->PC byte->TMP
] [l 1
T T T
ANA reg | | | reg~>TMP FEO A-TMP—A
: : -
ANA M | | ! X HLOUT My — TMP
| |
L} T T
ANI byte | | | X PC OUT PC+1—PC byte ->TMP
|] Il
T T T —
CALL address | l | S$P—-1—ra——= 5P X PCOUT PC+1->PC low byte—>2Z
1 !
T v T - B
If condition is true (T), then T:PC+1->PC low byte~>Z
€ cond address ! ! ! SP—1-SP. X Peout F:PC+2-PC F: Start My
T T T -
A—ALU
CMA ! ! ! COMPLEMENT FEO ALU—A
T T T
CY—ALU o
tMe ! ! l COMPLEMENT FEO ALU—A
T T T
A—ALU A-TMP
CMP reg l ! ! reg>TMP FEO FLAGS
CMP M | | | X HLOUT My — TMP
|] 1
T T 1]
CPl byte | | | X PC OUT PC+1-PC byte>TMP
1 l 1
| H 1 ADJUST A
DAA ! ! 1 X FEO FLAGS
T T T
L->TMP
DAD RP. { l ! X RPL~A A+TMP—ALU
reg ~>TMP 3
DCR reg ! ! } TMP+1—ALU FEO ALU-reg
T T T
My
DCR M ! l | X ety
T v T T, %
DCX RP | I | RP—1————RP X
fl ! e :
j | H j FEO
DI | 8| | X | RESET INTERRUPT
| | 1 FLIP-FLOP
i i FEQ
£l | | | X SET INTERRUPT
} |] FLIP-FLOP
L L T
HLT | | | X PCOUT HALT MODE
i i }
T T T
IN byte | | ! X PCOUT PC+1-PC byte—~Z, W
l i
T 1 T . =
INR reg | i | reg>TMP FEO ALU-reg
: -+ + i ™
INRM X
; i 1 . TMP+1
INX RP | | |
: s s
JMP address | | | PCOUT PC+1->PC fow byte—>Z.
1 i]
T T T
T: PC+1-PC low byte—>2Z
J cond address ! ! ! PCOUT F:PC+2-PC F: Start My
T T 1
LDA address | | | X PC OUT PC+1-PC low byte ~Z
1 Il i
T T T
LDAX RP : { | X RPOUT Mgp — A
I
T T T
LHLD address | { | X PCOUT PC+1-PC low byte>Z
Il |
il T T
LXi RP, dble | | JI X PC OUT PC+1-PC low byte—~>RP;
4 !
T T T
MOV tegl,reg2 i ‘" l reg2—~TMP FEO TMP—regt
MQV regM PCUUT PC+1-PC INSTR—IR X HLOUT MuL - reg

Fig. 13-10 Fetch and execution.

My M, My

T Ty T3 T T, T3 T T, T3

A+TMP+CY—A
FLAGS

A+TMP+CY—A &
FLAGS

A+TMP—A
FEO FLAGS

A+TMP—A
FEO FLAGS

A-TMP—~A -
FLAGS b
A-TMP—A
FLAGS

F.0

FEC

PCy

+——— stack

PCOUT PC+1—~PC high byte ~W SPOUT SP_15P SPOUT PC,

—— stack

PC OUT PC+1PC high byte~W SPOUT PCx P SPOUT PGy

— stack

-

A-TMP
FLABS
A—TMP
FLAGS

H—->TMP ALU—H

RPu—A | p s TP+CY ALY oY

HL OUT ALU e My

PORT ————

ALU

i ; .. - : = -
PC OUT PC+1—PC high byte—W Wz oUT WZ+1--PC

FEOQ
WZ QUuT

Wz ouT Myz

PC OUT PC+1->PC high byte —~W WZ+1-PC

PC OUT PC+1-PC high byte =W

) — R — — k
PC+1~PC high byte >W Wz out W+ %N—Z»wz WZ ouT Myz

PCOUT PC+1-PC high byte ~RPy

Chapter 13 The 8085 227

Mnemonic My Mz
T T2 Ta T T T3
MOV M,reg PCOUT PC+1-PC INSTR—IR HLOUT ™P My
MV reg,byte ? Jf f PCOUT PC+1-PC byte—reg
i
T T T
MVI Mbyte] ! | PCOUT PC+1-PC byte=TMP
L 1
T T T
NOP | | |
1 | }
T T T
ORA reg } | | FEO A OR TMP-A
i |
T T T
ORA M ! | | HLOUT Myg — TMP
|]
T T T
ORI byte ! | | PCOUT PC+1-PC byte>TMP
|]
T T T
OUT byte | | | X PCOUT PC+1-PC byte=Z,W
il 1 l
T T T e
PCHL | | | HL ————— PC X L
= | :
POP RP J | N X SPOUT SP+1-5P low byte ~RP
I I
T T T
POP PSW | | | X SPOUT SP+1-SP low byte—>FLAGS
Il 1 1
T T T
PUSH RP | | | SP—1 ——+— SP X SPOUT SP—1-SP high byte —stack
1 [l l
T 1 T
PUSH PSW ! | ! SP—1——+F——SP X SPOUT SP—1-8P A-stack
]
T T T
A, CY=ALU N
RAL ! ! ! ROTATE FEO ALU=A,CY
T T T
A, CY—ALU -~
RAR J| ! ! ROTATE FEO ALU—A,CY
T T T
RET | | | X SP OUT SP+1-SP low byte =PC,
| | il
T T T N
JUDGE _| N . R
R cond ! ! ! CONDITION F: Start M, SPOUT SP+1-SP low byte —PC_
T T T
. Interrupt
RIM ! ! ! X FEO mask ——— A
T T T
A—ALU
RLC |L ! l ROTATE FEO A-ALU, CY
T T T
A—ALU
RRC ! ! ! ROTATE FEO A—ALU, CY
T T T
SBB reg | ! | reg ~TMP FEO A-TMP-CY—A
} —+ }
SBB M | | | X HLOUT My ——— TMP
i | 1
1 T T
SBI byte | ! | X PC OUT PC+1-PC byte—~TMP
Il 1
T T T
SHLD address | | | X PC OUT PC+1-PC low byte—~2Z
} |]
T T T
Interrupt
SIM ! ! l X FEO A mask
1 T T -
SPHL | | | HL ——
+ ! t
STA address | J | X PCOUT PC+1-PC low byte >Z
}]
T v T
STAX RP] l . X RP OUT A Mgp
1 }
T T T
STC | ! | 1-ALU FEO ALU=CY
i 1
1 T T
SUB reg | | | reg~>TMP FEO A-TMP-A
t t +
SUBM | | | X HLOoUT MuL — TMP
} } l
T M T .
SUI byte | | | X PC OUT PC+1~PC byte>TMP
1 | 1
|l ¥ T
XCHG | | | X FEQ HL<+—DE
} } —
XRA reg | | ! reg—>TMP FEO" A ® TMP—>A
} 1 | - . -
T T T .
XRA M ‘ ‘ ‘ X HLOUT My — TMP
XRI byte PCOUT PC+1-PC INSTR—IR X PC OUT PC+1-PC byte—>TMP

Fig. 13-11 Fetch and execution.

M3

My

Mg

T Ul

T

T3

FEO

A OR TMP—A

FEQ

AOR TMP—A

SPOUT SP+1->8P high byte ~>RPy
SPOUT SP+1-8P high byte—>A
SPOUT fow byte —— stack
SPOUT FLAGS ——— stack

SPOUT

SP+1-25P

high byte—>PCy

SP+1->SP

high byte~PCy

A-TMP—CY->A

FEQ
FEO A-TMP-CY~A
L —_—
PC OUT PC+1-PC WZ+1 Wz

PC+1-PC

high byte—>W

A-TMP—A

A-TMP—A

ADTMP—A

Chapter 13 The8085 229

counter and transfer the lower byte into the Z register. (The
8085 has two internal registers labeled W and Z, used for
temporary storage of data. These registers are invisible
because the programmer never uses them.)

During the third machwe cycle, the program counter
again addresses the memory during T,. During T, the PC
is incremented. Then during T the upper byte is transferred
from the memory to the W register.

Notice that it takes three machine cycles and ten T states
to complete the JMP instruction. After the last T state, a
new instruction cycle begins as follows. The contents of
the WZ register pair are placed on the address bus and
address-data bus during the T, state of the next machine
cycle. During the T, state the contents of the WZ pair are
incremented, and the result is stored in the program counter.
Hereafter, control returns to the program counter.

In other words, jump instructions are executed by loading
the jump address in the WZ register pair. During the next
fetch cycle, the WZ register pair takes over temporarily
from the program counter. After the program counter has
been loaded with the incremented WZ contents, the PC
regains control.

Fetch-Execute Overlap

In Fig. 13-10 it takes six T states to fetch and execute an
ADD instruction. A glance at Appendix 5 shows that the
ADD instruction requires four T states. Why the difference?

The ADD instruction does not use the address bus and
address-data bus during the second machine cycle. All that
happens is that the contents of the accumulator and tem-
porary register are added; the result is stored back in the
accumulator. Since the address bus and address-data bus
are not.used during the second machine cycle of an ADD
instruction, we can use the address bus and address-data
bus for some other purpose.

One way to save processing time is by starting the next
instruction cycle during the second machine cycle of the
ADD instruction. This is called fetch-execute overlap.
Figure 13-12 illustrates fetch-execute overlap for this pro-
gram segment:

The first three T states of Fig. 13-12 fetch the op code for
the ADD B instruction. During T, the contents of the B
register are loaded into the temporary register.

During the second machine cycle of the ADD B, the
instruction cycle of the MOV B, A begins. During T, the
contents of the program counter are latched into the memory.
During T, the ADD B is finished off by adding the contents
of the accumulator and temporary register: the result is
stored back in the accumulator. During this same T state,
the program counter is incremented. During T3, the MOV
op code is loaded into the instruction register.

Fetch-execute overlap saves processing time because the
final execution states of the ADD instruction are taking
place during the fetch states of the next instruction. When
figuring how long it takes to run a program. all ADD
instructions are counted as four 7T states rather than six
because the last two T states are counted in the next
instruction.

All arithmetic, logic, and rotate instructions have a final
machine cycle with a free address bus and address-data
bus. Because of this, fetch-execute overlap is used with
these instructions. In other words, the final machine cycle
of these instructions is overlapped by the fetch portion of

- the next instruction cycle.

13-8 8085 TIMING DIAGRAMS

Figures 13-10 and 13-11 summarize the fetch and execution
of all 8085 instructions. To deepen our understanding of
how the 8085 works, let’s.look at the timing diagrams of
a few instructions. This will illustrate how the external
address, data, and control signals interract during an in-
struction cycle.

Register Move
Figure 13-13 is the timing diagram of
MOV regl,reg2

t Actually, the 8085 microprogram is more complicated than

ADD B shown here; Figs. 13-10 and 13-11 are only approx1mat|ons of
MOV B,A - what is going on inside the 8085.
CLK
e
Ty T, T3 T4 T T, T3 T,
ADD B PC OUT PC+1->PC.] INSTR-IR B~ TMP JA+TMP > A

MOV B,A

PC OUT PC+1->PC | INSTR—IR A - TMP

Fig. 13-12 ADD timing diagram.

230 Digital Computer Electronics

-MOV reg1,reg2

My

M2

T Ta T3

Ta ST Ty T3

3-MHz CLK __/__/__F

AL VAR WAL WAL

-A15'Aa :X PCy X PCy,
AD,-AD, _x PéL —— INSTR % < pcL D———INSTR }-—o
ALE. A\ T\ ' |
w1]/ 1/
WR Jf
1om _\
PC OUT PC+ 1> PC|INSTR - IR]| reg2 > TMP FEO TMP > regl
PCOUT |PC+1-PC[INSTR>IR

Fig. 13-13 Register MOV timing diagram:

for a 3-MHz clock. Each CLK cycle represents one T state.
At the bottom of the diagram are the actions that take place:
PC OUT, PC + 1 — PC, INSTR — IR, and so on. As
indicated, a fetch-execute overlap (FEO) occurs during the
second machine cycle. :

During the T, state of the first machine cycle, the contents
of the program counter are placed on the address bus (A5
to Ag) and address-data bus (AD; to ADy). Since address
bits may be low or high, it is customary to use the double-
sided waveforms shown in Fig. 13-13; the high byte out of
the program counter (PCy) goes to the address bus, and the
low byte (PC,) to the address-data bus.

The ALE signal initially goes high; then midway through
the T, state, ALE goes low. It is this falling edge that
latches the address bits into the memory chips. Also note
how IO/M goes low near the beginning of the T, state; this
enables the peripheral chips for a memory operation rather
than an I/O operation.

During the T, state, the program counter is incremented.
The address disappears from the address-data bus (AD; to
ADy) at the beginning of the T, state. This is necessary
because an instruction fetch is in progress and the address-
data bus is needed. The dashed line on the AD,-AD,
waveform means that the data on the bus is invalid or
meaningless at this time. Toward the end of the T, state,
the op code (INSTR) appears on the address-data bus. The
precise time when the INSTR appears depends on the
memory access time, the length of the buses, and other
factors.

At the beginning of the T, state, RD goes low and stays
low until the middle of the T; state. During the T, state,
the INSTR on the address-data bus is copied into the
instruction register. During the T, state, the contents of
register 2 are copied into the temporary register.

The second machine cycle represents a fetch-execute
overlap. The new address in the program counter-is placed
on the address bus and address-data bus. Again, the falling
edge of the ALE signal latches this address into the memory
chips. In the 7, state, the contents of the temporary register
are copied into register 1. This completes the execution of
the MOV instruction. During the same T state; the program
counter is incremented. Toward the end of the T state, the
next instruction appears on the address-data bus. Then the
rest of the new instruction cycle is carried out.

Indirect Read

Figure 13-14 is the timing diagram of a
MOV reg,M

This indirect instruction will copy the contents of the
addressed memory location into the designated register.
The first machine cycle is an instruction fetch; the second
is a memory read.

In the T, state of the second machine cycle, the contents
of the HL register are placed on the address bus and address-
data bus; the high byte goes to A s—Ay; the low byte to

Chapter 13 The 8085 231

MOV reg,M

3-MHz CLK -\\-_/—_/—'\\—/—\

~A5-Ag

AD;-AD,

PCy HLy
—— INSTR)~ ~ HL, ———<_DATA »—-
/
\

PC OUT

PC+1->PC|INSTR ~> IR

X | HLOUT My —— reg

l‘-——— INSTRUCTION FETCH

Fig. 13-14 Timing diagram for indirect read.

AD;-AD,. After ALE latches this HL address into the
memory chips, a read operation takes. Notice that the data
is read and transferred to the designated register during the
T, and T; states of M,.

Indirect Write

The indirect write instruction
MOV M, reg

loads the contents of a designated register into the memory
location addressed by the HL pointer. Figure 13-15 shows
the timing diagram. As with all instructions, the first three
T states fetch and store the op code in the instruction
register. During the T, state, the contents of the designated
register are copied into the temporary register.

In the T, state of M,, the high and low bytes of the HL
register are placed on the address bus and address-data bus.
After being latched in memory chips by the ALE signal,
the low byte of the HL address disappears from the address-
data bus. A bit later, the data from the temporary register
is sent to the address-data bus. Since the WR signal is low,
this data is written into the addressed memory location.

OUT Instruction

Our final example is the instruction

OUT byte

232 Digital Computer Electronics

MEMORY READ—I-I

whose timing diagram is shown in Fig. 13-16. Three
machine cycles are needed for this instruction. As indicated
at the bottom of Fig. 13-16, the first machine cycle is an
instruction fetch, the second is a memory read, and the
third is an output write.

The action of the first machine cycle is familiar from
preceding examples,.so let us proceed directly to the second
machine cycle. In the T, state of M,, the incremented PC
address is latched into the memory chips. Toward the end
of the T, state, a byte appears on the address-data bus.
During the T; state, this byte is copied in the W and Z
registers (byte — Z,W). In symbols,

W = byte
Z = byte

This byte represents the port number.

In the T, state of the third machine cycle, the I0M signal
goes high. This enables the peripheral chips for an I/O
operation rather than a memory operation. During this T
state, the contents of the W register are placed on the
address bus, and the contents of the Z register on the
address-data bus (WZ OUT). Since the same byte is in
both registers, the same port number (IO PORT) is being
sent along the buses to the peripheral chips. (Chapter 15
explains why the port number is duplicated on the buses.)

During the T, state of M3, the contents of the accumulator
are placed on the address-data bus and the WR signal goes

" low. The selected peripheral chip then writes the accumu-

lator data into the designated output port during the T, and
T, states.

MOV M, reg

3-MHz CLK -_/__/_-__/_—__/__/—_/___/—\

As-Ag :)(PC, HLy

' AD,-AD, —:)(Pc._ ——— INSTR)~ ~ Hi, ==~ DATA }—1
ALE i \ / \

WR _// \\ /.
10/M _\

PCOUT |PC+1~->PC|INSTR—IR]| reg->TMP HL OUT TMP —4— M,

I'———INSTRUCTION FETCH-———»‘Q————MEMORY WRITE—;*'

Fig. 13-15 Timing diagram for indirect write.

OUT byte

A15-Ag :x ' PCy X PCy 10 PORT
AD5-ADqy :D(PC_ —— INSTR y——t-———— += PC, ——(bye y-—4{10PORTX" ACCUM
ALE _/ \ . / \ /’ \

A ' \ s
/0//? \

PCOUT |PC+1-PC|INSTR ~ IR X PCOUT |PC+1-PC|byte>2ZW| WZOUT A —~ PORT

"— INSTRUCTION FETCH vl|v MEMORY READ———>'<——;OUTPUT WRITE-———bl

Fig. 13-16 Timing diagram for OUT instruction.

Chapter 13 The 8085 233

GLOSSARY

address latch The MAR inside a memory chip.

ALE signal Address latch enable signal. The falling edge
of the ALE signal strobes the address on the address bus
and address-data bus into the address latch of each memory
chip.

auxiliary carry A carry from bit 3 to bit 4. The AC flag
is set when there is an auxiliary carry.

control store The control ROM that stores the ‘8085
microinstructions.

direct memory access A mode in which the 8085 turns
its address bus, address-data bus, and control bus over to
a DMA controller. This allows the controller to transfer
large amounts of the data directly from I/O to memory or
vice-versa. Abbreviated DMA.

JSetch-execute overlap Operation in which the fetch cycle
of an instruction starts during the execution cycle of the
preceding instruction. Fetch-execute overlap is used because
it speeds up data processing.

folded memory Operation in which the ROM or RAM
sections fold back, meaning that more than one address can

" access the same memory location. This is possible because

unconnected address lines are don’t cares and can be low
or high without affecting memory operations.
incrementer-decrementer A circuit that adds or subtracts
1 from the contents of the program counter or stack pointer.
interrupt A signal from a peripheral device requesting an
I/O transfer or other service.

strobe Timing control with ALE. Since the ALE frequency
is different from the clock frequency, the word *‘strobe”’
is used with ALE. For instance, we say that the ALE signal
strobes an address (rather than clocks an address).

WALT state A holding pattern into which the 8085 can go
by generating WAIT states (nops). It does this whenever its
READY input is low.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1.. The upper 8 address bits appear on the
bus. During some T states, the lower 8 address bits
appear on the bus; during other T
states, data appears on this bus. The reason for
multiplexing the lower part of the address bus with
the data bus was to keep the count at
40.

2. (address, address-data, pin) The controller—seqhen-
cer of the 8085 is microprogrammed; it has a ROM
that stores all the needed for executing
the instructions. This control ROM is sometimes
called the control store.

3. (microroutines) Each memory chip has its own
MAR, usually called an address ________. The
falling edge of the ALE signal strobes the
on the address bus and address-data bus into the
address latch of each memory chip.

4. (latch, address) If a peripheral device is not ready
for a data transfer, it will send a low READY bit to
the 8085. The 8085 then generates
states until a high READY bit is received.

S. (warr) The way to speed up memory-peripheral
data transfers is called mMEemory access,
abbreviated . With this approach, data is
moved directly from I/O to memory or vice-versa.
The 8085 turns over control of its buses to a DMA

6. (direct, DMA, controller) Usually, a
drives the X, and X, inputs; this produces an accur-

234 Digital Computer Electronics

ate clock period, needed for precise time delays. If

" a tolerance of 10.percent is acceptable, an
resonant circuit may be used. If very wide drifts in
clock frequency are tolerable, an ____ net-
work can be used.

7. (crystal, LC, RC) Whenever the data being proc-
essed is in BCD form, a instruction
should be erecuted after an ALU operation. The
computer will check for nibble sums greater than 9
and will add 0110 as needed.

8. (DAA) The system is a connection of
three chips that form a microprocessor-based sys-
tem: the 8085 microprocessor, the 8156 RAM, and
the 8355 RAM. The memory chips include /O
ports, which can be programmed for either input or
output operation.

9. (minimum) In a minimum system, the memo.y

back because some _________ lines
are don’t cares. The minimum system described in
this book uses the lowest ROM and RAM ranges:
0000H-07FFFH and 2000H-20FFH.
10. (folds, address) One way to save processing time is
" by starting the instruction cycle of the next instruc-
tion during the cycle of a current in-
struction. This is called . overlap.
11. (execution, fetch-execute) A high IO/M signal indi-
cates an 1/O operation; a low /O/M signals a mem-
ory operation. Whether I/O or memory is used, a
low RD reads or inputs data; a low WR writes or
outputs data.

A G+ —

Ogy

lav

tay
13534 fav
Aav3y ‘av
ay Sav
wor °av
X190 tav
£30 gogg °V
.n.-.lU m\
ERTANE 4

=

oY

v

LI-€T 811

Wvd

[

>m+J

ym
ay

1N0 13534
NI 13S3Y
AQV3IY

wol

1n0 X170

Exls
SSA
00>
3¢

bx

V4808

dan

Mnemonic M My
T T T T Ts T T T
ACI byte PC OUT PC+1-PC INSTR—IR - X PCOUT PC+1—~PC byte~TMP
ADC reg ? ? f reg—~TMP FEO A+TMP+CY—>A
i
N M T T
ABCM J| ! ! X HL OUT My,
T T T
ADD reg | | | reg—TMP FEO A+TMP—A
. L | }
T T T
ADD M ! ! | X HL QUT Mug. — TMP
l
T T T
ADI byte | | | X PC OUT PC+1-PC byte—>TMP
| 1 |
T T T
ANA reg | | | reg—>TMP FEO ATMP—A =
Il Il | 3
T T T -
ANA M | | | X HLOUT ML — TMP
} — —+
ANI byte | I | X PC OUT PC+1-PC byte—>TMP
] Il 2
T T T
CALL address | } | SP—1——+—+SP PC OUT PC+1-PC low byte 2
Il l
T T T e B
If condition is true (T), then . T:PC+1-PC low byte~>2
C cond address I I } o8P pCoUT F: PC+2—PC F: Start My
T T T
A—ALU
A ! I I COMPLEMENT FEO ALU=—A
T T T
CY—~ALU
cme ! ! ! COMPLEMENT FEO ALU-A
T T T
A—ALU A-TMP
CMP g I { l reg STMP FEO FLAGS
CMPM | | | X HLOUT My —- TMP
Il] } .
T T T B
CPl byte | l | X PC OUT PC+1-PC byte—TMP
I |
T T T
ADJUST A
DAA ! |L } X FEQ FLAGS
T T T
L—TMP
DAD RP ! : lL X RP A A+ TMP=ALU
reg—~>TMP
T T T
My
OCR M ! } f THP-
1 } } SLLS
DCX RP | | |
| | |
} 1 }
DI | | I
| - |
A FEO
l | | | SET INTERRUPT |
. | |] FLIP-FLOP |+
T T T
HLT | | | PC OUT HALT MODE
| 1 1
T T T
IN byte | | ! PC OUT PC+1-PC
l i
T T T
INR reg | | | FEO ALU-reg
l i 1
T T T
INR M | i | My
I In]
T T T
INX RP | | |
~ } }
JMP address | | | X PCOUT PC+1-PC low byte—~2Z
1 1 }
- T T T
T: PC+1—PC low byte—>2Z
Jcond address ! l l X PCOUT F:PC+2-PC F: Start M,
" T T T
LDA address | | | X PC OUT PC+1—PC low byte~>2Z
4 1 il
T T T
“}° " LDAXRP | | | X RP OUT Mgp —— A
— ¢ } ¢
LHLD address | : | X PC OUT PC+1-PC low byte~2Z
]]
} } } -
LX! RP, dble | | ! X PCOUT PC+1-PC low byte~>RP_
] 1
T T T N
MOV reg1,reg2 ‘ ‘ ‘ reg2—~TMP FEO TMP->regl
MOV reg,M PCOUT PC+1~PC INSTR—IR X HL OUT My

Fig. 13-18

M3 M, - . MS
T T T T
A+TTMP+CY—A 5
FLAGS
AYTMRECY=A |1
FEO FLAGS
A+TMP—A
FLAGS
A+TMP—A
FEO FLAGS
A-TMP—A
FLAGS
A-TMP-A 5
FEO FLAGS 2 : : -
PCOUT PC+1-+PC high byte W spouT PCu P sPOUT PC, L Stack
PC OUT PC+1->PC high byte—W sPOUT FCy ke SPOUT PC, | stack
H-TM ALU—H
APRA | p o TMP+CY—~ALY oY
wz ouT PORT A
HLOUT ALU e My
PC OUT PC+1~PC high byte~W FEO WZ+1-PC
Wz ouT
PCOUT PC+1-PC high byte —W wzF i WZ+1-PC
PCOUT PC+1--PC high byte—~W wz out Myz L A ‘
PC OUT PC+1-PC high byte—~W wz ouT Myz L M S
an by WZ+1-W2Z Wz
PC OUT PC+1-PC high byte— RP,, ‘ : ‘

Chapter 13 The 8085 237

PROBLEMS

13-1.

13-2.

13-3.

13-4.

13-5.

13-6.

238

An 8085A is crystal drivern: and is operating at

its maximum clock fréquency. What is the fre-

quency of the crystal? _

An 8085A is LC-driven with L = 15 uH and C

= 50 pF. What is the clock frequency?

What instruction would you use to do the fol-

lowing®

a. Load the HL register with the bytes at 2000H
and 2001H:

b. Load the program counter with the contents

_of the HL register pair.

c. Exchange the contents of the stack pointer

with the contents of the HL register pair.

- Add the following BCD numbers and correct the

sum where necessary to get a BCD answer:

a. 01000100 + 0011 0001

b. 1001 1001 + 0110 0..!

c. 0001 0011 0101 + 1000 0111 0100

In Fig. 13-17 (see page 235) a write operation
into memory location 2056H is in progress:

a. Is Aj; low or high?

b. Is 10/M low or high?

c. Is RD low or high?

d. Is WR low or high?

Memory location 0500H is being addressed in
Fig. 13-17.

a. Is the RAM or ROM being addressed?

b. Is A;; low or high?

c. Is I0/M low or high?

d. Is RD low or high?

Digital Computer Electronics

13-7.

13-8.

13-9.

13-10.

13-11.

13-12.

If the CE input to the 8156 is moved from A;;
to A;s, which of the following address ranges
does the RAM respond to?

a. 2000H-20FFH

b. 4000H—40FFH

- ¢. 6000H-60FFH

d. 8000H-80FFH

In Fig. 13-18 (see pages 236 and 237) three
machine cycles are needed to fetch and execute
the ACI byte instruction. How many machine
cycles are needed for each of the following in-
structions:

a. CMA
b.. DCR M
c.. IMP
d. LHLD .

Addresses 2000H and 2001H contain ADI 74H.

At the end of the T, state of the M, cycle, what

does the program counter contain?

During the execution of OUT 22H, what is

loaded into the W register? Into the Z register?

Addresses 2000H, 2001H, 2002H contain C3H,

90H, 30H.

a. What instruction is this?

b. How many machine cycles does the instruction
require?

c. Which byte is 1oaded into W register?

d. Which byte is loaded into the Z register?-

An 8085 is driven by a 6-MHz crystal. Write a

program that produces a time delay of 0.5 s.

I/O Operations

There are three basic ways to get data into or out of a
memoary. They are called programmed 110, interrupt-driven
1/0, and direct memory .access (DMA). Although pro-
grammed I/O is the slowest of the three, it is used in simpler
microprocessor systems where sneed is unimportant. As
the system becomes more complex, the interrupt approach
becomes necessary. In the most advanced systems, DMA
is needed because it is the only way to transfer large amounts
of data in a short time.

14-1 PROGRAMMED I/O

Programmed I/O uses instructions to get data into or out of
a CPU. To correctly time the data transfers, programmed
I/O relies either on clock timing (synchronous) or on
handshaking (asynchronous). The latter type is used more
often because it is simpler. This section gives two examples
of asynchronous programmed I/O.

Peripheral
. device
it
8 Y Porti0H Bit® 1 sramt
Bit 7
ccu K 8 Port 11H |— STATUS
K 8 Port12H K 8 ‘DATA

Fig. 14-1 Programmed inpilt.

Programmed Input

Figure 14-1 shows a CPU connected to ports 10H, 11H,
and 12H. Bit 6 of port 10H is connected to the START
input of the peripheral device, and bit 7 of port 11H to the
STATUS output. The device can send data to the CPU
through input port 12H.

The basic idea is this. When the CPU is ready to input
a word, it sends a high START bit to the peripheral device.
When the device has the data ready for transfer, it sends a
high STATUS bit to port 11H. Until the STATUS bit is
high, the CPU waits. As soon as the STATUS bit goes high,
the CPU inputs 1 byte of data.)

Suppose we want to input 256 bytes and store them at
addresses 2000H through 20FFH. Here is an exaniple of

programmed I/O written for an 8085 system:

Label Mnemonic Comment
LXI H,2000H ;Initialize HL pointer
MVI C,00H ;Initialize counter
LOOP: MVI A,40H ;Set START bit
OUT I0H ;Send high START bit
WAIT: IN 11H ;Get STATUS bit
ANI 80H ;Isolate STATUS bit
JZ WAIT ;Wait if device not ready
IN 12H ;Input data
MOV M,A ;Store data
INX H ;Update HL pointer
MVI A,00H ;Reset START bit
OUT 10H ;Send low START bit
DCR C ;Count down
JNZ LOOP ;Go back if not finished
HLT '

The LXI H sets the HL pointer at 2000H, the location of
the first byte to be stored. The MVI C clears the C register,
which acts like a counter during this program.

The MVI A sets bit 6 to get accumulator contents of
40H. Then the OUT 10H latches the word 40H in port
10H. Bit 6 of port 10H is connected to the START input
of the peripheral device; therefore, the device receives a
high START bit. When ready for the data transfer, the
device will send back a high STATUS bit.

- The IN 11H and ANI 80H isolate the STATUS bit. As
long as the STATUS bit is low, the program remains in the
WAIT loop. After the STATUS bit goes high, the program
falls through the JZ.

239

The IN 12H inputs the data from the device. The MOV
M, A stores this data at 2000H. The INX H increments the
HL pointer. The MVI A,00H and OUT 10H clear the
START bit. Then the DCR C decrements the counter. At
this point, the C register contains' FFH. The JNZ LOOP
then returns the program to the LOOP point, where the
cycle starts over.

After 256 bytes of data have been stored at 2000H through
20FFH, the program falls through the JNZ LOOP to the
HLT.

Notice in Fig. 14-1 that only 1 blt of port 10H is used;
the other 7 bits are don’t cares. Likewise in port 11H, only
" 1 bit is used. Ports 10H and 1iH are necessary for the
handshaking operations; port 12H is needed for the data
_ transfer.

* Output Example

- Figure 14-2 shows a CPU connected to handshaking ports
10H and 11H. It is also connected to output port 12H. As
before, bit 6 of port 10H is the START bit, and bit 7 of
port 11H is the STATUS bit.

Here is the procedure for output operations. When the
CPU is ready, it will latch the data into port 12H. Then,
the CPU sends a high START bit to indicate that valid data
is waiting for transfer. After the peripheral device has
loaded the data, it returns a high STATUS bit.

Suppose we want to output 256 bytes from memory

locations 2000H to 20FFH. Here is an example of pro-
grammed output:

Label Mnemonic - Comment
LXI H,2000H ;Initialize HL pointer
MVI C,00H ;Initialize counter
LOOP: MOV AM ;Get next byte
OUT 12H ;Latch data into port 12H
MVI A ,40H ;Set START bit
OUT 10H ;Send high START bit
WAIT: IN 11H ;Get STATUS bit
ANI 80H ;Isolate STATUS bit
JZ WAIT ;Wait for high STATUS
INX H ;Update pointer
MVI A,00H ;Reset START bit
OUT 10H ;Send low START bit
DCR C ;Count down
JNZ LOOP ;Go back if count not zero
HLT

The LXI presets the HL pointer at 2000H, and the MVI C
clears the counter. The MOV A,M loads the data into the
accumnulator, and the OUT 12H latches this data into port
12H. ,

The MVI A sets the START bit, and the OUT 10H sends
this high START bit to port 10H. At this point, the program
enters the WAIT loop. The IN 11H, ANI 80H, and JZ

240 Digital Computer Electronics

Peripheral
device
Bit 6
8 A Port 10H 1 START
, Bit 7 -
CPU 8 Port 11H | STATUS

[.8 N Port12H 8 N DATA

Fig. 14-2 Programmed cutput.

WAIT will be executed over and over until a high STATUS
bit is returned by the peripheral device. This high STATUS
indicates that the device has loaded the data and is ready
for the next byte. '

As before, the INX H increments the HL pointer; the
MVI A,00H and OUT 10H clear the START bit; and the
DCR C decrements the counter to get FFH. The JNZ LOOP
returns the program to the MOV A,M, where the next cycle
begins.

The program will loop until 256 bytes of data have been
transferred from addresses 2000H to 20FFH to the peripheral
device. Then the program falls through the INZ to the
HLT.

Incidentally, programmed I/O is sometimes reierred to
as polled I/0. In the examples given, we have used software
to control the I/O transfers of a single peripheral device.
By modifying the software, we can-poll several peripheral
devices and transfer data when each is ready.

EXAMPLE 14-1

An 8085 is recciving 100 bytes per second from a peripheral
device. With the programmed input given earlier, what
percent of the time is the CPU wasting? (Assume a 3-MHz
clock.)

SOLUTION

The period is

1
= 1001z 0.01s

This means it takes the peripheral device 0.01 s to get each
byte ready for transfer.

Let us work out the useful CPU time; this is the time
needed to input and store a byte at its correct location; the
useful time does not include the time needed for the START
bit, nor does it include the time spent in the WAIT loop.
The number of useful T states is

IN 12H 10
MOVMA - 7
INX H 6
DCR C 4
INZ LOOP 10

1

The useful CPU time is

37 X 330ns = 12.21 ps = 12 ps

Useful
CPU time

'
r Wasted ———’1-'

'4—- 12 us
10,000 us

Fig. 14-3 Programmed I/0O wastes most of cycle.

Figure 14-3 shows what is going on. The cycle time is
0.01 s, equivalent to 10,000 ws. The time needed to input
and store a byte is only 12 ps, or 0.12 percent of the cycle
time. In other words, almost 99.9 percent of the time is
wasted because the CPU is waiting for the peripheral device
to get the next byte ready for transfer.

In some applications, the wasted time is no problem

" because the CPU may have nothing better to do. But in
other applications, having the CPU wait on the peripheral
device is a major disadvantage.

14-2 RESTART INSTRUCTIONS

The 8085 has eight restart instructions: RST 0, RST 1,
RST 2, RST 3, RST 4, RST 5, RST 6, and RST 7. These
instructions were originally used in the interrupt system of
the 8080. In the 8085, however, the restart instructions
represent efficient ways to call frequently used subroutines.

What an RST Does

Table 14-1 shows the effect of each restart instruction. As
indicated, an RST has the same effect as a CALL. For
instance, the execution of

RST 0

will begin by pushing the contents of the program counter
onto the stack. Tlien the program branches to address 0000H
as shown in Fig. 14-4. The subroutine located between
0000H and 0007H is carried out with the RET returning
the processing to the main program.

TABLE 14-1. RESTART INSTRUCTIONS

_ Vector
Instruction Effect Op Code Location

RSTO CALL 0000H Cc7 0000H
RST 1 CALL 0008H CF 0008H
RST 2 CALL 0010H - D7 0010H
RST 3 CALL 0018H DF 0018H
RST 4 CALL 0020H E7 0020H
RST S CALL 0028H EF 0028H
RST 6 CALL 0030H F7 0030H
RST 7 CALL 0038H FF 0038H

. 0000H —o

— / 0001H ——

0002H ——

RSTO X -
. \ 0007H RET
RST1 - 0009H ——

\ 000FH .
Fig. 14-4 Restarts are calls to vector locations.

If an RST 1 is encountered, the contents of the program
counter are again pushed onto the stack, the program
branches to 0008H and then returns to the main program.

A restart instruction is a special kind of call because it
branches to a predetermined address. Table 14-1 includes
the op code for the restart instructions. Notice that only 1
byte is required to code a restart instruction. The standard
CALL uses three bytes; therefore, an RST instruction is an
efficient way to call frequently used subroutines.

Vectored Calls

The word vector implies direction. The RST instructions
are like vectors because they point to specific locations in
memory. The starting address of each restart subroutine is
called a vector location. RST O points to vector location
0000H, RST 1 points to vector location 0008H, and so on.

Notice that there are only 8 bytes from 0000H to 0007H,
0008H to 000FH, 0010H to 0017H, and so on. Most useful
subroutines require a lot more than 8 bytes. For this reason,
you rarely see subroutines stored in the restart locations.
Instead, most programmers use the vector locations for the
starting addresses of longer subroutines.

Chapter 14 1/0O Operations 241

0030H c3

0031H 00 > JMP F200H
Ea— 0032H F2 ,
~ RST6 e

. F2FFH RET
Fig. 14-5 Vector location contains JMP op code.

An Example

Suppose a subroutine with 256 bytes is stored at addresses
F200H to F2FFH. If this subroutine is used a great deal,
we can call it efficiently by using a RST 6 with a JMP
F200H stored at address 0030H. The RST 6 takes the
program to address 0030H; then the JMP F200H takes the
program to the subroutine.

Figure 14-5 illustrates the program flow. When the
program encounters the RST 6, it branches to address
0030H. Here it finds a JMP F200H. This produces a branch
to the subroutine located at F200H. The long subroutine is
then executed with the final instruction RET taking the
processing back to the main program.

14-3 INTERRUPTS

Some pins on the 8085 allow peripheral equipment to
interrupt the main program for /O operations. When an
interrupt occurs, the 8085 completes the instruction it is
currently executing. Then it branches to a subroutine that
services the peripheral device. Upon completion of the
service subroutine, the CPU returns to the main program.

This type of I/O operation is called interrupt-driven 1/O.
It is more efficient than programmed I/O because the CPU
does not wait for a high status signal. Instead, the CPU
can process data while the peripheral device is getting ready
for an I/O transfer. .

Hardware Restarts

RST 0 to RST 7 are software restarts because they are
instructions. Besides these software restarts, the 8085 has

four hardware restarts designated TRAP (pin 6), RST 7.5 -

(pin 7), RST 6.5 (pin 8), and RST 5.5 (pin 9). When any
of these pins is active, the internal circuits of the 8085
produce a hardware CALL to a predetermined vector
location.

A hardware call like this is known as a vectored interrupt
because the program branches to a vector location where
the starting address of a service subroutine is stored. By

242 Digital Computer Electronics

TABLE 14-2. RESTART

LOCATIONS
Restart Vector Location

RST O 0000H
RST 1 0008H
RST 2 0010H
RST 3 0018H
RST 4 0020H
TRAP 0024H
RST 5 0028H
RST 5.5 -002CH
RST 6 0030H
RST 6.5 0034H
RST 7 0038H
RST 7.5 003CH

connecting the hardware restart pins to peripheral devices,
we can use interrupt-driven /O instead of programmed
/0.

Where are the vector locations for the hardware restarts?
Exactly halfway between the software restart locations. As
shown in Table 14-2, a TRAP restart sends the program to

" location 0024H, halfway between 0020H and 0028H.

Similarly, the RST 5.5 sends the program to 002CH, which
is halfway between 0028H and 0030H. RST 6.5 branches
to 0034H, and RST 7.5 to 003CH.

RST 5.5 INTERRUPT
ACKNOWLEDGE o
1 Peripheral
cPU ya device
4 . DATA
N

Fig. 14-6 Interrupt-driven I/O.

Interrupt-Driven 1/0

Figure 14-6 illustrates the basic idea behind interrupt-driven
I/0O. When the peripheral device has a byte ready for data
transfer, it sends a: high bit to the RST 5.5 input. After
saving the contents of the program counter in the stack, the
CPU branches to vector location 002CH. Here it finds the
starting address of the service subroutine; this subroutine
inputs a byte from the peripheral device and stores it in
memory.

Aftet the byte has beenstored, the CPU sends a high
ACKNOWLEDGE bit to the peripheral device. This tells
the peripheral device to get the next byte ready for transfer.
Then the CPU returns to the main program where data
processing continues. In this way, the CPU can process
data in the main program rather than waiting for the
peripheral device to get ready. When the peripheral device

TABLE 14-3. INTERRUPT PRIORITIES

Interrupt Priority Vector Location
TRAP 1 0024H

RST 7.5 2 003CH.
RST 6.5 3 0034H

RST 5.5 4 002CH
INTR 5 None

has the next byte ready for transfer, it sends a high bit to
the RST 5.5 input and the cycle repeats.

The advantage of interrupt-driven I/O is its efficiency.
The CPU is no longer wasting 99.9 percent of its time
waiting for the peripheral device to set up the next byte.
The typical microcomputer uses interrupt-driven I/O because
it has to process data while servicing a keyboard, a video
display, and other peripheral devices.

Interrupt Priorities

Besides the hardware restarts, the 8085 also has an INTR
interrupt, discussed later. Table 14-3 summarizes the 8085
interrupts. Notice that TRAP has the highest priority, RST
7.5 next highest, and so on. If two or more interrupts are
active at the same time, the 8085 takes them in order of
their priority level: TRAP is serviced first, then RST 7.5,
and so forth.

TRAP

When an interrput pin goes high, the 8085 will complete
the current instruction before looking at the pending inter-
rupts. This means that-a few microseconds may elapse from
the time an interrupt pin goes high to the time the 8085 is
aware of the interrupt. Because of this delay, you need to
know how the different interrupts are activated.

As shown in Fig. 14-7, the 8085 is designed to respond
to edge triggering, level triggering, or both. For instance,
it takes a positive edge and a sustained high level to activate
the TRAP interrupt. This means that TRAP must go high

LEVEL ——p

and EDGE —>=] —{] 7RAP
EDGE ONLY —> | | —{]Asr1s
LEVEL ONLY—:_I——- —{] Asres
LEVEL ONLY——:I.-— —[] As7ss
LEVEL ONLY __:J_— — wr

Fig. 14-7 Interrupt signals are edge- or level-sensitive.

and remain high until it is acknowledged. This avoids false
triggering caused by noise and transients.

For example, suppose the 8085 is midway through an
instruction cycle with another 2 s to completion. If a 300-
ns noise spike hits the TRAP input, it will edge-trigger but
not level-trigger the TRAP interrupt because the 8085 is
still working on the current instruction cycle. Because the
TRAP input is both edge- and level-sensitive, the 8085
avoids responding to false TRAPS.

Since the TRAP input has the highest priority, it is used
for catastrophic events such as power failures, parity errors,
and other events that require immediate attention. In the
case of brief power failures, it may be possible to save
critical data. With parity errors, the data may be resampled
or corrected before going on.

Other Interrupts

There are some applications where the peripheral device
will send a pulse rather than a sustained high level. This is
where the RST 7.5 interrupt is used. As shown in Fig.
14-7, it responds to edge triggering alone. The input pulse
sets an internal flip-flop whose output is then sampled by
the 8085 interrupt circuits. (False triggering is possible with
the RST 7.5 input.)

The other interrupts are level-triggered; they must remain
high until acknowledged.

14-4 INTERRUPT CIRCUITS

To get a better understanding of how interrupts work, look
at Fig. 14-8. To begin with, notice the input waveforms
that activate the interrupts: a positive edge and a sustained
high level for the TRAP, the positive edge of a pulse for
the RST 7.5, and sustained high levels for the RST 6.5
and RST 5.5.

TRAP

In Fig. 14-8 the positive edge of the TRAP signal (pin 6)
will set the D flip-flop. Because of the AND gate, however,
the final TRAP also depends on a sustained high-level TRAP
input. This is why the TRAP is both edge- and level- -
sensitive.)

The TRAP flip-flop can be cleared in either of two ways:
alow RESET IN (system reset) or a high TRAP ACKNOWL-
EDGE. After the 8085 recognizes a TRAP interrupt, it will
send a high TRAP ACKNOWLEDGE bit to the TRAP flip-
flop; this clears it as a preparation for future TRAP interrupts.

RST 7.5
A pulse at pin 7 can activate the RST 7.5 interrupt because

the positive edge will set the D flip-flop in Fig. 14-8. The

Chapter 14 I/O Operations 243

‘synoid ydnuoyup g-py 1

J9aITMONXOY
LdNYHILNI ANV

NI L3STY

IS
[+

0 Sp—1/3 1a

0 Y Jsw
IR IVGE

— gaw

. §)
HOZ00 11VD I'Imml. §'s hm

El)

I

6 uid

gon | L gow

HYEO0D 1VO G'9 1S4

O
1|7

g uid
. , | 390IIMONNOY
0 y §L1SY
o 5Ly
. 0 .
. s | 5 DILI.@S = d gL hwﬂm_ ||:|
HOE00 TTVD (I “ g . 0 ab—1 Lud
. 11 .
3903 IMONNDY
7]
NI LISIY

1Q

dvdl

0 al—1 . 9 uid
HYZ00 1TvD lel_\ 3

dvyl

:

output of this flip-flop is labeled /7.5. Notice that /7.5 is
one input to an AND gate.

One way to clear the RST 7.5 flip-flop is with a high
~ R7.5 bit, done with an instruction to be described later.
Another way is with a high RST 7.5 ACKNOWLEDGE,
internally produced as follows. After the 8085 recognizes
a RST 7.5 interrupt, it sends a high RST 7.5 ACKNOWL-
EDGE bit to the second D flip-flop; this clears it for future
RST 7.5 interrupts.

RST 6.5 and RST 5.5

The RST 6.5 and RST 5.5 inputs are connected directly to

AND gates. Therefore, we need a sustained high level at

pin 8 to enable the RST 6.5 AND gate and a sustained high
- level at pin 9 to enable the RST 5.5 AND gate.

Maskable Interrupts

The signals 17.5, 16.5, I5.5, and are called pending inter-
rupts. The signal /E (bottom flip-flop) is called the interrupt
enable flag; it must be high to activate the AND gates. Also
notice the M7.5, M6.5, and M5.5 signals; they must be
low to enable the AND gates.

To activate the RST 7.5 interrupt, /7.5 must be high,
M7.5 must be low, and /E must be high. Similarly, to get
a high RST 6.5, 16.5 must be high, M6.5 low, and /E high.
For the RST 5.5 interrupt to be active, /5.5 must be high,
'M5.5 low, and IE high.

The M7.5, M6.5, and M5.5 signals are called interrupt
masks because they can disable a pending interrupt. For
example, if M7.5 is high, it disables the AND gate it drives;
this prevents a pending I7.5 interrupt from reaching the
final output.

The RST 7.5, RST 6 5, and RST 5.5 interrupts are
maskable; this means that they can be disabled by applying
high M7.5, M6.5, and M5.5 signals. The TRAP is non-
maskable; once it goes high and stays high, a TRAP
interrupt appears at the final output.

14-5 INTERRUPT INSTRUCTIONS

Certain instructions are used with the interrupt circuits of

Fig. 14-8. For instance, we might want to disable the °

interrupt system, or mask a particular interrupt, or examine
pending interrupts, and so forth.

EI and DI

The 8085 has two instructions that can enable or disable
all interrupts except the TRAP. The instruction

EI

stands for enable interrupts. When executed, this instruction
will produce a high EI bit in Fig. 14-8 (bottom flip-flop).
This sets the flip-flop and produces a hxgh IE output.

The instruction

DI

stands for disable interrupts. When executed, it produces
a high DI bit to the bottom flip-flop (Fig. 14-8). This clears
the flip-flop and results in a low [E. The low /E then
disables all interrupts except TRAP.

.Besides the DI input, the OR gate has a RESET IN input
and an ANY INTERRUPT ACKNOWLEDGE input. This
means that the interrupts (except TRAP) are disabled by a
system reset or by the acknowledgement of a previous
interrupt. In other words, when the 8085 recognizes an
interrupt, it produces a high ANY INTERRUPT ACKNOWL-
EDGE bit. This disables the interrupts and prevents a future
interrupt (except TRAP) from interrupting a service sub-

“routine.

Because the interrupts are automatically disabled by the \
ANY INTERRUPT ACKNOWLEDGE bit, the programmer
usually includes an EI as the next to last instruction in the
service subroutine. For instance, the last two instructions
typically are

Subroutine:

This subroutine cannot be incerrupted (except by a TRAP).
After the EI is executed, the processing returns to the main
program with the interrupt system enabled.

The programmer who wants some critical part of the
main program to run uninterrupted can use a DI at the
beginning of the segment to be protected and an EI at the,
end:

Main program: DI

This pfotects the program between the DI and EI because
the interrupt system is disabled.

SIM

Here is another interrupt instruction:

SIM

SIM stands for set interrupt mask. To. use this instruction,
you first load the accumulator as shown in Fig. 14-9a.

Chapter 14 1/O Operations 245

S0D | SOt X | R75 | MSE|M15 |m65' | M55

I L Set up 5.5 mask]
Set up 6.5 mask 0 0 0 0 1 1 1 0
Set up 7.5 mask

Mask Set Enable

Reset RST 7.5 flip-flop
Don’t Care

SOD Enable

(a)
Fig. 14-9 Accumulator contents before executing SIM.

7 6 5 4 3 2 1 0

SID | 175 | 1656 | /55 IE | M75| M65| M55

I t— Mask RST 5.5
Mask RST 6.5 0 1 0] 0 1 1 0 0

Mask RST 7.5

Interrupt Enable
Pending RST 5.5
Perding RST 6.5
Pending RST 7.6
Serial Input Data

(a)
Fig. 14-10 Accumulator contents after executing RIM.

Then by executing a SIM the accumulator contents will be
transferred to the appropriate locations. .

The R7.5 bit goes to the RST 7.5 flip-flop of Fig. 14-8;
when high, this bit clears a pending 17.5 interrupt. The
MSE (mask set enable) bit conditions the AND gates of Fig.
14-8; when high, it permits masking bits M7.5', M6.5',
and M5.5' to set or reset the masking flip-flops.

Here is an example. Suppose we want to mask (disable)
the RST 7.5 and RST 6.5 interrupts and unmask (enable)
the RST 5.5 interrupt. Then, we can use

MVI A,0EH
SIM

After the MVI is executed, the accumulater contents appear
as shown in Fig. 14-9b. Here you see a high MSE, high
M7.5', and high M6.5’; all oher bits are low. The SIM
then transfers these bits to the appropriate locations, shown
in Fig. 14-8. (The SOD and SOE will be explained later.)
The high MSE allows M7.5" and M6.5’ to set their flip-
flops; this produces high masking bits-M7.5 and M6.5,
disabling the final AND gates and preventing interrupts 17.5
and 16.5 from arriving at the final outputs.

RIM

RIM stands for read interrupt mask. When executed, it
loads the accumulator with the bits shown in Fig. 14-10a.

246 Digital Computer Electronics

Serial Qutput Data

(b)

(b)

Bit 7 is the serial input data (SID). Bits 6, S, and 4 are the
pending interrupts. Bit 3 is the interrupt-cnable bit /E. Bits
2, 1, and O are the interrupt masks. Execution of a RIM
allows the programmer to examine the status of the pending
interrupts, masks, and the like. This may be necessary
following an interrupt service subroutine.

For instance, suppose the accumulator contains 4CH after
a RIM is executed. As shown in Fig. 14-10b, I7.5, IE, and
M?7.5 are high. This means that a 7.5 interrupt is pending,
the interrupt system is enabled, and the RST 7.5 interrupt
is currently masked.

EXAMPLE 14-2

C3H is the op code for JMP. Figure 14-11 shows some
starting addresses for interrupts. Identify the starting address
of each service subroutine.

SOLUTION

The TRAP interrupt vectors to 0024H; therefore, the

C3H
00H
FOH

produces a JMP (C3H) to the service subroutine starting at
FOOOH.

0024H C3H TRAP
00H
FOH

002CH C3H
*00H
F1H

RST 8.5

0034H C3H
00H
F2H

RST 6.5

003CH C3H R75
00H
F3H

..
.

Fig. 14-11 Vector locations with subroutine starting addresses.

Likewise, the RST 5.5 service subroutine starts at F100H,
the RST 6.5 at F200H, and the RST 7.5 at F300H.

EXAMPLE 14-3

Figure 14-12 shows a peripheral device connected to the
RST 5.5 interrupt. After the CPU receives a data word in
port 12H, it can send a high ACKNOWLEDGE bit (bit 7
of port 11H) back to the peripheral device.

The starting address in the RST 5.5 vector location is
F100H. Show a service subroutine that inputs data from
the peripheral device and stores the data at 3000H.

SOLUTION

Address Mnemonic Comment

F100H PUSH PSW ;Save accumulator and flags
F101H PUSH H ;Save HL contents

F102H IN 12H ;Input data from device
F104H LXI H,3000H ;Set pointer

F107H MOV M, A :Store data

FI0O8H MVI A,80H ;Set ACKNOWLEDGE bit
FI0AH = OUT 11H ;Acknowledge data arrival
F10CH POP H ;Restore HL contents
F10DH POP PSW ;Restore accumulator and flags
F10EH EI ;Enable interrupts

F10FH RET ;Return

INTERRUPT

RST 5.5
Bit 7, Port 11H ACKNOWLEDGEV Peripheral
CPU , device
Port 12H DATA
N\

Fig. 14-12 Interrupt-driven /O example.

When the peripheral device is ready for data transfer, jt
sends a high bit to the RST 5.5 input. After the 8085
recognizes this interrupt, it branches to vector location
002CH. Here it finds a JMP F100H. The jump takes the
program to the starting address of the service subroutine.

The service subroutine usually destroys the contents of
the accumulator and HL register. For this reason, the
subroutine starts with a PUSH PSW and a PUSH H; this
saves the accumulator contents, flags, and HL contents in
the stack.

Next, the IN 12H inputs a data word from port 12H.
After the HL pointer is set to 3000H, the data is stored at
location 3000H. The next two instructions send a high
ACKNOWLEDGE bit to the peripheral device.

The POP H and POP PSW restore the contents of the
HL register, accumulator, and flag register. Because the
stack operates as a first-in last-out memory, we pop in the
reverse order that we pushed.

Finally comes the EI to enable the interrupts and the
RFT to get us back to the main program.

By modifying this subroutine, we can store bytes in
successive memory locations. For instance, using an INX
H and some other instructions, we can update the HL
pointer each time the subroutine is called. In this way, the
incoming data words will be stored at 3000H, 3001H,
3002H, and so on.

14-6 SERIAL INPUT AND SERIAL
OUTPUT

The 8085 has a SID (serial input data) pin. You can use
this input to receive serial data from a peripheral device.
The RIM instruction reads the interrupt mask into the
accumulator (see Fig. 14-10). Bit 7 is the serial input data
bit. This bit has nothing to do with the interrupt system; it
is included in the RIM instruction to avoid having to include
an extra instruction for SID operations.

Each time a new bit arrives at the SID input, we can
execute a RIM instruction. By isolating and saving this bit,
we can convert a serial data stream into a parallel 8-bit
word (see Example 11-21 for programmed I/0). If interrupt-
driven /O is used, a service subroutine is called each time
a new bit is at the SID input. This service subroutine would
include a RIM plus rotate and store instructions for serial-
to-parallel conversion. -

The SOD output pin can deliver a serial data stream to
a peripheral device. The SIM instruction sets the interrupt
mask as shown earlier (Fig. 14-9). Bit 7, SOD, is latched

Chapter 14 I/O Operations 247

into the SOD output pin only if bit 6, SOE (SOD enable),
is high. In other words, bit 6 acts like a switch for bit 7.

As an example, if want to send a high bit to the SOD
output pin, we can use

MVI A,COH
SIM

The MVI sets bits 7 and 6. The SIM then latches bit 7 into
the SOD output pin. To send a low bit to the SOD output,
we can use

MVI A,40H
SIM

By using rotate and other instructions we can write a
program that converts an 8-bit parallel word into a serial
data stream at the SOD output. (See Example 11-14 for the
basic idea behind parallel-to-serial conversion.) With inter-
rupt-driven I/O, the service subroutine would include a
SIM, rotates, and other instructions for parallel-to-serial
conversion.

14-7 EXTENDING THE INTERRUPT
SYSTEM :

The TRAP, RST 7.5, RST 6.5, and RST 5.5 give us four
interrupt-request lines. Sometimes, we need more than this.

One way to extend the interrupt system is with the INTR

input.
Interrupt
. controller
INTR
INTA N — | &1
— nterrupt
8085 8259 — [requests
DATA —

Fig. 14-13 The INTR interrupt extends interrupt capability.

Interrupt Controller

In Fig. 14-13 the 8259 receives interrupt requests from A

eight peripheral devices. Known as an interrupt controller,
the 8259 stores the starting addresses of eight service
subroutines, one for each of the peripheral devices. To
service an interrupt, it sends a

CALL address

instruction to the 8085. This calls the service subroutine
for the interrupting peripheral device.

248 Digital Computer Electronics

Sending the CALL

Here are the details of how the CALL instruction is sent.
When a peripheral device needs service, the 8259 sends a
high bit to the INTR input. As soon as the 8085 recognizes
a high INTR, it returns a low INTA (interrupt acknowledge)
to the 8259. The 8259 responds by sending back the op
code of a call.

Next, the 8085 sends another low INTA. This INTA
fetches the low address byte from the 8259. Finally, the
8085 sends another low INTA. This third INTA fetches the
high address byte.

An Example

Suppose the service subroutine for a peripheral device starts
at address F400H. When this device needs service, the
8259 sends a high INTR to the 8085. After this interrupt is
recognized, the 8085 sends back a low INTA. This low
INTA causes the 8259 to send

CDH

along the data bus. This is the op code for a CALL,; it is
stored in the 8085 instruction register.

Again, the 8085 sends a low INTA. In response, the
8259 returns the low byte of the address:

00H

This low byte is stored in the Z register.
For a third time, the 8085 sends a low INTA. The 8259
then returns the high byte of the address:

F4H
This high byte is stored in the W register. The instruction
CALL F400H

is now in the 8085. After the contents of the program
counter are saved in the stack, the program branches to
service subroutine.

Initializing

The eight starting addresses of the service subroutines are
stored in the 8259 during initialization -of the system. In
other words, when you power up the system, the program
counter is reset to 0000H. The early instructions in the
program initialize the different chips like the 8156, 8355,
8259, etc. Initializing the 8259 means sending the starting
addresses of the service subroutines to 8259; it has eight
internal registers for storing these addresses. After the
initialization is completed, the 8259 is ready to accept
interrupt requests from the peripheral devices.

14-8 DIRECT-MEMORY ACCESS

A floppy disk is a thin plastic disk about 8 inches in
diameter, coated with magnetic oxide. A disk drive is a
peripheral device that can either read or write data on the
disk, which can store a half million or more bytes. The
only practical way to transfer data to and from the disk is
with direct memory access (DMA). As described earlier,
the 8085 can turn over control of its buses to a DMA
controller for high-speed /O transfers. In this way, large
amounts of data can be transferred in a relatively short
time.

" Accumulator in the Middle

The details of DMA transfer are too complicated to go into
here, but we can discuss the basic idea. The IN instruction
is the usual way to input data from peripheral devices. The
accumulator is involved because it receives the input data.
Similarly, the OUT instruction transfers data from the
accumulator to output devices. In either case, the accu-
mulator serves as go-between. '

One way to transfer data from the memory to peripheral
devices is to use MOV and I/O instructions. For instance,
to move 256 bytes from memory to an output device, we
can use a loop that includes MOV A,M and OUT instruc-
tions. This approach will work, but it is too slow when
large amounts of data are involved.

The Problem

The foregoing approach is slow for two reasons. First, the
accumulator ‘acts as a halfway station in each transfer of
data from memory to I/O, or vice versa. Second, the 8085
is microprogrammed, which means that the microinstruc-

tions have to be read from a control ROM. The access time
of this control ROM slows things down.

Basic Idea

DMA data transfers are faster because the accumulator is
eliminated as a halfway station; the data goes directly from
the memory to the peripheral device or vice versa. Also,
the DMA controller has hardwired control instead of
microprogramming. This eliminates the access time of the
control ROM. ,

The HOLD and HLDA signals are used in DMA operz -
tions. In Fig. 14-14, when the DMA controller is ready to
take over control, .it sends a high HOLD signal to the 8085.
The 8085 then three-states (floats) its address, data, and
control buses. It also sends a high HLDA (hold acknowledge)

. to the DMA controller, indicating that it has turned over

control. The DMA controller carries out the data transfers
at a high speed and then returns control to the 8085 by
sending back a low HOLD signal.

HOLD
. HLDA
8085 DMA
L \, | Controller
(All buses .
) @

Memory

Fig. 14-14 Direct memory access.

GLOSSARY

DMA Direct memory access, the fastest type of I/O
operation. The CPU passes control of its buses to a DMA
controller, a chip optimized for high-speed data transfers
from peripheral devices to memory and vice versa.

floppy disk A thin plastic disk about 8 inches in diameter
and coated with magnetic oxide. It can store half a million
or more bytes. A smaller version, called the mini floppy
disk, is about 5 inches in diameter.

interrupt controller A peripheral chip used with the INTR
interrupt to accommodate more interrupts. The 8259 handles
interrupt requests from up to eight peripheral devices.
interrupt-driven I/0 A type of I/O transfer that relies on
both hardware and software. The CPU never waits on the

peripheral device. Instead, the peripheral device sends an
interrupt request when it is ready for servicing. After the
CPU recognizes this interrupt, it calls a subroutine that
services the peripheral device.

programmed I/0 Input and output data transfers that rely
exclusively on software. The CPU waits until a high status
bit is received from the peripheral device. While waiting,
the CPU wastes time, which is acceptable in simpler
applications. Programmed I/O is also called polled I/O.
restart - A special type of CALL in which the address is
not programmed but built into the hardware. The 8085 has
eight software restarts (RST 0 to RST 7) and four hardware
restarts (TRAP, RST 7.5, RST 6.5, and RST 5.5).

Chapter 14 1/O Operations 249

SID Serial input data. The SID input of the 8085 can be
loaded into bit 7 of the accumulator by executing a RIM
instruction. With AND masks and rotates. a serial data
stream into the SID input can be converted to a paralle] 8-
bit word. _

SOD Serial output data. A SIM instruction latches bit 7
of the accumulator into the SOD output pin if the SOE (bit
6) is high.

start bit A bit used in programmed I/O. The CPU sends
a high START bit to the peripheral device to begin an I/O
transfer.

status bit One of the handshaking bits used in programmed
I/O. It indicates that the peripheral device has data ready
to send in an input operation or has received the data in an
output operation.

TRAP The highest-priority interrupt, typically used for
catastrophic events like temporary power failure, bus errors,
and the like. Because of its critical nature TRAP is
nonmaskable and can interrupt a service subroutine.
vector location The address to which a software or
hardware restart branches. Usually the vector location and
the next two memory locations contain a JMP address
instruction that takes the processing to a long subroutine.
vectored interrupt An interrupt that takes the program to
a vector location (a preassigned address). TRAP vectors to
0024H, RST 7.5 to 003CH, RST 6.5 to 0034H, and RST
5.5 to 002CH.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

« 1. With I/O the CPU has to wait for the
peripheral device to send a high status bit. This
waste of CPU time may be acceptable in some
applications where the has nothing bet-
ter to do.

2. (programmed, CPU) The 8085 has eight _____ -
\instructions: RST 0. RST 1, RST 2, RST 3, RST 4,
RST 5, RST 6, and RST 7. Each is a special CALL
to a preassigned address. This address is called a

location. Usually, the vector location
and the next two memory locations contain a JMP
instruction. This allows the program to branch to a
longer .

3. (restart, vector, subroutine) The 8085 has four
hardware restarts: TRAP, RST 7.5, RST 6.5, and
RST 5.5. These are called _ interrupts
because they point to preassigned vector locations.

4. (vectored) TRAP has the priority. It
requires both edge and level triggering. This means
that the TRAP input must go high and stay _
until recognized. The RST 7.5 interrupt is edge-
triggered only because it maybea | The
RST 6.5 and RST 5.5 are level-triggered.

5. (highest, high, pulse) TRAP is nonmaskable. RST
7.5,RST 6.5, and RST 5.5are ______~__; this
means that we can disable these interrupts individ-
ually. To disable the whole interrupt system (except
TRAP), the ______ instruction may be used.

6. (maskable, DI) When any interrupt is recognized,
the 8085 automatically ___ the interrupt

250 Digital Computer Electronics

system (except for TRAP). This prevents an incom-
ing interrupt from interrupting a service subroutine.
The programmer must use an instruc-
tion before the RET to enable the interrupt system
when it returns to the main program.

7. (disables, EI) The SIM instruction allows us to

the interrupt mask. The RIM instruction
lets us read the mask. Besides setting
and reading bits in the interrupt system, SIM and
RIM are used for serial input data (SID) and serial -
output data (SOD).

8. (set, interrupt) An interrupt controller stores the
starting addresses of service . When a
peripheral device needs service, the interrupt con-
troller sends a high INTR to the 8085, which returns
three . INTAs. In response to each .of
these low INTAs, the interrupt controller sends back
the op code of a , the low byte of the
starting address, and the high byte of the starting
address.

9. (subroutines, low, CALL) A disk is a
thin plastic disk coated with magnetic oxide. A disk
driver is a peripheral device that can either read or
write data on the disk. The only practical way to
transfer data to and from a floppy disk is with

memory access (DMA).

10. (floppy, direct) DMA transfers are fast because the
accumulator is not used during data transfers {from
memory to peripherals and vice versa. Also, the
DMA controller has hardwired control instead of
microprogramming. This eliminates the access time
of the control ROM and allows the transfers to take
place at much higher hardware speed.

 PROBLEMS

14-1. In the input program of Sec. 14-1. what change
is necessary if we want to store the incoming
data at addresses 8000H to 80FFH?

14-2. How can we input and store 100 bytes instead of
256 bytes in the preceding problem? v

Peripher‘al
device
8 Y Port 10H Bt6 | stanr
cPU 8 Port 111 Je—otl 1 sTATUS
K 8 | Port12H K 8 DATA
Fig. 14-15
14-3. Instead of the handshaking bits shown in Fig.

14-4.

14-15, we prefer to use bit 0 of port 10H for the
START bit, and bit 1 of port 11H for the STA-
TUS bit. Write a program that inputs and stores
256 bytes of data at addresses SO00H to SOFFH.
Write a program that inputs and stores 512 bytes
at addresses S000H to 51FFH. Use the hand-
shaking bits shown in Fig. 14-15.

reripheral
device
: Bit 6
8 Port 10H START
_ Bit7
ccu K 8 Port 11K [STATUS
8 M Port12H 8 N DATA
Fig. 14-16
14-S. Write a program that transfers 1,024 bytes from

14-6.

14-7.

addresses 8000H to 83FFH to a peripheral de-
vice. Use the same handshaking bits as Fig.
14-16.

Here is a program segment:

LX1 H,3000H
RSTS
MOV C,A

What is the vector location for the second in- -
struction? What is the op code you almost al-
ways find in this location? ‘

The CPU is processing the main program. At the
end of an instruction cycle, it finds that pending

14-8.

14-9.

' 14-10.

14-11.

14-12.

interrupts /7.5, 16.5, and /5.5 are all high in

Fig. 14-17. Which interrupt does the CPU ser-

vice first for each of the following:

a. [E is high, M7.5 is high, M6.5 is low. and
M5.5 is low.

b. [E, M7.5, M6.5, and M5.5 are all high.

c. [IEishigh. M7.5, M6.5 and M5.5 are all low.

d. IE is low.

In Fig. 14-17, M7.5, M6.5, and M5.5 are all

low. What happens to interrupt masks for each

of the following:

a. M7.5' M6.5', M5.5', and MSE are low.

b. M7.5" and M5.5' are low. M6.5" and MSE
are high.

c. M7.5', M6.5', M5.5', and MSE are high.

Here are some initializing instructions:

MVI A,1DH
SIM

After the SIM is executed, which are the inter-
rupts that are masked?

Write two initializing instructions like those of
the preceding probiem to mask RST 5.5 and
RST 6.5. All unnecessary and don’t care bits
should be set to 0.

Here is how a service subroutine ends:

RIM
El
RET

Suppose the accumulator contains CAH after the
RIM is executed. Answer the following:

a. Is the serial input data low or high?

b. Which are the pending-interrupts?

c. Is the interrupt-enable flag low or high?

d. Which interrupts are masked?

An RST 6.5 service subroutine looks like this:

PUSH PSW
PUSH B
PUSH D
PUSH H
MVI A 0AH
SIM

El

Chapter 14 1/0 Operations 251

'HOZ0O 1V l.ll@

HYE00 1V

HOE00 1vD

HYZ00 1VD

3903 TMONIOV

. 1INYYILNI ANV
o o - - NI 13534
—{ 0 S—F 1a
E7] 5T :
0 " ISW
_ b
0 S ®
S'SW Ol K-x-17}
6'G 1SY
&/ —{]
6 uld
0 ¥ é
0 s o jv
gow A S9W
6’0 1S4
59/ {1
g uid
: 39GITMONIDV
0D Ay ﬁlQllrl §'LLSH
. gLy .
|0 .)
S LW S Dlll St 6L 1Sy
4
— Luid
7] ar—
3903 TMONNOY
dvyl
[IWELET]
dvil
]]
ab—1 9 ug

LT-¥1 *314

_ i

Why are the PUSH instructions used?

After the SIM is executed, which are the"

interrupts that can interrupt the service sub-
routine?

14-13. Here is a program for serial input data:

Label

LOOP:

Mnemonic Comment
MVI B,00H ;Clear B register
MVI C,N8H ;Present counter to 8
RIM ;Get SID bit
ANI 80H ;Isolate SID bit
ORA B ;Update parallel word
RRC ;Rotate right
MOV B,A ;Save accumulator
DCR C ;Count down
INZ LOOP ~ ;Go back if not finished
RLC ;Rotate left
HLT

The program loops 8 times. The successive SID
bits after each RIM is executed are 1, 1, 0, 0, O,
0, 1, and 0. Answer the fellowing:

a.

b.

What does the B register contain after the
first MOV B,A has been executed?
‘What does the B register contain after the
~ second MOV B, A has been executed? .
What are the contents of the accumulator

d.

after the RLC has been executed? What let-
ter is this in ASCII code?
Was the SID data received LSB first or last?

14-14. Here is a program:

Mnemonic

Label Comment
MVI A4DH ;Load ASCII M
MVI C,08H ;Present counter to 8

LOOP: RRC ;Rotate LSB into MSB

MOV B,A ;Save accumulator
ANI 80H ;Isolate SOD bit
ORI 40H :Enable SOE bit
SIM ;Latch SOD bit
MOV A B ;Restore accumulator
DCR C ;Count down
INZ LOOP ;Loop if not finished
HLT

Answer the following:

a.

b.

How many times does the processing pass
through the loop?

Is the ASCII letter M being sent LSB first
or last?

. After the first ORI COH is executed, what

does the accumulator contain?
After the MOV A,B is executed for the last
time, what does the accumulator contain?

Chapter 14 I/O Operations 253

Support Chips

This chapter continues our discussion of the 8156 and the
8355. Besides its 256-byte RAM, the 8156 contains three
. I/0 ports. In addition to its 2K ROM, the 8355 has two
I/O ports. We want to find out how to use these I/O ports.

Also included in this chapter are ways to create new
ports, gate addressing, decoder addressing, and other /O
topics. Finally, we will look at how to expand the memory
with 2114s, 1K static RAMs that have become industry
standards.

15-1 THE 8156

As discussed in Chap. 13, the 8156 contains a 2,048-bit
RAM organized as 256 words of 8 bits each. In a minimum
system, A,; is connected to the CE input. This produces
RAM locations of 2000H-20FFH.,

The 8156 also has three IO ports: port A, port B, and
port C. To read from or write into these ports, /O/M must
be high. Each port has an internal register (PA, PB, or PC)
that latches data during I/O operations. Ports A and B can
each latch an 8-bit word. Port C, however, can only latch
a 6-bit word. This is acceptable because port C is typically
used for serial I/O or for handshaking where fewer than 8
bits are needed. v

Figure 15-1 shows the pinout diagram of an 8156. Most
of the pins are self-explanatory. For instance, port A has a
data bus PA, through PA, (pins 28 to 21). Likewise, port
B has a data bus PB, through PB, (pins 36 through 29).
Port C. which has only a 6-bit data bus PCs through PC,,
uses pins 5, 2, 1, 39, 38, and 37.

The address-data bus, AD,—AD,, uses pins 19 to 12.
Recall also the control signals RESET (pin 4), 10/M (pin
7), CE (pin 8), RD (pin 9), WR (pin 10), and ALE (pin
11). These were discussed in Chap. 13 along with Vs (pin
20, ground) and Vcc (pin 40, supply voltage). The only
new signals are TIMER IN (pin 3) and TIMER OUT (pin
6); they are discussed in Sec. 15-4.

254

: \
“PC; Q1 400 v
B =) 39 rc,
TIMERIN T] 3 38] rc,
RESET [} 4 37 rc,
Pcs O s 36 1 rs,
TIMER OUT [6 35 1 ra,
omq7 34 1 PBy
cEd s 33 rs,
RO O 9 320 ra,
wR Q1o .. 3P P8
ALE [1 30 [s,
ADy O 12 29 A P8y

Ap, O 13 280r, ~
AD,] 14 27 O Pag
AD; Q15 26 [rAg
AD, [16 25 3PA4
ADSAE 17 24 [PA,
ADg 4 18 23 A ra,
AD; O 19 22 A pa,
Ves [20 21 O pa,

Fig. 15-1 8156 pinout.

15-2 PORT NUMBERS FOR THE
8156

. When using thc IN and OUT instructions, we have to

include an immediate byte that specifies the port number..
For instance, OUT 21H latches the accumulator contents
into port 21H. Since the port numbers can vary from 00H
to FFH, the 8085 can control up to 256 ports.

Duplication of Port Number

When an IN or OUT instruction is executed, the 8085
duplicates the port number on the address bus and on the
address-data bus. For instance, during the execution of

IN 21H

8085
0010 0001 0010 0001
(a)
A3 AD, ADy ADg
CE)
8156
(b)

Fig. 15-2 (a) Port number is duplicated on buses; (b) acuve bits
during I/O addressmg

the 8085 sends out
0010 0001

on its address bus and address-data bus, as shown in Fig.
15-2a.
As an equation,

A|5—A8 = AD7—ADO (15-1)

This says the upper address bits equal the lower address
bits during I/O operations. Remember this duplication; it’s
important. :

1/0 Addresses

Besides ports A, B, and C, the 8156 contains a command
register, a status register, and.a timer. The.command
register determines whether the ports act like input ports or
output ports. The status register contains information about
the ports. The timer is a 14-bit down counter used for
counting input pulses. Later sections discuss the command
register, status register, and timer in detail.
During the execution of IN and OUT instructions, the
~ 8156 uses only the three lower address bits (AD,, AD,, and
AD,). Table 15-1 shows the bit combinations for each
internal register: 000 addresses the command-status regis-
ters, 001 addresses port A, 010 addresses port B, 011
addresses port C, 100 addresses the lower 8 bits of the
timer count, and 101 addresses 2 bits of timer mode and 6
bits of timer count.
In other words, during I/O operations involving the 8 156

‘TABLE 15-1. I/Q ADDRESS ™/

AD, AD, AD, Location

0 | Gommand and status registers

Fort A ’

Port B

"Port C

Lower 8 bits of timer

2 bits of timer mode and upper 6
bits of timer

_—-0 O OO
L OO =00
—_O = O

AD,AD,AD, is between 000 and 101. This means that the
word on the address-data bus is from

_ AD;-AD, = XXXX X000
to AD;-AD, = XXXX X101

Notice the don’t cares. During /O operations, the 8156
disregards bits AD;, ADs, ADs, AD,, and AD,, which can
therefore be Os or 1s.

Duplication Equation

What is the port number of port A in a minimum system?
To. begin with, A,; must be high to enable the chip (see
Fig. 15-2b). Furthermore, AD%AD,ADO must be 001 to
address port A. Because both buses transmit the same port
number during I/O operations, we can write

A]5—A3 = AD']—ADO
XX1X XXXX = XXXX X001

On the left side of this equation, A,; is high and all other
bits are don’t cares. On the right side of the equation,
AD,AD,AD, are 001; all other bits are don’t cares.

To have equality, Os and s on one side of the equation
must appear on the other side. This means that A oAgAg’

~must equal 001 and ADs must equal 1 to get

XX1X X001 = XX1X X001

Nogv both sides of the equation are equal; therefore, the
port number is

Port number = XX1X X001 (15-2)

Since the remaining don’t cares can be Os or 1z, there

are many solutions to Eq. 15-2. For instance, if all the
remaining don’t cares are set equal to zero,

Port number = 0010 0001

which is equivalent to 21H.

Chapter 15 Support Chips 255

TABLE 15-2. 8156 PORT NUMBERS
IN MINIMUM SYSTEM

Dy | Dg | Ds | Da | D3 | D2 | D1 | Do | Command

Port Number Selected Register
20H Command-status register
21H Port A
22H Port B
23H Port C
24H Lower byte of timer count
25H Timer mode and count (upper 6 bits)
.Shadows

By checking other don’t-care combinations, you will find
these additional solutions to Eq. 15-2: 29H, 31H, 39H,
.. ., FO9H. In other words, the port addressing folds back
and produces shadows at 29H,.31H, and so on.
Whenever a port number has shadows, the programmer
almost always uses the lowest port number. This is why
port A has a port number of 21H in our minimum system.

Other Port Numbers

By solving the duplication equation for the other registers
in an 8156 we can arrive at the port numbers listed in Table
15-2. (Each of these port numbers has shadows which are
not used.) As you see, port 20H is for the command-status
registers, 21H for port A, 22H for port B, 23H for port C,
and so on.

15-3 PROGRAMMING THE
I/0 PORTS

The 8156 is an interesting device because its I/O ports can
be programmed as inputs or outputs. For instance, we can
send the 8156 a command that makes port A an input port.
Later, we can send another command that changes port A
to an output port.

Command Word

The command register receives the command that controls
the I/O ports and other functions. Figure 15-3a shows the
contents of the command register. As indicated, bits 7 and
6 control the timer; bits 5 and 4, the interrupts; bits. 3 and
2, port C; bit 1, port B; and bit 0, port A. .

Table 15-3 shows how bit D, controls port A. When Dy,
is a 0, port A is an input port; when D, is a 1, port A is
an output port. Similarly, Table 15-+ illustrates the effect
of bit D,. When D, is a 0, port B acts like an input port.
When D, is a 1, port B acts like an output port.

256 Digital Computer Electronics

] L

PortC
Interrupt enable A
Interrupt enable B
Timer

fa)

l X X X X X X 1 | 0 | Command

(b)

Command

c) .~
Fig. 15-3 (a) Command word; (b) B is output, A is input; (c) C
and B are output, A is input.

To send a command to the command register, use an
OUT 20H. As an example, suppose we want port A to be
an input port and port B to be an output port. Then, D,
must be a 0 and D, must be a 1, as shown in Fig. 15-3b.
If we treat the don’t cares as Os, the command word becomes
02H. To load the command register with this word, we use

MVI A,02H
OUT 20H

This sets D, and resets D,. After these two instructions
have been executed, port A is an input and port B is an
output.) :

If you prefer to make port A an output port and port B
an input port, use this initialization:

MVI A, 0IH
OUT 20H

This sets D, in the command register and resets all other
bits. The effect is to program port A as output and port B
as input.

TABLE 15-3. PORT A TABLE 15-4. PORT B

"D, Effect D, Effect
0 Input 0 Input
1 Output 1 Output

TABLE 15-5. PORT C

D, D, Mode

0 0 Input port (6 bits)

0 l Port A handshaking and output (3 bits)
1 0 Ports A and B handshaking

1 1 Output port (6 bits)

Port C

Port C is more complicated because it can act like an input
port, an output port, or a handshaking port. Bits D; and D,
determine how port C acts (see Table 15-5). When D;D,
is 00, port C acts like an input port. On the other hand.
when D;D, is 11, port C acts like an output port. As an
example, if we want port A to be input. and ports B and
C to be outputs. we can initialize the 8156 with these
instructions:

MVI A.GEH
OUT 20H

This will load the command register with the word shown
in Fig. 15-3c.

Handshaking

When D;D,’ is 01 in Table 15-5. half of port C is used as
a handshaking port and the other half as an output port (see
Fig. 15-4a). PC, sends out a bit called INTR A: this stands
for interrupt at port A. PC, sends out BF A this stands for
buffer register full at port A. PC, r>ceives the bit STB 4.
this is a strobe signal into port A. (Examples 15-3 and
15-4 explain how these handshaking bits work.) The other
bits (PC; to PCs) act like a 3-bit output port.

If D;D, is 10 in Table 15-5. port C provides handshaking
for ports A and B (Fig. 15-4b). Three handshaking bits are
used for each port: an interrupt. a buftfer full. and a strobe.
These allow us to use interrupt-driven I’O with handshaking.

Status Word

The status register can be read by using an IN 20H. This
transfers the contents of the status register to the accumu-
lator. Figure 15-5 shows the bits in the status register.

PCy—— INTR A When high. bit 0 (/NTR A) indicates a pending interrupt at

:? — ?;:A port A. When bit 1 (BF A) is high. it means that the buffer

8156 Pcz R register is full at port A: that |s val‘id data is latched in

P, }Outputpm port A and awaits an 17O trunsfer. Bit 2. INTE A, stands

PCq - for interrupt enable at port A: when low. it prevents an
interrupt from appearing at PC, (Fig. 15-4).

- (a) Bits 3 through 5 are the interrupt pending. buffer full.
and interrupt enable for port B. Bit 6. INTR TIMER. is
high when the terminal count has been reached. (Terminal

PCo|—> INTR A count is explained in Sec. 15-4.) Bit 7 is an undefined
PCif— BFA (don't care).
Porfe——STBA As an example. suppose the execution of
PCy f——> INTR B
PC, }— 5F :
ool 555 IN 20H
(b) produces accumulator contents of
Fig. 15-4 (¢) Handshaking and output: (») handshaking for A
and B. + A = X100 0111
7 6 5 4 3 2 1 0
x | /NTR) nTE | BF | INTR| NTE| BF | INTR
TIMER| B 8 | 8 4 A A

| |

' L Interrupt pending, Port A
Buffer full, Port A

Interrupt enable, Port A

Interrupt pending, Port B
Buffer full, Port B

Interrupt enable, Port B

Interrupt, Timer

Fig. 15-5 Status register.

Don't care

Chapter 15 Support Chips 257

'From left to right, we read a don’t care, a high terminal
count, a disabled B interrupt, an empty B buffer, no pending
B Interrupt, an enabled A interrupt, a full A buffer, and a
pending A interrupt. ’ '

EXAMPLE 15-1

Show the instructions needed to make A an input port, B
an output port, and C a full handshaking port. The A and
B interrupts should be enabled and the timer bits reset to
00.

SOLUTION

Refer to Fig. 15-3a and Table 15-5. We need a command .

word of
0011 1010 = 3AH

This will reset the timer bits to 00 (bits 7 and 6), enable
the A and B interrupts (bits 5 and 4), provide handshaking
for A and B (bits 3 and 2), make B an output (bit 1), and
A an input (bit 0). To send this command to the command
register, we use

MVIA,3AH
OUT 20H

As soon as the OUT 20H has been executed, port A becomes
an input, port B becomes an output, port C provides
handshaking, both interrupts are enabled, and the timer bits
are cleared.

EXAMPLE 15-2
What do the following initializing instructions do:

MVI A,2AH
OUT 20H

SOLUTION

The command ‘'word is
0010 1010 = 2AH

The only difference between this and the preceding example
is that interrupt B is enabled but interrupt A is disabled.

EXAMPLE 15-3

Show an interrupt-di.ven input circuit that handshakes with
port A.

SOLUTION

In Fig. 15-6a the peripheral device sends data (PA;—PA,)
to port A of the 8156, which then sends the data
(AD,—AD,) on to the 8085. Port C provides ihe handshaking
bits INTR A, BF A, and STB A.

Figure 15-6b is the timing diagram. First, the peripheral
device sends a low STB A to the 8156. This loads the
peripheral data into port A via the PA,—PA, bus. The 8156
acknowledges receiving this data by sending a high BF A
back to the peripheral device.

RD' -
, ADs-AD,
gogs K DATA
INTR A
RST 5.5

8156

STBA
, PAs-PA, —
C DATA e;lp. era
\ evice
BF A

{a)

ES

INTR A

Fig. 15-6 Interrupt-driven input: (a) circuit; (b) timing diagram. ‘

258 Digital Computer Electronics

(b)

WR
ADs-ADy
8085 DATA)
7
RST 6.5 |- INTR B

8156

BF B
PB4-PBgy N
DATA) Peripheral -
V4 device
- STB B

BF B

STB B
Fig. 15-7 Interrupt-driven output: (a) circuit; (b) timing diagram.

A little later, the 8156 is ready to transfer the data, so it
sends a high INTR A to the RST 5.5 pin of the 8085. After
the 8085 recognizes this interrupt, it branches to a service
subroutine that includes an IN 21H. During the execution
of this instruction, RD goes low; this transfers the data in
port A to the accumulator via the address-data bus. Then
the remainder of the service subroutine is completed.

EXAMPLE 15-4

Show an interrupt-driven output circuit that handshakes
with port B.

SOLUTION

Figure 15-7a is the circuit. and Fig. 15-7b is the timing
diagram. The action begins when the 8156 sends a high
INTR B to the 8085. After this has been recognized, the
8085 branches to a service subroutine that includes an OUT
22H instruction. During the execution of this instruction,
WR goes low; this transfers data from the accumulator to
port B via the address-data bus. The INTR B then goes
low, indicating that the data has been received.

A little later, the 8156 sends a high BF B to the peripheral
device; this transfers the data from port B to the peripheral
device by way of the PB,—PB,, bus. To indicate that it has
received the data, the peripheral device returns a low
STB B. '

15-4 PROGRAMMING THE TIMER

The timer is a 14-bit presettable down counter that counts
the incoming TIMER IN pulses (pin 3). It can be preset

(b)

with any number between 0002H and 3FFFH. This preset
number is called the terminal count. For instance, if the
timer is preset with OOFFH, it will reach the terminal count
after 255 pulses have been received at the TIMER IN input.

Presetting the ' ¢rminal Count

As indicated in Table 15-2, port 24H addresses the lower
8 bits of the timer. Figure 15-8a shows how to visualize
these bits. Similarly, port 25H addresses the upper 6 bits
of the timer and the timer mode (see Fig. 15-8b). Let us
ignore the timer mode for now by assuming that M,M, is
00.

Here is an example. Suppose we want to preset the
terminal count to OOFFH. Then these are the initializing
instructions:

MVI A ,FFH
OUT 24H
MVI A,00H
OUT 25H

The first two instructions load FFH into the lower 8 bits of
the timer (Fig. 15-8a). The last two instructions load 00H
into the timer mode and upper 6 bits (Fig. 15-8b).

Timer Mode

The output signal TIMER OUT (pin 6) depends on the timer
mode M,M, as indicated in Table 15-6. If M,M, is 00, the
timer produces a single square wave. If M,M, is 01, you
get a continuous square wave. When M,M, is 10, TIMER
OUT is a single pulse. And when M,M, is 11, the timer
generates a continuous pulse train.

Chapter 15 Support Chips

Ll T Ts|Ta| T3] 2] | To] Port2dan
L t t t t f t f Lower 8 bits
fa)
My My | Tia | Tz | T To| To | Te | Portasw
T t f f f f f t Upper 6 bits
. Timer mode

(b)
Fig. 15-8 (a) Lower timer byte; (b) upper timer byte.

Figure 15-9 shows how the TIMER OUT signals appear

" for each mode. When M,M, is 00, the square wave begins

when the timer starts counting. Halfway through the count,

the square wave goes into the negative half cycle. The
square wave ends when the terminal count is reached.

If we want continuous square waves, we have to program
mode Ol. In this case. the square waves begin when the
timer starts counting and continue indefinitely.

When the timer mode is 10, we get a single pulse at the
end of the count. In other words, when the terminal count
is reached. the TIMER OUT goes negative for a brief
interval. then returns’ positive. The width of this pulse
equals the width of the TIMER IN pulse.

Finally, we can get a train of TIMER OUT pulses by
programming mode 11. The pulses begin after the terminal
count is reached the first time and continue to appear each
time the terminal count is reached.

Timer Command

Bits D, and D, of the command register (Fig. 15-10) control
the starting and stopping of the timer. As shown in Table
"15-7. a D;Dg of 00 produces a nop. If D;Dy is 01, the timer

Start Terminal Terminal
count count count

{ /

TABLE 15-6. TIMER MODE

M, M, Effect

0 0 Single square wave

0 1 Continuous square wave
1 0 Single pulse

1 L Continuous pulse

TABLE 15-7. TIMER COMMAND

D7 D6 . Effect

0 0 Nop :

0 1 Stop immediately

1 0 Stop after TC is reached
1 1 Start

Command

=

Port C
Interrupt enable A
Interrupt enable B
Timer

Fig. 15-10 Timer command bits.

stops immediately. If the bits are 10, the timer stops after
reaching the terminal count. If D,Dj is 11, the timer starts
counting.

For instance, suppose we want to start the timer, enable
the port interrupts, make C and B output ports, and make
A an input port. Then we need a command word of

D = 1111-1110
Terminal Terminal
count count

| |

L

| I

Mode 00

1 Mode 01

Mode 10

Fig. 15-9 Timcr modes.

260 Digital Computer Electronics

U Mode 11

The initializing instructions are

MVI A,FEH
OUT 20H

EXAMPLE 1 5-5

In Fig. 15-11a, the system clock is connected to the TIMER
IN input of the 8156. The clock has a frequency of 3 MHz.
Show a program segment that produces a continuous square
wave with a frequency of 1 kHz. Include a start timer
command, disable the port interrupts, make C and B output
ports, and make A an input port.

All buses
8156

CLK TIMER IN

8085

(a)

1 0 1 1 1 0 0 0 | Port24H
(b)

0 1 olo 1 0 1 1 | Port 25H
fc)

1 1 0 0 1 1 1 0 | Port20H

(d)
Fig. 15-11 Timer operation: (a) circuit; (b) lower timer byte; (c)
upper timer byte; (d) command word.

SOLUTION

We have to divide the clock frequency by 3000, which is
equivalent to OBB8H. By setting the terminal count (Fig.
15-9) equal to OBB8H, we will get one square-wave cycle
out for each 3,000 clock pulses in. Therefore, the lower 8
bits of the terminal count are

1011 1000
This is the lower byte to be loaded into port 24H (see Fig.
15-11b).

The upper 6 bits of the terminal count are

00 1011

I TIMER OUT

According to Table 15-6, the.timer-mode bits for a contin-
uous square wave are

MM, = 01
Therefore, port 25H must be loaded with
0100 1011

as shown in Fig. 15-11c.
The command word we need for port 20H is

1100 1110

as shown in Fig. 15-11d. Bits'D;Dg come from Table 15-
7, these bits start the timer. The programming of the other
bits has already been explained; Ds;D, disable the port
interrupts (Fig. 15-10), D;D, make C an output port (Table
15-5), D, makes B an output port, and D, makes A an
input port.

Here is the program segment:

MVI A,B8H
OUT 24H
MVI A ,4BH
OUT 25H
MVI A,CEH
OUT 20H

When these instructions are executed, ports 24H, 25H, and
20H are loaded as shown in Fig. 15-11b to d. The timer
then starts counting clock pulses. For each 3,000 clock
pulses received, one square wave comes out of the TIMER
OUT pin. Therefore, we get a continuous square wave with
a frequency of 1 kHz.

15-5 THE 8355

As discussed in Chap. 13, the 8355 contains a 16,384-bit
ROM organized as 2,048 words of 8 bits each. In our
minimum system, the ROM locations are from 0000H to
07FFH. The 8355 also has two 8-bit I/O ports, port A and
port B.

Pinout

Figure 15-12 shows the pinout diagram of an 8355. Most
of the pins are self-explanatory. Notice the two chip enables,
CE, and CE,. Having one active low and the other active
high allows design flexibility in addressing the memory.
For the minimum system (Chap. 13), we connect CE, to
A|3 and CEZ to +5 V.)

Port A has a data bus PA;—PA, (pins 31 to 24). Similarly,
port B has a data bus PB,—PB, (pins 39 to 32). To address

Chapter 15 Support Chips 261

CE, Q1 ~ w0 M Vee
CE; 2 391 P8,
cLk s 38[7 P8,
RESET [} 4 370 P8¢
(NOT CONNECTED) [] 5 36[7 P8,
READY [} 6 35[7 P8,
romddi 341 P8,
TOR['s 337 P8,
RDO 9 323 P,
oW 835 31[PA,
ALEM 307 PAg
ADy O 12 2917 PAg
AD, Q13 2811 PA,
AD,] 14 270 PA,
AD3 G 15 . 260 PA,
AD, []16 251 Pa,
ADg 17 241 PA,
ADg 18 231 Ay
AD, E 19 221 Aq
es 20 - 210 Ag

Fig. 15-12 8355 pinout.

the 2,048 stored bytes, we need 11 address lines. The upper
address bits (A9, Ay, Ag) connect to pins 23, 22, and 21.
The lower address bits are multiplexed on the address-data
bus (pins 19-12). Also discussed previously are the CLK
(pin 3), RESET (pin 4), READY (pin 6), 10/M (pin 7),
RD (pin 9), and ALE (pin 11).

-Notice two new signals TOR (pin 8) and IOW (pin 10).
A low IOR will read the selected port contents onto the
address-data bus. TOR has the same effect as a high I0O/M
and a low RD. Similarly, a low JOW will write the contents
of the address-data bus into the selected port.

Port Numbers

The 8355 has two I/0 ports and two internal registers called
data-direction registers (DDR A and DDR B). These
internal registers are like command registers because they
determine whether the pins of ports A and B are inputs or
outputs.

Table 15-8 shows the address bits for the 8355 registers:
00 for port A, Ol for port B, 10 for DDR A, and 11 for
DDR B. By solving the duplication equations (similar to
the derivation in Sec. 15-2) we can arrive at the port

TABLE 15-8. 8355 REGISTERS

AD, AD, Select
0 0 Port A
0 1 Port B
1 0 DDR A
1 1 DDR B

262 Digital Computer Electronics

TABLE 15-9. 8355 PORT NUMBERS
IN MINIMUM SYSTEM

Port Number Selected Register
00H Port A
OlH Port B
02H DDR A
03H DDR B

numbers listed in Table 15-9. As indicated, 00H addresses
port ‘A, O1H addresses port B, and so on. Because some
address lines are not used in the minimum system, these
port numbers have shadov;.

DDR Bits Control Port Pins

Ports A and B are pin-programmable. DDR A controls port
A, and DDR B controls port B. For instance, we can send
a command to the DDR A register to make some of the
port A pins inputs and the others outputs. Later, we can
send another command to change which pins are inputs and
which outputs.

Tables 15-10 and 15-11 list the effect of each DDR bit on
the corresponding bit in a port. As shown in Table 15-10,
if a bit is 0 in DDR A, the corresponding pin of port A is
an input pin; if the bit is a 1, the pin is an output pin.

Here is an example. Suppose DDR A has the contents -
shown in Fig. 15-13a. Then each 0 bit in DDR A produces
an input pin in port A; each 1 bit in DDR A produces an
output pin in port A. .

As another example, look at the contents of DDR B in
Fig. 15-13b. Each O bit in DDR B produces an input pin
in port B, and each 1 bit produces an output pin.

Programming the Ports

To program the pins of a port as input or output, we have
to load the appropriate bit pattern into the data direction

TABLE 15-10. PORT A

DDR A bit Port A pin
0 Input '
1 Output

TABLE 15-11. PORT B

DDR B bit Port B pin
0. Input
1 Output

INJ N | N | IN JouT|OuTjoUuT|OUT]| Port A (DOH)

0 0 0 0 1 1 1 1 | DDR A (02H)

(a)

iNn Jout| in Jout] in Jout]| in JouT| Port B tG1H)

ol 1ol +1]lofl1] o] 1 |oorBiosn

(b)
Fig. 15-13 Pin programming of ports A and B.

register for the port. For instance, to program port A as
shown in Fig. 15-13a, we would use

MVI A,0FH
OUT 02H

After these two instructions are executed, PA, to PA, are
input pins, and PA; to PA, are output pins. ' '

As another example, we can program the port B pins as
shown in Fig. 15-13b by using

MVIA,55H
OUT 03H

When these instructions are executed, PB, is an input pin,
PB; is an output pin, PB; is an input pin, and so on.

Equivalent Circuit

For a better understanding of how the pins of port A are

of the remaining bits (Dg to Do) has a similar port latch and
DDR latch. Initially, bit D, is loaded into DDR A during
the execution of an OUT 02H; this sets or resets the DDR
A latch. Since the output of the DDR A latch controls a
three-state switch, the bit in DDR'A determines input or
output’ operation.

When DDR A contains a 1, it enables the three-state
switch. During the execution of an OUT 00H, WRITE goes
high and bit D, is latched into port A. With the three-state
switch closed, bit D, is transmitted to pin PA,. In this case,
PA; acts like an output pin.

On the other hand, when DDR A contains a 0, it disables
the three-state switch. During the execution of an IN 00H,
READ goes high. Any peripheral data at pin PA; is then
read onto the address-data bus. In other words, pin PA,
now acts like an input pin.

EXAMPLE 15-6

What does the following program segment do?

MVI A,55H
OUT 03H
INOIH
MVI A,FFH
OUTOlH

SOLUTION

The first two instructions program DDR B as shown earlier
in Fig. 15-13b. This gives alternating input and output pins
on port B. The IN O1H reads in PB;, PBs, PB;, and PB,
because these pins are programmed for input operation.
The last two instructions send high bits to PB¢, PB,, PB,,
and PB, because these pins are programmed for output

. . ; operation.
programmed, look at Fig. 15-14. This shows bit D;; each P
AD-ADg
Dy Port A
latch
WRITE —
D, DDR A —{]Pinra,
latch
Dy g
READ

Fig. 15-14 Equivalent circuit for pin-programming bit 7.

Chapter 15 Support Chips 263

15-6 FULLY DECODED MINIMUM
SYSTEM

The minimum system has 2K of ROM, 256 bytes of RAM,
and five I/O ports (two in the 8355 and three in the 8156).
Some applicatious require more memory and 1/O. The
danger in adding more memory and /O is one of inad-
vertently using memory and I/0O shadows. The safest way
to avoid this is to fully decode the address lines during
memory and I/O operations.
— Ag

Ais—a cE
2
Ara—a
.——AD7

Atz — ADg
Atz — ADg
|— 40,
8355 |— AD;
— AD,
|— AD,
— ADg

— A1
— Ag

CE,
Aqg — Ay !

10/M —

Fig. 15-15 Fully decoded 8355.

Fully Decoded 8355

The reason we get memory and I/O shadows in a minimum
system is that some of the address lines are not used. If we
used all the address lines, we would remove the don’t cares
that produce the shadows.

Figure 15-15 shows one way to eliminate all memory
and I/O shadows in the 8355. For CE, to be active, A,s
and A,, must be low. For CE, to be active during memory
operations, A,; through A, must be low. (A, has no effect
because /O/M is low during memory operations.) This
means that the ROM is enabled only when A5 through A,
are low. Symbolically,

AsALABARA,, = 00000
As before, the lower 11 bits (A, Ay, Ag, and AD; to
AD,) select the memory location. In other words, the 8355
of Fig. 15-15 has a ROM range of
0000 0000 0000 0000

A5 —d

Fig. 15-16 Fully decoded 8156.

264 Digital Computer Electronics

Aja—9
Az —
Az —9
Ay —9
Ap —9

Ag —a

Ag— 1o/M

to
0000 O111 1111 1111

equivalent to 0000H to O7FFH. Since there are no don’t
cares, memory shadows no longer exist.

1/0 shadows are also eliminated in Fig. 15-15. For CE,
to be active, A,s and A,, must be low. For CE, to be active,
A,; to Ay, must be low. (A}, must be low because I0/M is
high during /O operations.) Therefore, the duplication
equation for port A is

0000 00XX = XXXX XX00
Equating Os on both sides gives
0000 0000 = 0000 0000

This is the oniy solution. Therefore, port 00H has no I/O
shadows. By a similar derivation, we can prove that the

- remaining ports have no shadows.

Fully Decoded 8156

Figure 15-16 shows one way to eliminate the memory and

/0 shadows in the 8156. During a memory operation, CE

is enabled only when
AsALAARA,, = 00100 and A AvAg = 000

As before, the lower 8 bits select the memory location.
Therefore, the RAM range is from

0010 0000 0000 0000
to

0010 0000 1111 1111
This is equivalent to 2000H to 20FFH. Since there are no
don’t cares in the address lines. all RAM shadows have
been eliminated.

During I/O operations, CE is enabled only when

AALAGARA, = 00100

— AD,
L ADg
L ADg
— AD,
— AD,
— 4D,
| — 4D,
— AD,

) CE 8156

and IO/M is high. The duplication equation for port 20H
is

0010 0XXX = XXXX X000

The only solution is 0010 0000, which means that port 20H
has no shadows. Similarly, ports 21H to 25H have no
shadows.

Conclusion

When all this discussion sinks in, here is what you have.
The gates of Figs. 15-15 and 15-16 fully decode the address
lines in a minimum system. Therefore, the only addressable
ROM locations are 0000H-O7FFH; the only addressable
RAM locations are 2000H-20FFH; the only port numbers
are 00H-03H and 20H-25H. The shadows are gone. This
means that we are free to expand the memory and IO of
a minimum system without fear of new locations falling
into the old shadows.

15-7 CREATING AND ADDRESSING
NEW 1/O PORTS

How can we add new I/O ports to a minimum system? By
using three-state switches for the input ports and latches
for the output ports.

Creating an Input Port

By connecting two 74LS126s and an inverter, as shown in
Fig. 15-17, we can control 8 bits of data from a peripheral
device. A high ENABLE floats the output lines; a low
ENABLE connects the input data to the output lines. A
circuit like this is called a three-state driver; alow ENABLE
connects the peripheral data to the address-data bus; a high
ENABLE disconnects the peripheral data from the address-
data bus.

Gate Addressing an Input Port

The simplest way to address an input port is with gate
addressing. This means using gates to produce the ENABLE
signal for the three-state driver. As an example, Fig.
15-18a shows how to add port FFH to a fully decoded
minimum system. To understand how the circuit works,
look at the timing diagram for an IN instruction (Fig.
15-18b). During the M; cycle, the port address is placed
on ll_le upper addresﬂ)us (A5 to Ag). Also notice how
I0O/M goes high and RD goes low during the M, cycle.
Here is what happens in Fig. 15-18a. When an IN FFH
is executed, A;s to Ag are high during the M, cycle. Since
I0/M goes high and RD goes low during this cycle, the
NAND gate momentarily produces a low ENABLE. This

Peripheral Address/data
data . bus
Dy : > AD;
A |

Dg S — ADg
| llat

Dg > ADg
.;j

D, S AD, -
A

Dy IS ADy
e

Dy > : — AD;
A

D, > AD,

Dy > ADg

o

ENABLE
Fig. 15-17 Input port using three-state switches.

connects the peripheral data to the address-data bus; then
the bus data is loaded into the accumulator.

For any other port address, the NAND gate produces a
high ENABLE and the three-state driver is disabled. Like-
wise, during memory operations, /O/M is low and the three-
state driver is disabled. As a result, the port of Fig. 15-18a
is enabled only during the execution of an IN FFH instruc- -
tion.

With different logic, we can create other ports. For
instance, Fig. 15-19a shows the gate addressing for port
FEH. Only during the execution of IN FEH is the three-
state driver enabled. Figure 15-19b shows how port FDH
is configured. This time it takes an IN FDH to enable the
driver.

The 74LS138

Gate addressing is convenient when a few ports are being
added. When many ports are involved, however, decoder
addressing is better. Figure 15-20a shows the pinout for a
741.S138, a 1-of-8 decoder often used for decoder address-
ing. Pins 1, 2, and 3 are the inputs that select one of the
output lines. Pins 4, 5, and 6 are gate enables that activate
the decoder. Pin 8 is for ground and pin 16 for the supply
voltage. The remaining pins are the output lines Y, to Y.

Chapter 15 Support Chips 265

Arg — Dy — AD,

Ay — Dg — L ADg

Az — Dy — .Threestate [ADg

A1z Dy — driver ——AD,

Ay — Dy —— PortFFH }——AD3

Ag] D, — —— AD,

Ag — D, — ——AD,

Ag — Dy — —— AD,

70 ——d)D TENABLE
10/M —= '
(a)
IN byte
M, M2 Ma
T T, T T, T T, T, S T, T,

Aqs-Ag)(PC,, PC,,

10 PORT

AD,-AD, :X PC_ ___<__|_Nsm) < Pe. P yte Y—1{i0PORT)

Z N

DATA)—-J

/_‘

10/M _\

B

[<¢—————INSTRUCTION FETCH :%: MEMORY READ T INPUT READ —
(b) o
Fig. 15-18 (a) Gate addressing of port of port FFH; (b) timing
diagrams.) .
D7 — — AD, D; — — AD,
A Dg — — ADg B Dg— . — ADg
A15—"" Dy — — ADg 15— Dg — ; — ADg .
14— D, — Threg‘state — 4D, Aqq — Dy —] Threg-state | AD,
Aqz — D. — driver L D Ayz — Do driver L 4D
A D3 | PortFEH — ADS Ay —] D3 Port FDH) 3
p p—— 2 2 Arg] 2= — DZ
T D, — — AD, A" Dy — — AD,
10 Dy — — AD, 107 Do — ADg
Ag — Ag—9
Ag—a ENABLE Ag— TENABLE
RD —— - RD —— r%
10/M — ' om

) (a)
Fig. 15-19 Gate addressing: (@) port FEH; (b) port FDH. =

266 Digital Computer Electronics

(b)

74L5138
ch 16 A Voo —16G Yopo—
802 150y, —q6, Y, p—
AQs 140y, —dG3 v, p—
G; Q4 13:|Y2 v, p—
6,05 120y, Y p—
6,06 1Py, - —1A sp—
v, Q7 10y, —s Yobp—
6nvD8 9Py —c Yso—

(a) (b)

Fig. 15-20 74LS138: (a) pinout; (b) symbol.

This 1-of-8 decoder works as follows. When all gate
enables are active, the ABC input makes only one of the
output lines active. When ABC = 000, Y, is active; when
ABC = 001, Y, is active; when ABC = 010, Y, is active;
and so on. Table 15-12 summarizes the operation.

Notice three important features:

o

. The decoded output line is low.

2. Decoding occurs only when all gate enables are active;
this means G, high, G, low, and G; low. -

3. If any gate enable is inactive, all output lines are high.

Figure 15-20b is the symbol we will use in our coming
discussions. Bubbles on the input and output lines indicate
active lows.

Decoder Addressing

With a 74L.S138 and some gates, we can select up 10 8
ports. As an example, Fig. 15-21 shows decoder addressing
for ports F8H through FFH. When I0/M is low, the 74L.S138
is disabled and all output lines are high. Therefore, none
of the three-state drivers are enabled during memory op-
erations.

TABLE 15-12. 74LS138 TRUTH TABLE

During the M, cycle of the IN instruction, 10/M goes
high and RD goes low; this enables G;. For any port address
from F8H to FFH, A;s to A,, are high. In symbols,

AsALABARA, = 11111

Therefore, G, is enabled. This leaves A, to Az to select
one of the eight output lines. When A (AqAg = 000, Y, is
low; this sends a low ENABLE to port FSH. When A (AoAq
= 001, port F9H is enabled. When A ;AqAy = 010, port
FAH is active, and so on for the remaining ports.

In other words, the execution of IN F8H enables port
F8H; this connects the peripheral data at port F8H to the
address-data bus; the data is then loaded into the accumu-
lator. During the execution IN F9H, port FOH transfers
peripheral data to the address-data bus, and so forth.

One 74LS138 controls eight ports. By using more 74LS138s
and altering the addressing gates we can expand I/O to
whatever level is necessary for.the application. ’

Creating Output Ports

To create an output port, we can use latches like the
74LS75, 74LS173, 74LS175, etc. In our discussion, we
emphasize 74LS173s (SAP-1 chips). Figure 15-22a shows
how to connect two 74L.S173s as output port FFH. Pins 14
through 11 of both chips are tied to the address-data bus.
Pins 3 through 6 of both chips are connected to the peripheral
device that receives the data. .

During the M; cycle of an OUT instruction, the por:
address bits are placed on the upper address bus. When bits
Ajs through Ag are all high (port FFH). the addressing gate
delivers a low signal to pin 9. Since I0/M is also high
during M; (see Fig. 15-22b), pin 10 goes low. Therefore,
both gate enables (pin 9 and 10) are active. A bit later in
the M, cycle, WR goes temporarily low. then high. The

G, G G A B c Y, Y, Y Y, Y, Ye Y, Y,
X X 1 X X X 1 1 1 1 I I 1 |
X 1 X X X X 1 1 1 | I 1 | 1
0 X X X X X 1 1 I 1 I I I 1
1 0 0 0 0 0 0 1 1 I I 1 | 1
1 0 0 0 0 1 1 0 1 | | I i 1
1 0 0 0 1 0 1 I 0 | I 1 1 1
1 0 0 0 1 1 1 1 I 0 1 I I 1
1 0 0 1 0 0 | 1 I I 0 | I 1
1 0 0 1 0 1 | 1 I I 1 0 I I
1 0 0 1 1 0 1 I 1 | 1 1 0 1
1 0 0 1 1 1 1 | I I 1 I 1 0

Chapter 15 Support Chips 267

Address/data bus

ADg
ADg
AD,
AD,
AD,
AD,
ADy
— —
Peripheral) — Thre(.e-state Peripheral | — Threg-state
data driver data < driver
—1 PortF8H 1 PortFgH
© JaLS138 F8H ENABLE FOH ENABLE

(0

Y, b

Y, b FAH ENABLE

Y: o FBH ENABLE

Ya o FCH ENABLE

1 FDH ENABLE

Ys p- FEH ENABLE

Y - FFH ENABLE

Fig. 15-21 Decoder addressing of ports F8H to FFH.
rising edge of the WR signal (Fig. 15-22b) latches the data The 2114

into the 74LS173s. .
If many output ports are to be added, we can use decoder
addressing. This means that one 74L.S138 can control eight
output ports, as shown in Fig. 15-22¢. Notice that G, and
G, are grounded. Also, the upper address bits enable G,
only when A s to A, are high. As before, A, to Ag activate
one of the output lines. Each output line can be connected
to pin 9 of an output port like Fig. 15-22a. When I0/M is
high and WR returns high, the addressed port will latch bus
data into the 74LS173s. .

15-8 EXPANDING THE MEMORY
WITH STATIC RAMS

Our minimum ‘system has 2K of ROM and 256 bytes of
RAM. When the memory chips are fully decoded, this
implies shadowless ROM and RAM locations from 0000H
to 07FFH and from 2000H to 20FFH. In this section, we
examine ways to add more memory.

268 Digital Computer Electronics

This 18-pin chip is a 4,096-bit static RAM, which is
organized as 1,024 words of 4 bits each. The 2114, now
an industry standard, has a maximum access time of 450
ns. A newer version, the 2114A, can reduce the access
time to 100 ns. '

Figure 15-23a shows the pinout. The 10 address pins,
Ay to Ay, can access 1,024 memory locations. The four
data pins are labeled D, to Ds. When the chip select CS is
high, the data lines float. To enable the memory, CS must
go low; then a high WE produces a read operation, and a
low WE a write. '

To get byte length, we need two 2114s in parallel, as
shown in Fig. 15-23b. This produces 1,024 words of 8 bits
each. When used in a microprocessor-based system, the
data pins are connected to the data bus; the address pins
(not shown) are connected to a memory-address register
(MAR). To simplify later figures, we will draw Fig.
15-23b as shown in Fig. 15-23c.

-
AD; ADg ADg AD, AD; AD, AD, AD, , :’4
' 13
— Aqp
— 41
— Ao
14 |13 |12 I 14 13 12 I Aq
9 o2 — 4g
1 10 1 10
——;0 p—— —Eq 07——T
7 _
<b?q 7415173 F— Port FFH cb-;-q 7415173 J— —{Q——/O/M
15 15
£ I
= 3 |4 |Is e = 3 |4 |5 |6
WR
D; Dg Dg D, Dy Dy Dy Dy
Peripheral data
fa)
- M, - M, -] M >

10/M f
(b)
7415138
Fig. 15-22 Output port: (a) gate addressing port FFH; (b) timing Gy Yo |o—— F8H ENABLE
diagrams; (c) decoder addressing ports F8H to FFH. 2 G, Y, b—— FOH ENABLE
16 — —_—
Ag — = Y, o—— FAH ENABLE
Az ———D——— G, Y, p— FBH ENABLE
:12 — Y, p— FCH ENABLE
e—— —
" Ao— 4 Y, b—— FDH ENABLE
Ag— B Yso— FEH ENABLE
Ag— ¢C Yy p—— FFH ENABLE
fc)
Dy Dg Dg Dy Dy Dy Dy Dy
AgO1 181 Voo 1 J L
Ag Q2 17 [A, I l IH ““
A, 03 16 gAB :
Az 4 15 [1 Ag
Two
A, 06 1300,
A, 07 120,
2 o
csds 1o, = 1 1 - [
Gvo 9 =73 s < : &
WE WE

(a)

(b)

Fig. 15-23 2114 Static RAM: (a) pinout;-(b) two in parallel
produce byte; (c) symbol for two 2114s.

Chapter 15 Support Chips

D; Dg Dg Dy D3 Dy Dy Dy
ZONE O | 1024 bytes l I ' I ‘ I | l Ay —|
ZONE 1 | 1024 bytes 29 — Ay —
8 —] © Ay —
ZONE 2 13 —
] 1024 bytes A7 — Aga _} A1s414413A124 11410
As] Agy —]
Ay — Two
i Ato
Ay — 21148
Y paee—
3 (c)
Ay —
Ay —
Ay —
A5 — e T At —
| Al — WE Aqg —
| Pl 19 ArgArgA Ao Ag A
ZONE 63 | 1024 bytes Az — Ajp —0 154144134124 1140
Ay —— A —o
Ao A10—O

(a) (b)

Fig. 15-24 (a) Memory zcnes for intervals of .IK; (b) gate
addressing zone 63; (c) zone 62; (d) zone 48.

Memory Zones

A pair of 2114s has 10 address bits Ag to Ay, which point
to 1,024 bytes in memory. By decoding bits A5 to A,
these 1,024 bytes can be assigned to any of the 64 zones
shown in Fig. 15-24a. Bits A5 to A,y are called zone bits
because they determine which zope is used. For instance,
with the gate addressing of Fig. 15-24b, zone bits A,s to
Ay produce a low CS only when

AALABALALA = 111THT

Therefore, the 1,024 bytes are located in zone 63.

Change the gate addressing and you get a different zone.
Figure 15-24c¢ shows the gate addressing for zone 62. The
output of the NAND gate is A;sA 4. 134,24,,4A,0. This output
is low only for zone bits of 111110, equivalent to decimal
62.

As another example, the NAND gate of Fig. 15-24d has
an output of A;sA A4 ,4,,4,0. This is low only for zone
bits of 110000, whose decimal equivalent is 48. Therefore,
this gate addre sing locates the 1,024 bytes in zone 48.

As an aid, Appendix 10 shows how a 64K memory is
divided into 64 zones. You will find this useful in analysis
and design because it lists the address bits along with the
hexadecimal and decimal equivalents for each zone. For
Fig. 15-24b the 1,024 bytes are in zone 63, which means
hexadecimal locations FCOOH to FFFFH. For Fig. 15-24¢
the 1,024 bytes are in zone 62, equivalent to hexadecimal
F800H to FBFFH. For Fig. 15-24d zone 48 is used; this
means hexadecimal locations COO0OH to C3FFH.

270 Digital Computer Electronics

{d)

Example of Gate-Addressed 2114s

Figure 15-25a shows how to add zones 48, 62, and 63 to
a minimum system. As before, A5 to A;, select the zone.
We have added I0/M, RD, and WR to produce read and
write memory operations. When I0/M is high (during I/0
operations), a high output appears at each Or gate and none
of the 2114s is chip-selected; therefore, the memory is
inoperative.

On the other hand, with /O/M low, we can get a memory
read when RD goes low or a memory write when WR goes
low. For instance, if

AsAuAARALA = LT

a memory read occurs in zone 63 when IO/M and RD are
low. If

A sALABARALA,, = 110000

a memory write takes place in zone 48 when /O/M and WR
are low. '

Read Timing

Notice the timing diagram for a memory read (Fig.
15-25b). The upper address bits are on the address bus
throughout the read cycle; this means that we can connect
bits A;s to A,y of the address bus directly to the zoning
gates. Also, inputs Ay and Ag to the 2114s can be connected
directly to lines A; and A; of the address bus.

Data bus

] 8085

7

@4

Two-
As=Ao :j 21148

=

Two Two
2114S j 21148

RD — 0 T_ — S S
WA cs |we cs |wE |cs |we
M : . WR
lo/m ZONE 63
Ayg ——
meed |
Ayg —
=
WR
1o ZONE 62
Aig ‘ :
Ay —9
RD
wr '
lom ZONE 48
Asg '
—a
—q
Am:g »
(a)
A5-Ag X UPPER ADDRESS Aq5-Ag X ‘UPPER ADDRESS
]] LOWER
ey

ALE _/ \
B N\ e /]
WR 4
WwR __/

oM \

¢————————MEMORY READ ——————

(b) .
Fig. 15-25 (a) Gate addressing zones 48, 62, and 63; (b) memory
read; (c) memory write.

ALE

£\

T\ /]
M

[¢—————— MEMORY WRITE ————

(c)

Chapter 15 Support Chips 271

As shown in Fig. 15-25b, the lower address bits AD; to
AD, are on the address-data bus only during the early part
of-a read cycle; therefore, these must be stored in-a MAR
(not shown) using the falling edge of the ALE to latch the
bits. This MAR then addresses the 2114s. (The 8156 and
8355 have on-chip MARs that do this automatically.)

After the lower address bits have been latched in the
MAR, the lower address bits disappear from the address-
data bus; freeing it for the upcoming memory operation.
As shown in Fig. 15-25b, RD goes low while bracketed by
a low IO/M. This reads the contents of the addressed
memory location onto the address-data bus, allowing the
8085 to transfer the data to the target register (instruction
register, A, B, C, etc.).

Write Timing

Figure 15-24c shows the timing diagram for a memory-
write operation. As before, the lower address bits are
present on the address-data bus only during the early part
of the cycle. The trailing edge of the ALE signal is used to
latch these bits into a MAR. Later in the cycle, the low
WR will write the data on the address-data bus into the
selected memory location.

Example of Decoder-Addressed 2114s

" Gate addressing the memory zones is all right if only a few
zones are involved. When many zones are being added,
decoder addressing is more convenient. Figure 15-26 shows
one way to do it. A5 to A;, are the zone bits. To enable
G,, A5 to A;; must be high. As before, A, through A,
decode the output lines of the 74LS138. This means that
we can zone from

AsAuApARA LA = 111000
to
AisALApARALA = 111111

equivalent to zones 56 to 63. With Appendix 10, we can
list the RAM locations being covered:

Zone 56 EO0O00H-E3FFH
Zone 57 E400H-E7FFH
Zone 58 E800H-EBFFH
Zone 59 ECOOH-EFFFH
Zone 60 FOOOH-F3FFH
Zone 61 . F400H-F7FFH
, Zone 62 E800H-FBFFH
Zone 63 FCOOH-FFFFH

272, Digital Computer Electronics

In effect, we have added 8K of RAM to the upper memory.

By adding one or more inverters to the A5, A4, and A3
lines we can relocate this 8K of RAM. For example, put
an inverter on the A;; line and you zone into

AisALABARA A, = 110000
to

AsAABARALAp = 110111

equivalent to zones 48 to 55.

15-9 DYNAMIC RAMS

The details of addressing and refreshing dynamic RAMs
are too cdmplicated to go into here, but a few comments
are appropriate. As an approximation, smaller applications
(appliances, control systems, instruments, toys, and the
like) need from 1K to 8K of ROM and from 64 bytes to
1K of RAM, the mixture of ROM and RAM depending on

" what is being done. Larger applications (microcomputers,

programmable instruments, word processors, etc.) require
1K to 48K of ROM and 4K to 63K of RAM.

ROM expansion is straightforward. We can add more
8355s (or other available ROMs) using either gate addressing
or decoder addressing to locate the new ROM zones. RAM
expansion, however, raises the question of whether to use
static or dynamic RAMs.

As mentioned in Chap. 9, a dynamnc RAM has the
advantage of containing more memory cells than a static
RAM of the same physical size. But the disadvantage is
the need to refresh the stored data every few milliseconds.
The complicated refresh circuitry is usually not justified
unless you need at least 16K of RAM. In other words,
static RAMs are adequate for smaller applications and for
some larger onestoo.

The 2117 typifies the dynamic RAMs that are commer-
cially available. This 16-pin chip is a 16,384 X 1 dynamic
RAM, organized as 16,384 words of 1 bit each. This means
that you have to use eight 2117s in parallel to get 16K of
RAM memory (1 byte in each location). Because 14 bits
are needed to address 16,384 locations, the address bits are
multiplexed by loading in 7 bits followed by another 7 bits.

Appendix 7 shows how a 64K memory is zoned when
using 16K chips. A;s and A,, are the zone bits. As shown,
zone 0 is hexadecimal locations 0000H-3FFFH, zone 1 is
4000H-7FFFH, zone 2 is 8000H—BFFFH and zone 3 is
CO0OH-FFFFH.

"€9 01 9G s3U0Z Jo SuIssaIppe ISP0da(] 9Z-ST “Si

€9 INOZ d L op— oy
29 3INOZ —q % . gty
19 3NOZ q % vi— %y
09 INOZ d 7
65 INOZ q &
85 INOZ 9%
saNoz— QU4
ssanoz 94 %
. wm
8E1STHL ay
wm - - - - - - o
EHW m| o) m| s m| s2 m| sof. ml.g_m §Hm @_m
Q Q Lo P Q P Q
sviiz A sviie syLiz sviiz | sviliz pe—{ svuie syLiz syLiz AH Oy-6yy
omj T oom) om) om) om] om) omj om)
Z @ @ @ @ - @ AN
G808 A snq eleq V
< 7

GLOSSARY

command register A register-in the 8156 that controls the
timer, interrupts, and I/O ports. In a minimum system this
register has an address of 20H. This register is loaded with
an OUT 20H.

‘data direction register A register in which each bit
determines whether the corresponding pin in a port is an
input or output. Abbreviated DDR.

decoder addressing Using the output lines of a decoder
to enable ports or memory chips.

full decoding Decoding all the address bits so that each
port or memory location has no shadows.

gate addressing Using gates to enable a port or memory
chip.

input port A three-state driver that connects input data to
the address-data bus when addressed by its port number
during the execution of an IN instruction.

memory zone . The locations that a memory chip can read
from or write into.

output port A latch or register that receives output data
from the address-data bus when addressed by its port
number during the execution of an OUT instruction.
status register A register in the 8156 that contains infor-
mation about the timer and the ports. This register is read
with an IN 20H.

terminal count The number that is preset in the timer; it
determines how many input pulses produce one output
square wave or pulse.

strobe STB A and STB B are strobe signals when port C
is used for handshaking. For input operations these signals
indicate that the peripheral device is ready to send data; for
output operations the signals indicate that the device has.
received the data. ‘

timer A presettable 14-bit down counter in the 8156 that

~ produces square waves or pulses.

SELF-TESTING SUMMARY

Read each of the followmg and provide the missing words.
Answers appear at the beginning of the next question.

1. For the 8156 to be active, the _____ input
must be high. Ignoring shadows, the RAM locations
in the minimum systemare _______ to

2. (CE, 2000H, 20FFH) In a minimum system, port A
has an address of 21H, port Bof ________, and
port C of . The command and status
registers both have an address of 20H.

3. (22H, 23H) The lower timer byte is addressed with
24H, and the upper timer byte with

4. (25H) When port C is used for handshaking, it
provides three signals: a strobe, a __ full,
and an . Port C can provide handshak-
ing for port A plus 3 bits of output, or it can
provide handshaking for ports A and _

5. (buffer, interrupt, B) The is a pre-
settable 14-bit counter that counts TIMER IN pulses.
The number that is preset in the timer is called the

count. '

6. (timer, terminal) The timer can produce a single or

square wave; or it can produce a single
or continuous

7. (continuous, pulse) In the 8355 the ROM is orga-
nized as words of 8 bits each. For this
chip to be active the CE, input must be low and the
CE, input high. Ignoring foldback, the ROM loca-
tions in the minimum systemare —___ to

274 Digital Computer Electronics

— . To read these memory locations, the
I0O/M signal must be low.

8. (2,048, 0000H, 07FFH) When a bit is 0 in a DDR,
it makes the corresponding port pin an .
On the other hand, a 1 bit programs an
pin.

9. (input, output) To eliminate I/O and memory

in a minimum system we can fully

decode the address lines to the 8355 and 8156.
With full decoding, the only addressable __
locations in a minimum system are 0000H-07FFH;
the only addressablé RAM locations are

10. (shadows, ROM, 2000H-20FFH) The simplest
way to address a port is with address-
ing. This means using gates to produce the enable
signal. When many ports are_involved,
addressing is more convenient. A 74LS138 can se-
lectupto —________ ports.

11. (gate, decoder, eight) A pair of 2114s can'store

words of bits each. Bits A5
to A are called - bits because they de-
termine which zone is used. With 2114s, the zones
are from O to 63. The zone bits can either gate-
address or address the desired zone.

12. (1,024, 8. zone, decoder-) Static RAMs are ade-
quate for smaller applications and some larger ones.
Dynamic RAMs are practical when the RAM needs
at least 16K.

PROBLEMS

15-1. Refer to Fig. 15-27. - 15-3.

a. To transfer data during IN operations, is
- 10/M low or high?
b. While data is transferred during an IN oper-
ation, is WR low or high?

c. Does WR go low during OUT ‘operations? 15-4.
v \J
PC; 1 400 v,
Pc, g 2 39 pc, 15-5.
TIMERIN [3 38 rc,
RESET [4 37 pc, 15-6.
PCs [5 36 rs,
TIMER oUT 0 6 357 Py
10/ 7 347 P
ceE s 33 rs,
RD [9 32 rB,
Wwr O 10 8156 > 1 s,
ALE O 11 30 1 p8, 15-7.
ADy O 12 20 P8,°
AD, 0 13~ 28 [PA,
AD, 14 27 3 PAG
AD3 [15 26 1 PAg
AD, O 16 25 [PA,
ADg O 17 24 [PA,
ADg [18 23 [Pa,
AD; O 19 22 1 pa,
Vs O 20 21 O P4,
Fig. 15-27 15-8.

15-2. During the execution of OUT 25H, what are the
binary numbers appearing on the buses of Fig.

15-28a? 15-9.
4085 15-10.
15-11.

(a)
’ 15-12.

Az AD, AD, ADq

CE : : ©15-13.

8156
15-14.

: (b)
Fig. 15-28

What do these instructions do?

MVI 3EH
OUT 20H

What are the two instructions that do the follow-
ing: reset timer bits, disable A and B interrupts,
provide handshaking. for port A only, make port
B an input, make port A an output?

The contents of the command register are 23H.
How does port C act?

After executing an IN 20H, the accumulator
contains

‘A = X011 1000

What do these contents mean?
Here is a program segment:

MVI A, 2BH
OUT 24H
MVI A,86H
OUT 25H

What is the terminal count in decimal form?
What kind of signal does the timer produce?

A 3-MHz system clock is connected to the
TIMER N input of an 8156. Write a program
that divides this clock by a factor of 2,500 and
produces a train of pulses from the TIMER OUT
pin. :

An 8156 has A5 connected to its CE input. A,
to Ag are unconnected, and AD, to AD, are
connected. Ignoring shadows, what are the RAM
locations? The ports addresses? ’

In an 8355, DDR A contains 8CH. How does
each pin in port A act?

What do these instructions do:

MVI 3DH
OUT 03H

The CE, input of an 8355 is connected to A3
and the CE, input to A,,. Ignoring foldover,
what are the ROM addresses? The port ad-
dresses?

The 8156 of Fig. 15-29 has RAM locations from
2000H to 20FFH. How many zone bits are
there? If all bubbles are removed, what are the
new RAM locations?

Inverters are placed on the A, and Ag address
lines of Fig. 15-30a. What is the new port num-
ber?

Chapter 15 Support Chips 275

A5 —

Ay —q — AD,
] .
A1z —9 — “%s

A,y —d j : — AD,

1" cE 8156 — AD,

Arg—d 4,

A9 —qg ’ — AD,

Ag—3 10/M ' — AD,
Fig. 15-29 .

P y— Dy — L 4D,
Ayp — Dg — —— ADg
Az — Ds —— Threestate [——A0s
Aqy — Dy, — driver —— AD,
Ay — Dy—— Port FFH }—AD,
Ap — 0 —- —— AD,
Ag — Dy — | AD,
Ag — Dy — - AD,
RD ——d j ENABLE
10/M
fa)
IN byte
M, M, Ma
T T3 T4 T T, T3 T T, T3
3MHz CLK _/___/_\L/___/_\ _/—_/—\\._/__/_—_/_\
Ars-Ag PCy PCy 10 PORT

>————CNSTR ' < H(i0 PoRT X DATA)-——
/7 \ /7 \
AD __/ __/_’ ______/-_

c
;
:
Y

AD5-ADqy

ALE

IR

oM | \

«——————— INSTRUCTION FETCH >[I< - MEMORY READ >IL INPUT READ

gy

(b)
Fig. 15-30

2786 Digital Computer Electronics

Address/data bus
ADy

ADg
AD,
AD,
ADy

Three-state
driver
Port FOH

Three-state Peripheral
driver data <
Port F8H

Peripheral
data

TR

LTI

7415138 F8H ENABLE FOH ENABLE

FAH ENABLE
FBH ENABLE
— FCH ENABLE
FDH ENABLE
FEH ENABLE
FFH ENABLE

Tv?po?o

Fig. 15-31

Chapter 15 Support Chips 277

’_ A1

AD, ADg ADg AD, AD; AD, AD, AD, — :M
[A13
— A2
— An
— A0
14 13 (12 1 14 |13 12 1 Ag
D_Q_J) p:s_‘ — Ag
1 10 1 10
2 2 7
o 745173 L Port FFH —0 745173 4 —oq——lo/ﬁ
8
15 15
= =
- 3 4 5 6 - 3 4 5 6
: WR
D, Dg Dg D, Dy Dy Dy Dy
Peripheral data '
fa)
d M | M ol M o
1 ™ 2 3

10/M _\

(b)

7415138

Gs Yo

Ag —ro G2 a4
Ay —] = : Y
Az — Gy Ys
Ay — v
Ay — 4
Ao— A Ys

Ag 8 Ye

Ag—C Y;

o—— F8H ENABLE
b—— FOH ENABLE
b— FAH ENABLE
b—— FBH ENABLE
b—— FCH ENABLE
b-—— FDH ENABLE
b—— FEH ENABLE
b—— FFH ENABLE

fc)
Fig. 15-32

278 Digital Computer Electronics

At5-Ag

Data bus

8085

I

AN
@/)

Ag-Ag)

Two
2114S

Two
2114S

_

=

Two
2114S.

RD
WR

Ta; TWE

[= IWE

| oz

10/M

o

ZONE 63

1om

Ao —a

RD
WR

ZONE 62

1om
Als

6y el

Ao —d

X

UPPER ADDRESS

407'/400

[L

Fig. 15-33

LOWER -
—1/\ADDRESS /=77~
ALE _/ \

j¢——————— MEMORY READ ————

(b)

ZONE 48

fa)

A15-Ag

AD;-ADg

ALE

X

UPPER ADDRESS

TOWER __ _
X~ Coama)+

C N\

_

[¢———— MEMORY WRITE ——————+

(c)

Chapter 15 Support Chips 279

MAR

9
AD,

——o
AD,

———=o

Fig. 15-34 Memory-mapped 1/O.

15-15.

15-16.

15-17.

15-18.

15-19.

15-20.

280

How would you change Fig. 15-30a to address
port 40H?

An inverter is used on the A5 input of Fig.
15-31. What are the new port numbers for the
circuit?

What change can you make in Fig. 15-32a to °
create output port 32H?

An inverter is added to each of the A5 inputs in
Fig. 15-33a. What are the new memory zones?
Express the answer in zone numbers and hexa-
decimal equivalents.

The 2141 is a 4,096 X 1 static RAM. Eight of
these chips in parallel produce 4,096 bytes. How
many zone bits does this imply? How many
zones are there? If these chips are gate addressed
into zone 12, what are the hexadecimal equiva-
lents of the memory locations? (Use Appendix
8.)

Using IN and OUT instructions is only one
method of I/O operation. Another approach re-
lies on memory-mapped 1/0. The idea is to treat
a port as a memory location and to access it with
memory-reference instructions like

MOV reg,M
LDA address
ADDM
XRAM

Digital Computer Electronics

15-21.

0, — — 4D,
Dg — Y
Ds — threestate ﬁgs
D4 — driver 4
Dy — L 4D,
D, — L 4D,
j — AD,
ADy

____TENABLE

and others. The advantage of memory-mapped

/0 is the added control these new instructions

bring. The disadvantage is more decoding of the

address bits. Figure 15-34 is an example of a

memory-mapped input port. Answer the folow-

ing:

a. Can the three-state driver be enabled when
10/M is high?

b. If RD and IO/M are low, what are the 16
address bits that enable the three-state
driver?

¢. If D,DsDsD,D;D,D,D, = 1001 1110, wha
are the contents of the accumulator after an
LDA CO083H is executed?

d. Suppose the accumulator contents are

A = 10110011

If the D,D¢DsD,D;D,D,D, = 1110 0111,
what does the accumulator contain after
LXI H,CO083H and an ANA M are exe-
cuted?
How can you change Fig. 15-34 to get an input
port memory-mapped into location FFFFH?

The Analog Interface

The data in a microprocessor is in digital form. This differs
from the outside world where data is in analog (continuous)
form. To get digital data, we need to use an analog-to-
digital (A/D) converter; it will convert analog voltage or
current into an equivalent digital word.

Conversely, after a CPU has processed data, it is often
necessary to convert the digital answer into an analog
voltage or current. This conversion requires a digital-to-
analog (D/A) converter.

The analog interface is the boundary where digital and

analog meet, where the microcomputer connects to the

outside world. At this interface, we find either an A/D
converter (input side) or a D/A converter (output side).
This chapter discusses some of the hardware and software
found at the analog interface.

16-1 OP-AMP BASICS

Let us briefly review the operational amplifier (op amp)
because this device is used with D/A and A/D converters.
We will zero in on the key features that make tne op amp
useful at the analog interface.

~0vV A Vour
N :

Iin = =

Fig. 16-1 Operational amplifier.

Virtual Ground

Figure 16-1 shows the symbol for an op amp. Voyr is the
output voltage with respect to ground. A 1s the open-loop
voltage gain of the op amp, often more than 100,000. When
connected as an inverter, the noninverting input (+ input)
is grounded. The inverting input (— input) receives the
signal voltage. :

Because the voltage gain of an op amp is so large, the
input voltage is in microvolts. To a first approximation, the

input voltage may be treated as O V. Furthermore, the input
impedance of the inverting input approaches infinity (some-
times FETs are used for the input stage, as in BIFET op
amps). These key features, zero input voltage and infinite
input impedance, make the inverting input a virtual ground
point.

How is a virtual ground different from an ordinary
ground? An ordinary ground has zero voltage while sinking
any amount of current. A virtual ground, however, is a
ground for voltage but not for current; it has zero voltage
but can sink no current. In the discussion that follows, we
will approximate the inverting input of an op amp as a
virtual ground point: this means zero voltage and zero
currer.t. '

—_— —_—
Vin O 0 Your
Rin
fa)
25kQ 1k
+5V Vourt

. [b)
Fig. 16-2 Output current equals input current.

Output Voltage and Current

Figure 16-2a shows an inverting op amp with input and
output resistors. Viy is the input voltage with respect to
ground, and Vgyr is the output voltage with respect to
ground. Because of the high gain and input impedance, we

281

can approximate the inverting input as a virtual ground
point. Therefore, all the input voltage appears across the
input resistor, which means that the input current is

Vin
I=— (16-1)
RIN
Since none of the input current can enter the virtual
ground point, it must pass through the output resistor. In
other words, the output current equals the input current.
And the output voltage is
Vour = —IRour (16-2)
The minus sign indicates -phase inversion. If the input
voltage is positive, the output voltage is negative.
As an example of calculating input current and output
voltage, look at Fig. 16-2b. The input current is

The output voltage is .

VOUT= —2mAXlkﬂ= -2V

Vour

Fig. 16-3 Output current equals sum of input currents.

Summing Circuit

Figure 16-3 is an op-amp circuit whose output current is
the sum of the input currents. Here is the proof. Because
of the virtual ground point, each input voltage appears
across its resistor. This means that the input currents are

_Y v - _
[3_R3 IZ’RZ R, Ro

Kirchhoff’s current law gives a total input current of
1=13.""12+1| +10

Again, the virtual ground guarantees that ail this input
current goes through the output resistor. As before,

Vour= —IRour

16-2 A BASIC D/A CONVERTER

The op-amp summing circuit can be used to build a D/A
converter by selecting input resistors that are weighted in
binary progression. Figure 16-4 gives you the idea. Vpge is
an accurate reference voltage, and the resistors are precision
resistors to get accurate input currents. The switches can
be open or closed. When all switches are open, all input
currents are zero and the output current is zero.

All Bits High

When all switches are closed, the input currents are

Vrer Vrer -~ Veer
[, = — L, = —— = — = —
" R 2=%x TR TR
R
I
8R
/ Rout
¢ @ A Vout

Fig. 16-4 D/A conversion with binary-weighted resistors.

282 Digital Computer Electronics

The output current with all switches closed is the sum of
all input currents and equals

v,
1=-25(1+05+025+0.125)
R (16-3)

Vrer
I=1875——
R

By opening and closing switches we can produce 16 different
output currents from O to 1.875Vgge/R.

Any Digital Input

If O stands for an open switch and 1 for a closed switch,
we can rewrite Eq. 16-3 as

I= Y%(D; + 0.5D, + 0.25D, + 0.125Dy) (16-4)

In powers of 2,

v,
I= —;‘f(z)3 +2-1D, + 272D, + 273Dy) (16-5)

This says that the output current is the sum of binary-
weighted input currents. In other words, we have a D/A
converter. For instance, suppose Vggr = S Vand R = 5
kQ. Then the total output current varies from 0 to 1.875
mA, as shown in Table 16-1.

Current Switches

Figure 16-5 shows how we can transistorize the switching.

TABLE 16-1. WEIGHTED D/A CONVERTER

‘ Output

current, Fraction of

D, D, D, D, mA maximum
0 0 0 0 0 0
0 0 0 1 0.125 75
0 0 1 0 0.25 &
0 0 1 1 0.375 &
0 1 0 0 0.5 s
0 1 0 1 0.625 &
0 1 1 0 0.75 &
0 1 1 1 0.875 %5
1 0 0 0 1 5
1 0 0 1 1.125 &
1 0 1 0 1.25 B
1 0 1 1 1.375 u
1 1 0 0 1.5 1#
1 1 0 1 1.625 1
1 1 1 0 1.75 #
1 1] 1 1.875 B

open switch. (Base resistance is not critical; it need only
be less than coliector resistance multiplied by By..)

If the lower 4 bits of an output port are connected to D+
to Dy, the circuit of Fig. 16-5 will convert digital data to
analog current. For instance, assume port 22H has been
programmed as an output port in a minimum system. If the
lower 4 bits of port 22H are connected to D; to D, this
program segment will operate the D/A converter:

Data bits D5 through D, drive the bases of the transistors Label Mnemonic Comment
through the current-limiting resistors. When a bit is high, MVI A ,FFH ;Initialize accumulator
it produces enough base current to saturate its transistor. LOOP: INR A ;Count up
When a bit is low, the transistor is cut off. Since each OUT 22H ;Output nibble
transistor is saturated or cut off, it acts like a closed or JMP LOOP ;Get next nibble
Dy Dy D, Dy
S SN B 7
R 2R 4R 8R
!, Rour
‘i d 4 A Vour

Fig. 16-5 Transistor switches for D/A converter.

283

Chapter 16 The Analog Interface

Maximum

(a)

{

1 LSB increment

_'__J | }

(b)

Fig. 16-6 (a) Staircase output current; (b) each step equals an
LSB increment.)

The first INR A produces accumvlator contents of O0H.
Subsequent INR executions produce 01H, 02H, . . . , OFH,
10H, 11H, . . ., IFH, 20H, 21H, . . ., FFH. As far as
D; to D, are concerned, they see a nibble stream of 0000,
0001, 0010, 0011, . . ., 1111, 0000, 0001, and so on.
Figure 16-6a illustrates how the output current of the
D/A converter appears. As each input nibble is latched into

port 22H, the output current moves one step higher until

reaching the maximum current. Then the cycle repeats. If
all resistors are exact and all transistors matched, all steps
are identical in size.

Resolution

In the perfect staircase of Fig. 16-6b a step is called an
LSB increment because it is produced by a change in the
LSB. One way to measure the quality of a D/A converter
is its resolution, the ratio of the LSB increment. to the
maximum output. As a formula,

1
Resolution = 2’,—-— (16-6)

-.1‘

For instance, a 4-bit D/A converter has a resolution of

=L

1
22—-1 15

Resolution =
~This is sometimes read as 1 part in 15.

284 Digital Computer Electronics

The number of different steps an n-bit converter produces
is

Steps = 27 — 1 (16-6a)

Therefore, an alternative way to think of resolution is

. . 1
Resolution = ——

(16-6b)
steps

Percent resolution is given by
Percent resolution = resolution X 100% - (16-7)
If the resolution is 1 part in 15, then
Percent resolution = 15 X 100% = 6.67%

The greater the number of bits, the better the resolution.
With Eqs. 16-6 and 16-7 we can calculate the resolution
and percent resolution for more bits. Table 16-2 is a
summary of the resolution for converters with 4 to 18 bits.

Because the number of bits determines the resolution in
Eq. 16-6, an indirect way to specify resolution is by stating
the number of bits. For instance, an 8-bit converter has 8-
bit resolution, a 10-bit converter has 10-bit resolution, and
so on. This is a quick and easy way to pin down the
resolution. When necessary, Eqgs. 16-6, 16-6a, and 16-7
can give additional information.

Accuracy

.In a D/A converter, absolute accuracy refers to how close

each output current is to its ideal value. In Fig. 16-5 absolute
accuracy depends on the reference voltage, resistor toler-
ance, transistor mismatch, and so forth. In a typical
application, a trimmer adjustment is included to set the
full-scale output at a preassigned value.

Relative accuracy refers to how close each output level
is to its ideal fraction of full-scale output. With a 4-bit

-TABLE 16-2. RESOLUTION

Bits Resolution Percent

4 1 part in 15 6.67

6 1 part in 63 1.59

8 1 part in 255 0.392

10 1 part in 1,023 0.0978
12 1 part in 4,095 0.0244
14 1 part in 16,383 0.0061
16 1 part in 65,535 0.00153
18 1 part in 262,143 0.000381

converter, the ideal output levels as a fraction of full-scale
should be 0, #5, &, 15, and so on. Because data sheets
specify relative accuracy rather than absolute accuracy, our
subsequent discussions will emphasize relative accuracy.
Relative accuracy depends mainly on the tolerance of the
weightéd resistors in Fig. 16-5. If they are exactly R, 2R,
. 4R, and 8R, all steps equal 1 LSB increment in Fig.
16-6a. When the resistors depart from ideal values, the
steps may be larger or smaller than 1 LSB increment.

Error =1 LSB

(a)

(b)

Fig. 16-7 Error specified in LSB increments.

Errors are specified in terms of LSB increments. For
instance, Fig. 16-7a shows an error of 1 LSB; the actual
output (solid line) differs from the ideal output (dashed
line) by 1 LSB increment. If a negative error follows a
positive error, the staircase can fall as shown in Fig.
16-7b. Here you see an error of +1 LSB followed by an
error of —1 LSB.

Monotonicity

A monotonic D/A converter is one that produces an increase
in output current for each successive digital input. The
staircases of Fig. 16-7a and b are not monotonic because
they do not produce an increase for each digital input.
Figure 16-7a is almost monotonic, but Fig. 16-7b is far
from monotonic. Monotonicity is the least we can expect
from a D/A converter because it only makes sense; the
output should increase when the input does.

For a D/A converter to be monotonic the error must be

less than =3 LSB at each output level. Why? Because in

[

Fig. 16-8 Critical level for monotonicity.

the worst case, a +3-LSB error followed by a —3-LSB
error produces the critical level where monotonicity is about
to be lost. Figure 16-8 illustrates this critical case, an error
of +% LSB followed by an error of —% LSB. If the error
of a converter is less than 3} LSB for each output level,
we are guaranteed a rising current for each successive
digital input. Almost all commercially available D/A con-
verters are monotonic because they have an accuracy of
better than =4 LSB at each output level.

Settling Time

After you apply a digital input, it takes a D/A converter
anywhere from nanoseconds to'microseconds to produce
the correct output. Settling time is defined as the time it
takes for the converter output to stabilize to within 3 LSB
of its final value. This time depends on the stray capacitance,
saturation delay time, and other factors. Settling time is
important because it places a limit on how fast you can
change the digital inputs.

Disadvantages of Weighted Resistors

For a weighted-resistor circuit to be monotonic the tolerance
of the resistors must be less than the percent resolution..
For instance, if the resolution is 75 (6.67 percent), resistors
with a tolerance of less than *6.67 percent will produce a
monotonic staircase. If the resolution is 755 (about 0.4
percent), the resistors need a tolerance of better than +0.4
percent for a monotonic output. As you see, 4 bits are no
problem, but 8 bits are.

Another difficulty arises with weighted resistors. As the
number of bits increases, the range of resistance values gets
awkward. For 8 bits, we need resistances of R, 2R, 4R,
. .., 128R. The largest resistance is 128 times the smallest.
For a 12-bit converter, the largest resistance needs to be
2,048 times the smallest. Because of the tolerance and
range problems, mass production of weighted-resistor D/A
converters is impractical. :

Chapter 16 The Analog Interface 285

A R B8 R ¢ R b

2R 2R 2R 2R 2R
(a)

A R B R c R D

2R 2R 2R R
(b)

A R 8 R ¢

2R 2R R
fc)

A R B8 A

2R R R
(d) (e)

Fig. 16-9 R-2R ladder.

16-3 THE LADDER METHOD

‘One way to get around the problems of a binary-weighted
resistors is to use a ladder circuit. Figure 16-9a is an
example of the R-2R ladder commonly used in integrated
D/A converters. Only two resistance values are needed; this
eliminates the rangﬁ)roblem. Furthermore, since the resis-
tors are on the same chip, they have almost identical
characteristics; this minimizes the tolerance problem. In
other words, as the number of bits increases, an integrated
ladder can divide the current much more accurately than a
binary-weighted circuit.

R

o L,

‘2R

’L,

" 2R

A

2R 2R

Fig. 16-10 Ladder impedances.

286 Digital Computer Electronics

R

Ladder Properties

An R-2R ladder does something interesting to the impedance
at different points in the circuit. To begin: with, the two
resistors at node D in Fig. 16-9a are in parallel and may
be reduced to an equivalent resistance R, shown in Fig.
16-95. Now, to the right of node C we have R in series
with R, a total of 2R. Since node C has 2R is in parallel
with 2R, the circuit reduces to Fig. 16-9c.

Looking into the left side of node B (Fig. 16-9¢), we
see 2R in parallel with 2R. Therefore, the circuit reduces
to Fig. 16-9d. Again, 2R is in parallel with 2R, so the
circuit reduces to the single R shown in Fig. 16-9e.

Figure 16-10 summarizes ladder impedances. Do you
see the point? Looking into the left side of a node, we
always see an equivalent resistance of R. Just to the right
of each node, we always see a resistance of 2R. This
impedance phenomenon is the key to analyzing modern
D/A converters because they use the ladders instead of
weighted resistors.

' Binary Division of Current

e

2R

Figure 16-11 shows how a ladder can divide the current
into binary levels. The typical D/A converter has a reference
current set by the user. In this example, the reference
current is 2 mA. The bottom of each 2R resistor is grounded
in either switch position. When a switch is to the right, the
current through a 2R resistor flows. to the upper ground.
When a switch is to the left, the lower ground sinks the
current. With all the switches to the right, as shown in Fig.
16-11, Ioyr is zero. .

Here is how the ladder divides the 2 mA of reference
current. Just to the right of node A we see an equivalent
resistance of 2R. Therefore, the 2 mA of input current
divides equally at node A. Similarly, at node B we see 2R
in parallel with 2R; again, the current divides equaily into
0.5-mA branch currents. This process continues through
the ladder, so that we wind up with the upper grounds
sinking 1, 0.5, 0.25, and 0.125 mA.

Other Switch Positions

When we move the switches, we do not change the way
the current divides at the nodes. It still -divides equally at
each node. But when a switch is to the left, it steers the

R

L
EE

-— ———
2 mA 0.125 mA
/RerF
2R 2R 2R T 2R
* T1 mA TO.QS mA 0.125 mA
2 mA
- Dy -
[= Tout
—

Fig. 16-11 D/A conversion with R-2R ladder. .

current into the lower ground. Bits D; to D, control the
transistorized switches. From previous discussions, we can
see that :
-1 -2 _3p [rer
Ioyr = D3+ 27'D; + 272D, + 2 DO)T (16-8)

Therefore, the output current of a 4-bit ladder is from O to
-}%I REF-

More Bits

A similar analysis applies to longer ladders. The output
current is

I
Iosr = (Dyy +2°'Dyy + -+ + 2'-"00)—“2’5—F (16-9)
For instance, an 8-bit ladder produces a maximum output
current of 328/ggr. The LSB increment is z8s/gee-

Why Steer Current

Current steering may seem more complicated than neces-
sary, but there is good reason for it. The currents throughout
the ladder remain constant; all that changes are the ground
points. Constant current implies constant voltage, which
means that stray capacitance in the ladder has little effect.
In other words, we do not get the usual exponential charge
and discharge associated with a change in voltage. This
reduces the settling time. For this reason, IC converters
often use the current-steering approach shown in Fig.
16-11.

16-4 THE DACO0S808

There are many commercially available D/A converters.
The least expensive have resolutions of 8 to 12 bits. The
most expensive have resolutions of 16 to 18 bits. Almost

all are monotonic with less than =3-LSB error at each
output level.

The DACO808 is an example. This inexpensive and
widely used 8-bit D/A converter contains a reference current,
source, an R-2R ladder, and eight transistor switches to
steer the binary currents as previously discussed. An external
voltage and resistor are used to set the reference current to
a typical value of 2 mA. The DAC0808 has a settling time
of 150 ns and a relative accuracy of +3LSB.

DAC0808

ok m B 16 [1 COMPENSATION
eno 2 15 Vege(o)

Vee 4 3 140 Vagery)
IOUTD 4 13 : Vee

p,ds 12 D,

DgO 6 1130,

b7 10 D,

D,[]8 9[A 0y

Fig. 16-12 Pinout for DAC0808.

Pinout

Figure 16-12 shows the pinout. Typically, the pins are used
as follows. Pin 1 is unused (NC stands for no connection).
Pin 2 is chip ground. Pin 3 (Vg) is —15 V. Pin 4 is the
ground return for the current out of the ladder; this pin
usually connects to an op amp. Pins 5 to 12 are for the 8
bits of input data. Pin 13 (Vo) is +5 V. Pin 14 is connected
to a positive supply through a resistance R 4, and pin 15 is
grounded through a resistance R,s. Finally, a capacitor
between pin 16 and pin 3 frequency-compensates the device.

A Circuit

Figure 16-13 shows the data bits of a DAC0808 connected
to port 22H of a minimum system. Pin 2 of the DAC0808
is grounded, and a 15-pF compensating capacitor is between
pins 16 and 3. A +5-V supply sets up a reference current
for the ladder. Trimmer R, allows you to adjust this to 2

Chapter 16 The Analog Interface 287

Minimum system

8085
8355
8156 +5V
Port 22H Tn Rus Irge =2 MA
' L8 Al —
D, —=& 0 +5V
i) 2.5 kQ
6
7
Dy R
8, 15 15
4 "_‘VW—_L
o, 25kQ =
10
1 P2 4
D,
12
Dy
_L_z DAC0808 —_]16
= 3 15 pF
1’———/—]
)
—15V

Fig. 16-13 Interfacing the DAC0808.

mA. R,s is the same size as R,4; this compensates for drift
in the input stage of the converter. Notice that /oy drives
the inverting input of an op amp; therefore, the final output
voltage ranges from 0 to +2 V (actually 1.992 V).

EXAMPLE 16-1
What does the following program do in Fig. 16-13?

Label Mnemonic Comment
MVI A,02H ;Load command word for 8156
OUT 20H ;Make port 22H an output
MVI A FFH ;Initialize counter

LOOP: INR A ;Increment counter
OUT 22H ;Output data
JMP LOOP ;Get next byte

SOLUTION

The first two instructions initialize the 8156 to make port
22H an output port. After the accumulator is set to FFH,
the program enters a loop. In this loop the accumulator acts
like a counter that counts from O0H to FFH; then the cycle
repeats. After each accumulator byte is latched in port 22H,
the D/A converter produces an equivalent analog current.
Because of the direction of the current, the output voltage
is a positive staircase with 255 steps from 0 to 1.992 V.
The staircase is monotonic because the DAC0808 has a
relative accuracy of better than =3 LSB.

288 Digital Computer Electronics

EXAMPLE 16-2

If a clock frequency of 3 MHz drives the 8Q85, what is the
approximate frequency of the staircase in the preceding
example?

SOLUTION

We have to work out the period of the staircase, which is
256 times the duration of each output level. The duration
of each output level depends on how long it takes to pass
through the loop. Each T state has a duration of

= 330ns

Here are the calculations for loop time:

INR 4 X 330ns = 1.32 ps

OouT 10 X 330 ns = 3.3

JMP 10 X 330 ns = 3.3
7.92 s

This is how long each output level lasts. Since it takes only
150 ns to settle to within 3 LSB of the final level, each
step is well defined.

Because there are 256 levels, the period of a staircase is

T = 256 X 7.92 us = 2.03 ms

which gives a frequency of

1 1

f—_-_

T 203 x 100 - 4931z

EXAMPLE 16-3

The SDK-85 is a microprocessor trainer containing an 8085
minimum system with a hexadecimal keyboard and display.
The 8355 ROM contains a monitor program that allows
you to enter and run user programs. Hand-assemble the
program of Example 16-1 for entry into an SDK-85.

SOLUTION
Address Hex code
2000 3E
2001 02
2002 D3
2003 20
2004 3E
2005 FF
2006 3C
2007 D3
2008 22
2009 C3
200A 06
200B .20

Notice that the user program starts at memory location
2000H. This is because user programs and data are stored
in RAM locations 2000H to 20FFH.

Comparator

16-5 THE COUNTER METHOD OF
A/D CONVERSION

Figure 16-14 shows the simplest but least used method of
A/D conversion. Vi is the analog input voltage. D, to D,
are the digital output. The digital output drives a D/A
converter, which produces an analog output Voyr. When
COUNT is high, the counter counts upward. When COUNT
is low, the counter stops. For convenience, an 8-bit D/A
converter and 8-bit counter are. used, but the idea applies
to any number of bits.

Operation

The A/D conversion takes place as follows. First, the
START pulse goes low, clearing the counter. When the
START pulse returns high, the counter is ready to go.
Initially, Voyr is zero; therefore, the op amp has a high
output and COUNT is high. The counter starts counting
upward from zero. Since the output of the counter drives a
D/A converter, the converter output is a positive voltage
staircase. As long as Viy is greater than Voyr, the op amp
has a positive output, COUNT remains high, and the
staircase voltage keeps rising.

At some point along the staircase, the next step makes
Vour greater than Viy. This forces COUNT to go low, and
the counter stops. Now, the digital output D; to D is the
digital equivalent of the analog input. The negative-going
edge of the COUNT signal is used as an end-of-conversion _
signal; this tells other circuits that the A/D conversion is
finished.

If the analog input Vi is changed, external circuits must
send another START pulse to start the conversion. This
clears the count and a new cycle begins. When the digital
data is ready, the end-of-conversion signal has a fallmg
edge.

COUNT

8-bit

D/A

8-bit < CcLK

converter

counter rl n n n r1

Start of conversion

Dy Dg Dg D, D3 Dy Dy Dy

CLR

START | |

End of conversion

Fig. 16-14 A/D conversion with counter.

Chapter 16 The Analog Interface 289

Disadvantage

The main disadvantage of the counter method is its slow
speed. In the worst case (maximum analog input) the
counter has to reach the maximum count before the staircase
voltage is greater than the analog input. For an 8-bit
converter, this means a conversion time of 255 clock
periods. For a 12-bit converter, the conversion time is 4,095
clock periods.

16-6 SUCCESSIVE APPROXIMATION

The most widely used approach in A/D conversion is the
successive-approximation method (see Fig. 16-15). As
before, the output of a D/A converter drives the inverting
input of an op-amp comparator. The difference, however,
is in how the SAR register converges on the digital
equivalent. (SAR stands for successive-approximation reg-
ister.) When the-conversion is finished, the digital equivalent
is transferred to the output buffer register.

MSB First

When the start-of-conversion signal goes low, the SAR
register is cleared and Voyr drops to zero. When the start-
of-conversion signal goes high, the conversion begins.
Instead of counting up 1 bit at a time, the successive-
approximation method starts by setting the MSB. In other
words, during the first clock pulse the control circuit loads
a high MSB into the SAR register, whose output then equals

As soon as this digital output appears, Voyr jumps to 338
times full-scale. If this is more than Vi, the negative output
of the comparator signals the control circuit to reset the
MSB. On the other hand, if Vgyr is less than Vi, the
positive output of the comparator indicates that the MSB
is to remain set. In some designs, setting and testing the
MSB take place during the first clock pulse following the
start of conversion. In other designs, several clock pulses
may be needed to set the MSB, test it, and reset it if
necessary. '

Remaining Bits

Let us assume that the MSB was not reset. The SAR register
contents are now 1000 0000. The next clock pulse will set
D, giving a digital output of

1100 0000

Vour now steps to 322 times full-scale. If Voyr is greater
than Vi, the negative op-amp output causes D to reset. If
Vour is less than Vi, Dg remains set.

During the remaining clock pulses, successive bits are
set and tested. Whenever a bit causes Voyr to exceed Vi,
the bit is reset. In this way, all bits are set, tested, and
reset if necessary. With the fastest circuits, the conversion
is finished after eight clock pulses, and the D/A output is
the analog equivalent of the register contents. Slower designs
take longer because more clock pulses are needed to set,

1000 0000 test, and possibly reset each bit.
Comparator
\ JO—————@———— Start of conversion
Vin + ,
: Control 4 CLK
/ o— End of conversion
s T[T 1T
8-bit SAR 4
v D/A register
ouT converter

Buffer register

<

.

HEREEE

D, Dg DgiDy Dy Dy Dy Dy

Fig. 16-15 A/D conversion by successive approximation.

290 Digital Computer Electronics

butput. Buffer

When the conversion is finished, the control circuit sends
out a tow end-of-conversion signal. The falling edge of this
signal loads the digital equivalent into the buffer register.
In this way, the digital output will remain even though we
start a new conversion cycle.

Advantage

The main advantage of the successive-approximation method
is speed. At best, it takes only n clock pulses to produce
n-bit resolution of the analog signal. This is a big improve-
ment over the counter method. Even with slower designs,
the successive-approximation method is stlll considerably
better than the counter method.

16-7 THE ADCO0801

A/D converters are commercially available as integrated
circuits with 8- to 16-bit resolution. This section introduces
the ADC0801, an 8-bit A/D converter that is easily interfaced
to an 8080 or 8085. The device uses successive approxi-
mation, converting an analog input (0 to 5 V) to an 8-bit
digital equivalent. The ADC0801 has.an on-chip clock
generator, needs a supply of only +5 V, and has an
optimum conversion time of approximately 100 ps.

ADC0801
cs g 20 Ve

RD 2 19 cLk R
WR 3 18 [0 Dy
CLKIN []4 17 g o,
INTR 5 16 1 D,
Vine 06 15 [1 D,
V|N(_)E 7 1411 D,
AGND 8 13 0g
Vaer, 09 120 D
DGND O 10 1o,

Fig. 16-16 Pinout of ADC0801.

Pinout Diagram

Figure 16-16 shows the pinout. Pins 11 to 18 (digital output)
are a three-state output; this allows a direct connection to
the address-data bus if desired. If CS (pm 1) or RD (pin 2)
is high, pins 11 to 18 float; when CS and RD are both low,
the digital output appears on the output lines.

The start-of-conversion signal has been labeled WR (pin
3). To start a conversion, CS must be low. When WR goes
low, the converter is reset; when WR returns to the high
state, the conversion begins.

The converter clock frequency must be in the range of
100 to 800 kHz. The CLK IN (pin 4) may be derived from
the CPU clock. If the system clock s running at a frequency

greater than 800 kHz, we can divide it-down with one or
more flip-flops. Alternatively, we can use an on-chip clock

_ generator by connecting- an external RC circuit between

CLK IN (pin 4) and CLK R (pin 19).

Pin 5 is INTR, the end-of-conversion signal. II\’TR goes "
high at the start of a conversion; it is asserted (made active
low) when the conversion is finished. The falling edge -of
INTR can be used to interrupt a microprocessor, which then
branches to a service subroutine processing the converter
output.

Pins 6 and 7 are a differential input for the analog signal;
this type of input allows you to ground pin 7 for single-
ended positive input, to ground pin 6 for single-ended
negative input, or to drive both pins for differeutial input.

The device has two grounds, A GND (pin 8) and D GND
(pin 10). Both must be grounded. Pin 20 is the supply
voltage, +5 V in a microprocessor-based system.

Pin 9

Inthe ADCO0801, Vgge is the maximum analog input voltage;
this is the voltage that produces a maximum digital output
of FFH. If pin 9 is unconnected, Vigr equals the supply
voltage Vic. This means that a supply of +5 V allows an
analog input range of 0 to +5 V for single-ended positive
input (input on pin 6 with pin 7 grounded).

In some applications we may prefer a different analog
range. This is where pin 9 comes in. The voltage you
connect to pin 9 overrides the supply voltage and controls
the maximum analog input voltage. If you want a maximum
analog input of +4 V, for instance, you must apply +2
V to pin 9. If you want a maximum analog input of +3
V, then apply +1.5 V to pin 9.

In our discussions, we leave pin 9 open and let Vc set
the maximum analog input. In this case, the analog input
range is 0 to +5 V because a supply voltage of +5V is
used in the remainder of this chapter.

CLKR 19

i—bo—ib— CLK

ADC0801

CLKIN

T

Fig. 16-17 RC circuit for on-chip clock.

Using the On-Chip Clock

Self-clocking the ADC0801 requires an external RC circuit
connected to the CLK IN and CLK R pins, as shown in
Fig. 16-17. The Schmitt-trigger inverter produces an internal
clock frequency of

Chapter 16 The Analog Interface 291

(16-10)

A typical resistance range is from 10 to 50 k(). As an
example, 10kQ) and 120 pF produce a converter clock
frequency of

1
T (1.1 X 10%(120 X 10-12)

f = 758 kHz

Continuous Operation

The ADC0801 can be cor}nected to produce continuous
A/D conversion. To do this, we have to ground CS and
connect WR to INTR, as shown in Fig. 16-18. Also, to
enable the output register, RD is grounded; then a continuous
digital output appears. With pin 7 grounded, the circuit is

circuitry that applies a negative-going pulse to the WR
input during power-up. Once started, the conversion is
continuous.

Software Handshaking

Programmed handshaking adds an extra degree of software
control over the operation of an A/D converter. As an
example, we can connect INTR to bit 7 of port 00H and
WR to bit 0, as shown in Fig. 16-19. In this way, the
software has to start a conversion by sending a start-of-
conversion pulse to the WR input. When the conversion is
finished, the low end-of-conversion signal (INTR) tells the
CPU that the data is ready.

Here is a program segment illustrating the handshaking:

) i) Label Mnemonic Comment
set up for single-ended positive input to pin 6.
The action is continuous because the INTR signal (equiv- _ ;Group 1
alent to end of conversion) drives the WR input (equivalent MVI A, 0IH ;Reset bit 7, set bit 0
to start of conversion). At the end of each conversion, INTR OUT 02H ;Initialize port 00H
goes low. This resets the converter and drives INTR high. MVI A,00H ;Reset bit 0
As soon as INTR goes high, a new conversion begins. As OUT 20H *;Initialize port 21H
each conversion is finished, the digital equivalent is loaded
into the output buffer register. In this way, the digital output - ;Group 2
is being continuously updated to reflect changes in the NEXT: MVI A,00H ;Reset bit 0
analog input. OUT 00H - ;Send low SOC signal
To get the data into the microprocessor, an IN 21H is MVI A,01H ;Set bit 0
executed. This transfers the data into the accumulator. Then OUT 00H ;Send high SOC signal
additional instructions can process this data as needed in
the application. ' ;Group 3
A final point. When the power is first turned on, the WAIT: IN 00H ;Begin wait loop
circuit of Fig. 16-18 may not start under certain conditions. ANI 80H ;Mask all except bit 7
To ensure proper starting, it is necessary to have additional JNZ WAIT ;Loop if EOC signal high
+B5V
20
6 Vee !
Vin [Vin () D, 1 28 |
D |2 27
D 13 26
D, 14 25
L] R D, 15 24
16 23| -
10kQ ADCO0801 D, Port 21 8156
o, 2 22
d P Dy 18 21
120 pF
T w7 p
- INTR E
CS RD ViN(-) AGND DGND

1]2 7 8 10

Fig. 16-18 ADCO0801 connected for continuous operation.

292 Digital Computer Electronics

+5V

20
v 6|, Vee oo 28
IN IN(+) 7 12 27
. D6
13 26
D5
e 25
19 ’ “l1s 24| Port 21
CLKR Dy
o |e 23 srss
10k ADCoB01 02 = ~
1
4 18 21
CLK IN D,
120 pF I Bit0 24|g3ss
T] X !
= -—1 5 Bit 7 30 PortOOI
NTR jo— : !
€S RD YiNn(-) AGND D GND [
112 17 8 10

- Fig. 16-19 Software handshaking with the ADCO0801.

;Group 4

;Input converter data
;Additional instructions
;to process data as
;required

;Return for next sample

IN 21H

JMP NEXT

The instructions have been grouped into their functions.
For instance, the first group of instructions

MVI A,01H
OUT 02H
MVI A,00H
OUT 20H

program ports OOH and 21H. The first two instructions
make bit 0 an output to the start-of-conversion line and bit
7 an input for the end-of-conversion signal (Fig. 16-19).
The next two instructions make port 21H an input port.

The second group of instructions sends a negative-going
start pulse to the A/D converter. The first two instructions
produce a low WR, and the next two produce a high WR.
At this point, the A/D conversion begins.

The program now enters a WAIT loop. As long as the
end-of-conversion signal is high, bit 7 is high. In this case,
the program will loop back to the WAIT entry point. After
the A/D converter has converged on the digital equivalent,
the end-of-conversion /NTR signal goes low, forcing bit 7
low. This time, the IN OOH and ANI 80H set the zero flag,
and the program falls through the JNZ instruction.

The -final group of instructions begins by loading the
converter data into the accumulator. Then additional in-

structions can process the data as needed. Finally, the JMP
NEXT takes the program back to the NEXT entry point
where a new conversion cycle begins.

Hardware Handshaking

In the preceding program, we used sortware to send and
receive the handshaking bits. The ADCO080! can be inter-
faced with an 8080/8085 for hardware handshaking. In
other words, instead of software control of the WR and
INTR signals, we can let the 8080/8085 control bus send
and receive the handshaking bits.

Figure 16-20a illustrates the idea. In this circuit, the
ADCO0801 is being gate-addressed as an I/O device with a
port address of FFH. Why? Because the 8-input NAND gate
produces a low CS output only when FFH is on the upper
half of the address bus. Furthermore, notice how the /0/M
signal is being gated with WR and RD. Since IO/M is high
only when IN and OUT instructions are executed, the A/D
converter is being controlled as an I/O device rather than a
memory location. \ .

The end-of-conversion signal INTR goes low when the
data is ready. Because of the inverter, the RST 7.5 interrupt
receives a rising edge. This interrupt allows the 8085 to
input and process the converter data.

As previously discussed, the vector location for an RST
7.5 interrupt is 003CH. Suppose the 3 bytes at 003CH-
003EH contain machine code for JMP DATA. Then an
RST 7.5 interrupt sends the program to the address labeled
DATA. With this in mind we give a program to illustrate
how the microprocessor controls the converter:

Chapter 16 The Analog Interface 293

+5V
20

6
Vin —— Yinin Vee

CLKR
10kQ ADC0801

CLKIN

120 p'Fjr_\

CS RD VIN(-» AGND D GND

Wb_l‘

1 2 'l7 8 |10

—-Do— RST15

— 0/
<}

17
18 '
__ L3 — o/
WR —
5 —oﬂ— wR

fa)

—

—
-
—

AD,
ADg
ADg
AD,
ADy
AD,
AD,
ADqy

At

A3
Az

A

Ao
Ag
Ag

- M, ‘i‘ M, ;iA My
BTN/ _/
o [\ /
(b)
: g

10/M _\

Fig. 16-20 Hardware handshaking with the ADCO801.

294 Digital Computer Electronics

fc)

Label. - Mnemonic Comment
‘ MVIA,IBH ;Mask 6.5 and 5.5
SIM - ;Set interrupt mask
NEXT: OUT FFH ;Start conversion
EI ;Enable the interrupts
LOOP: NOP ;Waste time
JMP LOOP ;Loop
DATA: IN FFH ;Input converter data
e ;Additional instructions
;to process converter data
. ;for your application
" JMP NEXT ;Go back for next sample

The first two instructions set the interrupt mask. The RST
7.5 interrupt is unmasked; the RST 6.5 and 5.5 interrupts
are masked. ‘

Figure 16-20b shows the 8085 timing for the OUT
instruction. The first two machine cycles (M, and M,) are
memory-read operations (op code followed by port number).
During the third machine cycle, I0/M goes high. A little
later, WR goes low and returns high. This means that pin
3 of the ADCO0808 (Fig. 16-20a) pulses temporarily low.
In other words, the execution of OUT FFH starts the
conversion process.

Returning to the program, notice the EI instruction; this
enables the interrupt system. Next, the program enters what
appears to be an endless loop. As long as the conversion
process is going on, the INTR output is high and the program
loops, doing nothing but waiting. When the conversion is
finished, however, INTR goes low and RST 7.5 goes high.

After the RST 7.5 interrupt is acknowledged, the 8085
branches to vector location 003CH. Here it finds a JMP
DATA which sends the 8085 to the DATA label of the
program. When the 8085 executes the IN FFH, it will load
the converter data into the accumulator. Why? Because the
IN instruction has the control timing shown in Fig. 16-20c.
Notice how I0/M is high and RD is low during the third
machine cycle. At this time, the converter data is read onto
the address-data bus and loaded into the accumulator.

Additional instructions (not shown) can process the data
as needed in the particular application. The final instruction
JMP NEXT then returns the program to the NEXT entry
point. _

Here is a fine point. Notice that'we do not use a RET to
get back-to the NEXT instruction. Since the RST 7.5
interrupted an endless loop, a RET instruction would bring
the program back to the loop with no way of escaping.
Only by using a JMP NEXT can we then start a new
conversion.

16-8 SUCCESSIVE APPROXIMATION
WITH SOFTWARE

If speed is not important, you can use software to implement
the successive-approximation method of A/D conversion.
Figure 16-21 illustrates the idea. The output of a comparator
is connected to bit 0 of port 21H, programmed as an input.
Port 22H, programmed as an output, drives a D/A converter.
The following program segment will produce an output at
port 22H that converges on the digital equivalent of the
analog input.

Vin + Bit0 | Port
_ 21H
Minimum
system
D/A @: Port
converter 22H
Vout
Fig. 16-21 A/D conversion with software.
Label Mnemonic Comment
;G;oup 1
STC ;Set carry
MVI B,09H ;Preset B counter
MVI C,00H ;Clear ring counter
MVI D,00H ;Clear SAR
;Group 2
LOQP: DCR B ;Decrement B counter
JZ END ;Jump to end after 8 bits
;Group 3
MOV A,C ;Load next bit
RAR ;Rotate right
MOV C,A ;Save shifted bit
;Group 4
MOV AD ;Load SAR
ADD C ;Add next bit
MOV D,A ;Set latest bit in SAR
OUT 22H ;Send to output
;Group 5
IN 21H ;Input op amp
ANI O1H ;Mask all but bit 0
JNZ LOOP ;Jump if op amp positive
MOV A,D ;Load SAR
SUB C ;Reset bit
MOV D,A ;Store SAR ‘
JMP LOOP ;Go back for next bit
END: MOV. A.D ;Load digital output into A

Chapter 16 The Analoa Interface 295

First Group

The instructions have been grouped by their function. The

“first group (first four instructions) initializes the necessary
registers. The carry is set, and the B counter is preset with
decimal 9. Also, the C and D registers are cleared.

Second Group

The next group of instructions (DCR B and JZ END) act
like a counter to check for 8-bit resolution. The first 8 times
through the loop, the program falls through the JZ END.
On the ninth time the B counter drops to zero and the
program jumps to END because the conversion is finished.

Third Group

The third group of instructions (MOV A,C through MOV
C,A) rotate a single bit to the right. For instance, the first
time through this group, the carry bit is rotated into the
MSB, which is saved in the C register:

C = 1000 0000

The second time through the loop, the bit is rotated to the
right to get '

C = 0100 0000
Successive loops produce

C
C

0010 0000
0001 0000

“and so on. Natice that the C register acts like a ring counter.
In other words, register C contains the latest bit being set
in the successive-approximation method.

Fourth Group

The fourth group of instructions (MOV A,D through OUT
22H) sends the latest approximation to the output port. The
first time through the loop the ADD C produces

A = 1000 0000

The MOV D, A saves this result. The OUT 22H sends this
to port 22H. Then the D/A converter produces an analog
output of #2¢ times full-scale.

Fifth Group

The fifth group of instructions (IN 21H through the JMP
LOOP) tests the effect of each bit and resets it when
necessary. For instance, the first time through the loop the
D/A converter produces a Voyr equal to 328 times full-

296 Digital Computer Electronics

scale. If this is less than Viy, bit 0 of port 21H is high.
The IN 21H and ANI O1H test bit 0. Since this bit is high,
the zero flag is reset. The INZ LG)P returns the program
to the LOOP point. '

In the foregoing discussion, if Voyr is greater than Vi,
bit 0 is low. The program then falls through the INZ LOOP
to the MOV A,D, followed by the SUB C and MOV D,A.
These instructions have the effect of resetting the MSB.

Conclusion

The program will pass through the loop 8 times because of
the second group of instructions. The next bit is added to
the successive approximation during the fourth group of
instructions. The fifth group of instructions then tests the
effect of the latest bit. If Voyr becomes greater than Vi,
the latest bit is reset. After 8 passes through the loop, the
Software conversion is finished and the program falls through
to the final instruction.

16-9 VOLTAGE-CONTROLLED
OSCILLATOR

Figure 16-22 illustrates another method of A/D conversion
used in low-cost applications. The analog input voltage
drives a voltage-controlled oscillator (VCO). As an ex-
ample, the VCO could be a 555 timer with the analog
voltage driving the control input. The output of the VCO
is a rectangular wave whose period is directly proportional
to Vi, the analog voltage. The rectangular wave is connected
to bit 7 of port 21H. Here is.a program that performs A/D
conversion. :

Bit7 Port
in ™ veo 21H

J LTI
fe—7—+]

Fig. 16-22 A/D conversion using software to measure period.

Label Mnemonic Comment

;Group 1

MVI A,00H ;Reset bit 0

OUT 20H ;Make port 21H an input

MVI C,00H ;Clear the counter
;Group 2

LOOPI: IN 21H ;Input signal
ANI 80H ;Mask all but bit 7
JZ LOOP1 ;Loop if bit 7 low

;Group 3
LOOP2: INR C ;Count up
IN 21H ;Input signal
ANI 80H ;Mask all but bit 7
JNZ LOOP2 ;Loop if bit 7 high
;Group 4
LOOP3: INR C ;Count up
IN 21H ;Input signal
ANI 80H ;Mask all but bit 7
JZ LOOP3 ;Loop if bit 7 low
MOV A,C ;Load data intc A
First Group

The first group of instructions programs port 21H as an
input port. Also, register C is cleared. This register acts
like a counter during the program.

Second Group

The next group of instructions is LOOP1. The program
stays in this loop as long as the signal is low. After the
signal goes high, the program falls through the JZ. The
purpose of LOOP1 is to wait until a positive edge arrives.
Then the counting can begin.

Third Group

The third group of instructions, LOOP2, starts by incre-
menting the counter. Then bit 7 is tested to determine if
the signal is high or low. As long as the signal is high, the
program loops and the counter keeps counting. When the
signal goes low, the program falls through the JNZ. The
purpose of LOOP2 is to count the length of the positive
half cycle.

Fourth Group

The fourth group of instructions is LOOP3. The purpose
of this loop is to count the length of the negative half cycle
of the input signal. As long as the signal is low, the looping
continues. When the signal goes high again (end of cycle),
the program falls through LOOP3 to the final instruction.
The MOV A,C then loads the digital equivalent of analog
voltage into the accumulator. The larger the analog input
voltage, the longer the period of the input signal and the
greater the final value in the accumulator.

16-10 SAMPLE-AND-HOLD
CIRCUITS

In our discussion of A/D converters, we treated the analog
input voltage as a constant. What happens if it changes

while a conversion is taking place? The answer depends on
the A/D conversion method, the conversion time, and other
factors. In any case, if the input voltage changes by a
significant amount while the A/D conversion is going on,
the digitized output is ambiguous.

-
L

— Vour

Hold

capacitor
LOGIC —Control —_—— _l

Fig. 16-23 Sample-and-hold amplifier.

The Basic Idea

The way to get around a changing input voltage is to use
a sample-and-hold amplifier (Fig. 16-23). As discussed
earlier, the voltage between the inverting and noninverting
inputs of an op amp is in microvolts, so we can approximate
this voltage as zero. This implies the voltage from the
inverting input (— input) to ground is approximately Viy.
Because of the direct connection, the output of the first op
amp is approximately Vyy. In other words, the first op amp
acts like a unity-gain amplifier.

The switch is logic-controlled, meaning that a high input
closes the switch and a low input opens it. When the switch
is closed, the capacitor rapidly charges to Viy. Since the
second op amp is also a unity-gain amplifier, Vour equals
Vix to a close approximation. When the switch opens, the
capacitor retains its charge. Ideally, the output holds at a
value of Viy.

If the input voltage changes rapidly while the switch is
closed, the capacitor can follow this voltage because the
charging time constant is very short. If the switch is suddenly
opened, the capacitor voltage represents a sample of the
input voltage at the instant the switch was opened. The
capacitor then holds this sample until the switch is again
closed and a new sample taken.

Acquisition Time

One way to specify the quality of a sample-and-hold
amplifier is its acquisition time. This is the time needed to
get an accurate sample (typically to within 0.1 percent)
after the switch is closed. Ideally, acquisition time is zero,
but in a real sample-and-hold amplifier the charging time
constant of the hold capacitor plus other factors produce a
nonzero acquisition time.

Chapter 16 The Analog Interface 297

Aperture Time

Another measure of a sample-and-hold amplifier is its
aperture time. This is defined as the time required for the
switch to open. Since the switch is a transistor switch, there
is a short time before it appears open and no longer affects
the hold capacitor.

Droop Rate

The droop rate is the rate at which the output voltage
decreases in the hold condition. There are leakage paths
for the capacitor charge, and this is why the output voltage
will droop slowly when the switch is open. The larger the
capacitor, the smaller the droop in a given time.

LF398
v.d 1 8 b Loaic
Offset adjust [2 7 3 Logic reference
i} 3 6 Ch
V.34 5 1 Vour

Fig. 16-24 Pinout for LF398.

Tue LF398

The LF398 is a commercially available sample-and-hold
amplifier. For a hold capacitor of 0.001 wF, it has an
acquisition time of 4 s, an aperture time of 150 ns, and
a droop rate of 30 mV/s.

Figure 16-24 shows the pinout. The device uses a split
supply (equal positive and negative voltages). The positive
supply goes to pin 1, and the negative to pin 4. These
supply voltages may be from +5to +18 V.

The offset adjust (pin 2) is used to zero the output for a
zero input condition. Since the error is quite small, we can
leave pin 2 unconnected in ty,ical applications. Pin 3 is
for the input voltage to be sampled. Pin 5 is the output
voltage. Pin 6 is for the hold capacitor. Pin 7 is usually
grounded. Pin 8 is the logic signai; when this signal is
high, the device is sampling; when the signal is low, the
device is holding.

The hold capacitor can be in the range of 100 pF to
1 wF, the exact size being determined by a tradeoff between
acquisition time and droop rate. The smaller the hold
capacitor, the shorter the acquisition time but the larger the
droop rate. For our later discussions, we will use a hold
capacitance of 0.001 nF. According to the data sheets for
the LF398, this results in an acquisition time of 4 ws and
a droop rate of 30 mV/s.

Software-Controlled Sample-and-Hold

Figure 16-25 shows how bit 0 of port 23H can control a
sample-and-hold amplifier. The icea is to send a high bit
to sample and a low bit to hold. Here is the program:

298 Digital Computer Electronics

5V BV
i s
3 5
Vin = —— Vour)
LF398 ;g,’j
6 : ito
LoaicfE Bi

L
T 0.001 m:l_

Fig. 16-25 Software control of sample-and-hold-amplifier.

Label Mnemonic Comment
MVI A,0CH ;Set bits 3 and 2
OUT 20H ;Make port 23H an output
MVI A,01H ;Set bit 0
OUT 23H ;Sample
CALL ACQTIM ;Wait for 4 ps
MVI A,00H ;Clear bit 0
OUT 23H ;Hold

The first two instructions make port 23H an output. The
next two send a high bit 0 to port 23H, which puts the
sample-and-hold amplifier into the sample state. Next comes
CALL ACQTIM. This subroutine (not shown) produces a
delay of A ws (acquisition time) to ensure enough time for
an accurate sample. The last two instructions clear bit 0
and the sample-and-hold amplifier goes into the hold state.

EXAMPLE 16-4

Figure 16-26 shows how we can combine many ideas
discussed so far. The analog input voltage Vy drives the
LF398, which is controlled by bit 0 of port 23H. The output
of the sample-and-hold amplifier goes to the ADCO0801.
The A/D converter is controlled as an I/O device with a
port address of FFH. The converter output connects to the
address-data bus of a fully decoded minimum system. After
the 8085 has processed the data, it can send the results to
port 22H. The DACO0808 then converts this processed date
to an analog output Voyr.

 Here is the program that runs the system:

Label Mnemonic Comment
;Group 1
MVI A,0EH ;Set bits 3, 2, 1
OUT 20H ;Port 22H and 23H are
outputs
‘MVI A,1BH ;Mask 6.5 and 5.5
SIM . ;Set interrupt mask

BV -5V

b s

BV
20

Vour

3
Yn
LF398
6
J:—— LOGIC :
-J_7 10k

120 pF

Bit0

YN+ D, ADy
Dg ADg

Dg ADg

D4 4D,

Dy ADy

apcosot 223 AD,

Dy ADq

Do - AD,

| Port 23H. l ‘

Port
22H Dy

— A1s
— A1q
— A13

— Ay
— Ao
— Ag

,| DAcosos

—15V
Fig. 16-26 Data acquisition and processing.
;Group 2
NEXT: MVI A,01H ;Set bit 0
OUT 23H ;Sample analog input; .
CALL ACQTIM Wiait for 4 us
MVI A,00H ;Clear bit 0
OUT 23H ;Hold
;Group 3
OUT FFH ;Start conversion
EI ;Enable the interrupts
LOOP: NOP ;Waste time
JMP LOOP ;Loop

[1
= 3 15 pF
0J

— Vout

;Group 4
DATA: IN FFH ;Input converter data
. . ;Additional instructions
;to process convertef data
. ;for your application
OUT 22H ;Output processed data
JMP NEXT ;Get next sample

Group 1 initializes the ports and interrupt masks. Group 2
controls the sample-and-hold amplifier. After the OUT 23H
places the sample-and-hold amplifier on hold, group 3 starts
the A/D conversion and loops until the data is ready. As

Chapter 16 The Analog Interface 299

discussed in Sec. 16-7, the RST 7.5 vectors to a JMP
DATA instruction, which takes the program to the fourth
group of instructions. Group 4 inputs the converter data,

processes it as needed in the application, and - sends the
result to port 22H. After 150 ns, the DACO0808 has converted

the digital data into its analog equivalent.

GLOSSARY

acquisition time = The time after the switch is closed needed

to get an accurate sample (typically to within 0.1 percent)
_in a sample-and-hold amplifier.

aperture time The time required to open the swntch ina

sample-and-hold amplifier.

droop rate The rate at which the output of a sample-and-

hold amplifier decreases when the switch is open.

monotonicity The ability of a D/A converter to produce
“arising output for each successive digital input. A converter

is monotonic if its relative error is less than *+3 LSB at

each output level.

operational amplifier A direct-coupled amplifier with high

input impedance, low output impedance, and high voltage
* gain, Commonly known as an op amp.

relative accuracy An indication, specified in terms of

LSB increments, of how close each output is to its ideal

value as a fraction of full scale.

resolution The number of bits in a D/A or A/D converter.
sample-and-hold amplifier An amplifier with a logic-
controlled switch and a capacitor. When the switch is closed
(sampling), the capacitor charges to the input voltage. When
the switch is open (holding), the capacitor maintains the
output at approximately the sample voltage.

settling time The time it takes a D/A converter to stabilize
to within 4 LSB of its final value.

successive approximation One, of the methods used in
A/D converters. It involves testing the effect of each bit
starting with the MSB. If a bit produces an output less than
the input, it is used; if not, the bit is reset.

virtual ground A phenomenon in an op amp when its
noninverting input is grounded. Because the input imped-
ance and voltage gain approach infinity, the inverting input
appears grounded to voltage and open to current.

SELF-TESTING REVIEW

Read each of the following and provide the missing words.
Answers appear at the beginning of the next question.

1. Two key features of an op amp are its
voltage gain and its input impedarnce.
When the noninverting input is grounded, the in-
verting input looks like a . ground.

2. (high, high, virtual) A virtual ground is a ground
for—_____ but not for . With re-
spect to current, a virtual ground appears

3. (voltage, current, open) In an op-amp summing

" circuit, the current is the sum of all the
input currents. By using binary-weighted
in an op-amp summing circuit we can build a

converter.
4. (output, resistors, D/A) One way to medsure the
quality of a D/A converter isits | the

ratio of the LSB increment to the maximum output.
The number of output steps in a D/A converter is

271 where nis the numberof . An-
other way to specify resolution is to state the num-
ber of

"§. (resolution,.bits, btts) Relative accuracy refers to
how close each output level of a D/A converter is to
its ideal fraction of output. If the rela-
tive accuracy of each output level is within

300 Digital Computer Electronics

+4 LSB, the D/A converter is . Mono-
tonicity ensures that the output will ______ for
- successive digital inputs.

6. (full-scale, monotonic, increase) The limit on how
fast you can change the digital inputs to a D/A
converter is the time, defined as the
time it takes for the converter output to stabilize
*within LSB of its final value.

7. (settling, %) One way to get around the problems of
binary-weighted resistors is to use a
circuit. With this circuit, only two resistor values
are needed. An R-2R ladder divides the input

into binary components.

8. (ladder, current) One approach to A/D conversion
is the counter method, where a drives a
D/A converter whose output goes to an op amp.

~ The other input to the op amp is the
voltage. The output of the op amp stops the
counter.

9. (counter, analog) The most widely used method for
A/D conversion relies on approxima-
tion. Each bit, starting withthe _____, is
tested for its effect on the op-amp output; if the bit
contributes too much, it is . An end-of-
conversion signal indicates when the conversion is
finished.

10. (successive, MSB, reset) Software handshaking with the conversion. The bit goes to one of
an A/D converter means that an output port sends a the interrupt inputs of the microprocessor.
start-of-conversion bit to begin the conversion; 12. (end-of-conversion) If the analog input to an A/D
when the CPU detects an bit at a» input converter is changing faster than the conversion
port, it can process the digital equivalent of the time, a sample-and-hold amplifier can be used to

‘ input. sample the analog input. When the switch is

11. (end-of-conversion, analog) Hardware handshaking opened. the output of the sample-and-hold amplifier
with an A/D converter means addressing the con- delivers an almost constant input volage to the A/D
verter like a port. using a gated WR signal to start converter.

PROBLEMS
16-1. In Fig. 16-27a, Viy is |5 V. Ry is 10 k(). and 16-3. How many steps are there in the output of a 10-
Rour is 2 k). What does the input current bit D/A converter? What is the percent resolu-
equal? The output current”? The output voltage? tion?
, ’ , 16-4. All switches are to the left in Fig. 16-29. What
—_— —_— does Iy equal? The D, and D, switches are
Yin © 4 o Your moved to the right. What is the new value of
w Iour?
16-5. If Iy, is changed to 5 mA in Fig. 16-29. what
is the maximum value of /7
16-6. In the program of Example 16-1, if
MVI A FFH
fa)
25k 1kQ is changed to
+5V Y
o MVI A.00H
and
INR A
Ib) is changed to
Fig. 16-27 DCR A

16-2.

In Fig. 16-28, Ve = 1 V. R = 2 k(). and
Rour = | k. What does the output current
equal when all the switches are cloed? The
‘output voltage?

VRer O—4¢- ¢ ¢

Dy
R

Describe the output waveform in Fig. 16-30.

/ Reur

R
] %1'2]

Fig. 16-28

2 4 A\/W—T—O Vour

Chapter 16 The Analog Interface 301

Fig. 16-29

Minimum system

8085
\
8355
8156 +5V
Port 22H T13

R

/qep =2 MA
-—

25kS

O +5V

0</gyr S2mA

— 1k

Fig. 16-30

16-7. Here is a program used with Fig. 16-30:

Label Mnemonic

MVI A,02H
OUT 20H
MVI A ,FFH
INR A
OUT 22H
CPI FFH
JZ LOOP2

- JMP LOOP1
DCR A
OUT 22H
JZ LOOP1
JMP LOOP2

LOOPI:

LOOP2:

302 Digital Computer Electronics

16-8.

16-9.

16-10.

16-11.

-AAAV——0 VouT

+15V

What does the output voltage look like when the
program is run?

Hand-assemble the program of Prob. 16-7 start-
ing at address 2000H.

The 8-bit D/A converter of Fig. 16-31 has a
maximum output voltage of 2 V. If the Viy =
1.5 V, what is the digital output D, to D, at the
end of the conversion?

In Fig. 16-32, the digital output D, to D has a
hexadecimal equivalent of 7C at the end of the
conversion. If the maximum output voltage of
the D/A converter is 2 V, what is the analog
input voltage?

In Fig. 16-33 R = 20k} and C = 75 pF.
What is the converter clock frequency?

Comparator

Vin +
COUNT
Vour 8-bit A . 8-bit
D/A counter 9 cLK
converter , Juarnro
CLR
D; Dg D‘5 D4 D3 Dy Dy Dy
Start of conversion
START I I
_J_I_ End of conversion
Fig. 16-31
Comparator
v \ JO—————@———— Start of conversion
IN | s
. Control Le CLK
/ - — End of conversion
MsB Ls8
8-bit '
. SAR
v D/A register 9
ouT converter
Buffer register <p—
|
HESEEEE
Dy Dg Dg Dy D3 Dy Dy Dy
Fig. 16-32
ctkr Jd19 /-
' /
R
CLK IN 4
— CLK
‘T
= ADC0801
Fig. 16-33

Chapter 16 The Analog Interface 303

5V

l20

Vee I N
28
Yn Vin(+) D, 1 |
06 12 27
D 13 26
14 25
19 S I 24
 CLK R Dy
16 23
ADCO0801 D, Port 21 8156
10 k2 17 2
D,
Aekiv D, 18 2
120 pF
__13
T b2
- INTR
CS RD ViIN(-) AGND D GND
112 |7 8 10
Fig. 16-34
+5V
[zo
v,
6 cc 11 28
Vin ViN(+) D, > p
Dg
D 13 26
14 25
D,
19 15 24| Pert 21
CLKR Dy
[D. 116 23
10k ADC0801 2 8156
o, 17 22
1
4 1 21
CLK IN D, 8
120 pF L
WR cs BitQ 24| 8355
b _ i 0
TR b Bit7 30| Port 00 !
CS RD “iN(-) AGND DGND |
1]2 |7 8 10
Fig. 16-35

16-12. The digital output in Fig. 16-34 is updated 1o

BEH at the end of a conversion. What is the

, analog input?
16-13.

The software-handshaking program of Sec. 16-7
is run with the A/D converter of Fig. 16-35. If
Vin = 1.23 V, what does the accumulator con-
tain after the execution of the IN 21H?

16-14. The hardware-handshaking program of Sec. 16-7
is controlling the converter of Fig. 16-36.
a. If the digital output is SAH at the end of a

conversion, what is the analog input?
304 Digital Computer Electronics

16-15.

b. The program is looping. What does the ac-
cumulator contain? ‘
c. If the analog input voltage is 3.99 V, what
does the accumulator contain after the IN FFH
is executed?
In the VCO program of Sec. 16-9, how many T
states does it take to pass through LOOP2 once
(assume JNZ jumps back)? If the VCO of Fig.
16-37 has a frequency of | kHz and the system
clock a frequency of 3 MHz, what is the approx-
imate count in the accumulator after the MOV
A,C has been executed? :

+5.V

20
vy — v v, o, X AD
IN] VINGW) 'cc 7 12 7
Dg : ADg
Dg 3 _AD,
AL AD,
1 il
9 cikr Dy 2 AD,
10k ADC0801 D> ALz
10k
. D, 17 AD,
ek v oy B ‘ AD,
120 pF 13 - — 10/i
| WA _
-— |5 WR
INTR P

=43l

o B
RD VING-) A GND D GND Do—ﬁST?.S
2 |7 8 |10

e

= — 1o/ —Ais
°< . __ — Aa
RD
<| — A1z
— A2
— A1

F— A1

..__A9

...._A8

om _\ j

(5)

- M, i - M, I[‘ M3
ml \ / /N /]
WR
10/M —\ /
(c)
Fig. 16-36

Chapter 16 The Analog Interface 305

Fig. 16-37

i ——

AD,

ADg

AD,

AD,

AD,

AL,

Bit7 Port
iN] VvCO 21H
I<— r-——»l
45V BV +5V
[1 | 4 Jzo
5 6 1
Voutr Vin(+) D,
12
Dg
LF398 o 23
' 14
D,
'- 8. 19 o. 18
LOGIC 3
16-
, 0,
_[-7 10kQ ADCO801 e
1
4 18.
= D,
120 pF _ — jom
l WR
= ‘ WR
Bit 0 & 7D INTR L——I De
l Port 23H I 1 2 l7 8 |10
= — 1om
= a
+5V
13
5 14
D, +5V
8 g 25k
7 o,
8
Port S D, 15 25kQ
22H Dy N ‘W":l
10 =
D =
nl 4 2.5 kQ
0, AMN——
12|,
0
: +15V
| DAcosos |,

Fig. 16-38

306 Digital QOmputer Electronics

-15V

L
3 15 pF
1L—:]

AD,

t“m
Avg
— Aq3
— A2

411
— Ao
— Ao

)_Ae

16-16.

16-17.

16-18.

The software-controlled sample-and-hold pro-
gram of Sec. 16-10 calls a subroutine labeled
ACQTIM, which produces a delay of 4 ps. This
ensures adequate time for the sample to be
taken.

Write a subroutine ACQTIM that produces a
time delay of at least 4 ps for a system clock of
3 MHz.

Answer the following for Fig. 16-38:

a. What is the normal range of analog input
voltage?

b. If Viyis 0.99 V, what is the digital output of
the ADCO0801 after INTR goes low?

c. What is the maximum output voltage from
the 741 op amp?

In the program of Example 16-4, additional in-

structions process the data after the IN FFH is

executed. Suppose the additional instructions are

as follows:

Label Mnemonic Comment
STC ;Set carry flag
CMC ;Clear carry flag
ADI 80H ;Add 128
JC OFF ;If carry set, go to OFF
ON: MVI AJFFH ;Prepare to turn on heat
JMP OUT ;Escape
OFF: MVI A,00H ;Prepare to turn off
heat
OUT: ;Tell heater what to do

OUT 22H

16-19.

Answer the following:
a. For what range of analog input voltage does
port 22H get loaded with FFH?

- b. If the ADI 80H is changed to ADI 70H, what

is the range of analog input voltage that sets
the carry flag when the ADI is executed?

Suppose a transducer-controlled circuit linearly

converts temperatures from 50 to 100°F into ana-

log voltages from O to 5 V. This means that
50°F produces 0 V, 60°F produces 1 V. 70°F
produces 2 V, etc. The analog voltage out of the
transducer circuit is connected to the pin 6 of the

ADCO0801 in Fig. 16-38. (We don’t need the

sample-and-hold amplifier in this problem.)

Using all the program given in the Prob.

16-18, answer the following:

a. If the temperature is 72°F, what does port
22H contain after the OUT 22H has been
executed?

b. If the temperature is 78°F, what does port
22H contain after the OUT 22H has been
executed?

c. If the ADI 80H is changed to ADI 60H, what
is the highest temperature that produces FFH
in port 22H?

Chapter 16 The Analog Interface 307

Appendixes

APPENDIX 1. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal
0000 0000 00 0 0 0010 1001 29 10,496 41
0000 0001 01 256 I 0010 1010 2A 10,752 42
0000 0010 02 512 2 0010 1011 2B 11,008 43
0000 0011 03 768 3 0010 1100 2C : 11,264 44
0000 0100 04 1,024 4 0010 1101 2D 11,520 45
0000 0101 05 1,280 5 0010 1110 2E 11,776 46
0000 0110 06 1,536 6 0010 1111 2F 12,032 47
0000 0111 07 1,792 7 0011 0000 30 12,288 48
0000 1000 08 2,048 8 0011 0001 31 12,544 49
0000 1001 09 2,304 9 0011 0010 32 12,800 50
0000 1010 0A 2,560 10 0011 0011 33 13,056 51
0000 1011 0B 2,816 11 0011 0100 34 13,312 52
0000 1100 0oC 3,072 12 0011 0101 35 13,568 53
0000 1101 0D) 3,328 13 0011 0110 36 13,824 54
0000 1110 OE 3,584 14 0011 0111 37 14,080 55
0000 1111 - OF 3,840 15 0011 1000 38 - 14,336 56
0001 0000 10 4,096 16 0011 1001 39 14,592 57
0001 0001 11 4,352 17 0011 1010 3A 14,848 58
0001 0010 12 4,608 18 0011 1011 3B 15,104 59
0001 0011 13 4,864 19 0011 1100 3C 15,360 60
€001 0100 14 3,120 20 0011 1101 3D 15,616 61
0001 0101 15 5,376 21 0011 1110 3E 15,872 62
0001 0110 16 5,632 22 0011 1111 3F 16,128 63
0001 0111 17 5,888 23 0100 0000 40 16,384 64
0001 1000 18 6,144 24 0100 0001 41 16,640 65
0001 1001 19 6,400 25 0100 0010 42 16,896 66
0001 1010 1A 6,656 26 - 0100 0011 43 17,152 67
0001 1011 1B 6,912 27 0100 0100 44 17,408 68
0001 1100 1C 7.168 28 0100 0101 45 17,664 69
0001 1101 1D 7,424 29 0100 0110 46 17,920 70
0001 1110 IE 7,680 30 0100 0111 47 18,176 71
0001 1111 IF 7,936 31 0100 1000 48 18,432 72
0010 0000 20 8,192 32 0100 1001 49 18,688 73
0010 0001 21 - 8,448 33 0100 1010 4A © 18,944 74
0010 0010 22 8,704 34 0100 1011 4B 19,200 75
0010 0011 23 8,960 35 -0100 1100 4C 19,456 76
0010 0100 24 9,216 36 0100 1101 4D 19,712 77
0010 0101 25 9,472 37 0100 1110 4E 19,968 78
0010 0110 26 9,728 38 0100 1111 4F 20,224 79
0010 0111 27 9,984 39 0101 0000 50 20,480 80
0010 1000 28 10,240 40

308

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadécimal UB Decimal LB Decimal -
0101 0001 51 20,736 81 1000 0011 83 33,536 131
0101 0010 52 20,992 82 1000 0100 84 33,792 132
0101 0011 53 21,248 83 1000 0101 85 34,048 133
0101 0100 54 21,504 84 1000 0110 86 34,304 134
0101 0101 55 21,760 85 1000 0111 87 34,560 135°
0101 0110 56 22,016 86 1000 1000 88 34,816 136
0101 0111 57 22,272 87 1000 1001 89 35,072 137
0101 1000 58 22,528 88 1000 1010 8A . 35,328 138
0101 1001 59 22,784 89 1000 1011 8B 35,584 139
0101 1010 SA 23,040 90 1000 1100 8C 35,840 140
0101 1011 5B 23,296 91 1000.1101 8D 36,096 - 141
0101 1100 5C 23,552 92 1000 1110 8E 36,352 142
0101 1101 5D 23,808 93 1000 1111 8F 36,608 143
0101 1110 SE 24,064 94 1001 0000 90 - 36,864 144
0101 1111 5F 24,320 95 1001 0001 91 37,120 - 145
0110 0000 60 24,576 96 1001 0010 92 ~37,376 146
0110 0001 61 24,832 97 1001 0011 93 37,632 147
0110 0010 62 25,088 98 1001 0100 94 37,888 148
0110 0011 63 25,344 99 1001 0101 95 38,144 149
0110 0100 64 25,600 100 1001 0110 96 38,400 150
0110 0101 65 25,856 101 1001 0111 . 97 38,656 151
0110 0110 66 26,112 102 1001 1000 98 38,912 152
0110 0111 67 26,368 103 1001 1001 99 39,168 © 153
0110 1000 68 '26,624 104 1001 1010 9A 39,424 154
0110 1001 69 26,880 105 1001 1011 9B 39,680 155
0110 1010 6A 27,136 106 1001 1100 9C 39,936 156
0110 1011 6B 27,392 107 1001 1101 9D 40,192 157
0110 1100 6C 27,648 108 1001 1110 9E 40,448 158
0110 1101 6D 27,904 109 1001 1111 9F 40,704 159
0110 1110 6E 28,160 110 1010 0000 A0 40,960 160 -
0110 1111 6F 28,416 111 1010 0001 Al 41,216 161
0111 0000 -70 28,672 112 1010 0010 A2 41,472 162
0111 0001 -7 28,928 113 - 1010 0011 A3 - 41,728 163
0111 0010 72 29,184 114 1010 0100 A4 41,984 164
0111 0011 73 29,440 115 1010 0101 AS 42,240 165
0111 0100 74 29,696 116 1010 0110 A6 42,496 166
0111 0101 75 29,952 117 1010 0111 A7 42,752 167
0111 0110 76 30,208 118 1010 1000 A8 43,008 168
0111 0111 77 30,464 119 1010 1001 - A9 43,264 169
0111 1000 78 30,720 120 1010 1010 AA 43,520 170
0111 1001 79 30,976 121 1010 1011 AB 43,776 171
0111 1010 7A 31,232 122 1010 1100 AC 44,032 172
0111.1011 7B 31,488 123 1010 1101 AD 44,288 173
0111 1100 7C 31,744 124 1010 1110 AE . 44,544 _ 174
0111 1101 7D 32,000 125 1010 1111 AF 44,800 175
0111 1110 7E 32,256 126 1011 0000 BO 45,056 176
0111 1111 TF 32,512 127 1011 0001 B1 45,312 177
1000 0000 80 32,768 128 1011 0010 B2 45,568 178
1000 0001 81 33,024 129 1011 0011 B3 45,824 179
1000 0010 82 33,280 130 1011 0100 B4 46,080 180

Appendixes - 309

APPENDIX 1. BINARY-HEXADECIMAL-DECIMAL EQUIVALENTS (Continued)

Binary Hexadecimal UB Decimal LB Decimal Binary Hexadecimal UB Decimal LB Decimal
1011 0101 B5 46,336 181 1101 1101 .DD 56,576 221
1011 0110 B6 46,592 182 1101 1110 DE 56,832 222
1011 0111 B7 46,848 183 1101 1111 DF 57,088 223
1011 1000 B8 47,104 184 1110 0000 EO 57,344 224
1011 1001 B9 47,360 185 1110 0001 El 57,600 225
1011 1010 BA 47,616 186 1110 0010 E2 57,856 226
1011 1011 BB 47,872 187 1110 0011 E3 58,112 227
1011 1100 BC 48,128 188 1110 0100 E4 58,368 228
1011 1101 BD 48,384 189 1110 0101 E5 58,624 229
1011 1110 BE 48,640 190 1110 0110 E6 58,880 230
1011 1111 BF 48,896 191 1110 0111 E7 59,136 231
1100 0000 Co 49,152 192 1110 1000 E8 59,392 232
1100 0001 C1 49,408 193 1110 1001 E9 59,648 233
1100 0010 C2 49,664 194 1110 1010 EA 59,904 234
1100 0011 Cc3 49,920 195 1110 1011 EB 60,160 235
1100 0100 e 50,176 196 1110 1100 EC 60,416 236
1100 0101 C5 50,432 197 1110 1101 ED 60,672 237
1100 0110 C6 50,688 198 1110 1110 EE 60,928 238
1100 0111 Cc7 50,944 199 1110 1111 EF 61,184 239
1100 1000 C8 51,200 200 1111 0000 FO 61,440 240
1100 1001 Cc9 51,456 201 1111 0001 F1 61,696 241
1100 1010 CA 51,712 202 1111 0010 F2 61,952 242
1100 1011 CB 51,968 203 1111 0011 F3 62,208 243
1100 1100 CcC 52,224 204 1111 0100 F4 62,464 244
1100 1101 CD 52,480 205 1111 0101 F5 62,720 245

., 1100 1110 CE 52,736 206 1111 0110 F6 62,976 246
1100 1111 CF 52,992 207 1111 0111 F7 63,232 247
1101 0000 DO 53,248 208 1111 1000 F8 63,488 248
1101 0001 D1 53,504 209 1111 1001 F9 63,744 249
1101 0010 D2 53,760 210 1111 1010 FA 64,000 250
1101 0011 D3 54,016 211 1111 1011 FB 64,256 251
1101 0100 D4 54,272 212 1111 1100 FC 64,512 252
1101 0101 DS 54,528 213 1111 1101 FD 64,768 253
1101 0110 D6 54,784 214 1111 1110 FE 65,024 254
1101 0111 D7 55,040 215 1111 1111 FF 65,280 255
1101 1000 D8 55,296 216
1101 1001 D9 55,552 217
1101 1010 DA 55,808 218
1101 1011 DB 56,064 219
1101 1100 DC 56,320 220

310 Appendixes-

APPENDIX 2. 7400 SERIES TTL

Number Function Number Function
7400 Quad 2-input NAND gates 7455 Expandable 4-input 2-wide AND-OR-INVERT
7401 Quad 2-input NAND gates (open collector) gates
7402 Quad 2-input NOR gates 7459 Dual 2-3 input 2-wide AND-OR-INVERT gates
7403 Quad 2-input NOR gates (open collector) 7460 Dual 4-input expanders
7404 Hex inverters 7461 Triple 3-input expanders
7405 Hex inverters (open collector) 7462 2-2-3-3 input 4-wide expanders
7406 Hex inverter buffer-driver 7464 2-2-3-4 input 4-wide AND-OR-INVERT gates
7407 Hex buffer-drivers 7465 4-wide AND-OR-INVERT gates
7408 Quad 2-input AND gates (open collector)
7409 Quad 2-input AND gates (open collector) 7470 Edge-triggered JK flip-flop
7410 Triple 3-input NAND gates 7472 JK master-slave flip-flop
7411 Triple 3-input AND gates 7473 Dual JK master-slave flip-flop
7412 Triple 3-input NAND gates (open collector) 7474 Dual D flip-flop
7413 Dual Schmitt triggers 7475 Quad latch
-7414 Hex Schmitt triggers 7476 Dual JK master-slave flip-flop
7416 Hex inverter buffer-drivers 7480 Gates full adder
7417 Hex buffer-drivers 7482 2-bit binary full adder
7420 Dual 4-input NAND gates 7483 4-bit binary full adder
7421 Dual 4-input AND gates . 7485 4-bit magnitude comparator
7422 Dual 4-input NAND gates (open collector) 7486 Quad EXCLUSIVE-OR gate
7423 Expandable dual 4-input NOR gates 7489 64-bit random-access read-write memory
7425 Dual 4-input NOR gates 7490 Decade counter
7226 Quad 2-input TTL-MOS interface NAND 7491 8-bit shift register
gates 7492 Divide-by-12 counter
7427 Triple 3-input NOR gates 7493 4-bit binary counter
7428 Quad 2-input NOR buffer . 7494 4-bit shift register
7430 8-input NAND gate 7495 4-bit right-shift-left-shift register
7432 Quad 2-input OR gates 7496 5-bit parallel-in—parallel-out shift register
7437 Quad 2-input NAND buffers 74100 4-bit bistable latch
7438 Quad 2-input NAND buffers (open collector) 74104 JK master-slave flip-flop
7439 Quad 2-input NAND buffers (open collector) 74105 JK master-slave flip-flop
7440 Dual 4-input NAND buffers 74107 Dual JK master-slave flip-flop
7441 BCD-to-decimal decoder—Nixie driver 74109 Dual JK positive-edge-triggered flip-flop
7442 BCD-to-decimal decoder 74116 Dual 4-bit latches with clear
7443 Excess 3-to-decimal decoder 74121 Monostable multivibrator
7444 Excess Gray-to-decimal 74122 Monostable multivibrator with clear
7445 BCD-to-decimal decoder-driver 74123 Monostable multivibrator
7446 BCD-to-seven segment decoder-drivers 74125 Three-state quad bus buffer
(30-V output) 74126 Three-state quad bus buffer
7447 BCD-to-seven segment decoder-drivers 74132 Quad Schmitt trigger
(15-V output) _ 74136 Quad 2-input EXCLUSIVE-OR gate
7448 BCD-to-seven segment decoder-drivers 74141 BCD-to-decimal decoder-driver
7450 Expandable dual 2-input 2-wide AND-OR- 74142 BCD counter-latch-driver
INVERT gates 74145 BCD-to-decimal decoder-driver
7451 Dual 2-input 2-wide AND-OR-INVERT gates 74147 10/4 priority encoder
7452 Expandable 2-input 4-wide AND-OR gates 74148 Priority encoder
7453 Expandable 2-input 4-wide AND-OR-INVERT 74150 16-line-to-1-line multiplexer
gates ‘ 74151 8-channel digital multiplexer
7454 2-input 4-wide AND-OR-INVERT gates 74152 8-channel data selector-multiplexer

Appendixes 311

APPENDIX 2. 7400 SERIES TTL (Continued)

Number Function Number Function
74153 Dual 4/1 multiplexer 74190 Up-down decade counter
74154 4-line—to-16-line decoder-demultiplexer 74191 Synchronous binary up-down counter
74155 Dual 2/4 demultiplexer 74192 Binary up-down counter
74156 Dual 2/4 demultiplexer 74193 Binary up-down counter
74157 Quad 2/1 data selector 74194 4-bit directional shift register
74160 Decade counter with asynchronous clear 74195 4-bit parallel-access shift register
74161 Synchronous 4-bit counter 74196 Presettable decade counter
74162 Synchronous 4-bit counter 74197 Presettable binary counter
74163 Synchronous 4-bit counter 74198 8-bit shift register
74164 8-bit serial shift register 74199 8-bit shift register
74165 Parallel-load 8-bit serial shift register 74221 Dual one-shot Schmitt trigger
74166 8-bit shift register 74251 Three-state 8-channel multiplexer
74173 4-bit three-state register 74259 8-bit addressable latch a
74174 Hex F flip-flop with clear 74276 Quad JK flip-flop
74175 Quad D flip-flop with clear 74279 Quad debouncer
74176 35-MHz presettable decade counter 74283 4-bit binary full adder with fast carry
74177 35-MHz presettable binary counter 74284 Three-state 4-bit multiplexer
74179 . 4-bit parallel-access shift register 74285 Three-state 4-bit multiplexer
74180 8-bit odd-even parity generator-checker 74365 Three-state hex buffers
74181 Arithmetic-logic unit 74366 Three-state hex buffers
74182 Look-ahead carry generator 74367 Three-state hex buffers
74184 BCD-to-binary. converter 74368 Three-state hex buffers
74185 Binary-to-BCD converter 74390 | Individual clocks with flip-flops
74189 Three-state 64-bit random-access memory 74393 Dual 4-bit binary counter

‘312 Appendixes

* v
APPENDIX 3. PINOUTS AND FUNCTION TABLES

74LS83
The 74LS83 is a 4-bit full adder; the binary output is

S=A+8B

741583
A 161 B85
S, 02 150 S,
A3 141 CARRY OUT
B, 4 13| CARRY IN
Vec] 5 123 GND
s;dse 110 8,
8,07 103 A,
A Os 91 s,

Fig. A-1

In Fig. A-1, pins 1, 3, 8, and 10 are the A input (A;, A,,
A,, Ap); pins 16, 4, 7, and 11 are the B input (B;, B,, B,
By); and pins 15, 2, 6, and 9 are the S output (S;, S,, S,
So). Pin 13 is the CARRY IN, and pin 14 is the CARRY
OUT.

74LS157

This chip is a word multiplexer. Two words of 4 bits each

are the inputs; one word of 4 bits is the output. The two
input words are designated L (left) and R (right); the output
word is Y. In Fig A-2, pin 1 (SELECT) and pin 15
(STROBE) are control inputs. The L word goes to pins 14,
11, 5, 2 (Ls, L,, L, Ly), and the R word goes to pins 13,
10, 6, and 3 (R, R;, Ry, R).

7415157

seLecT 1 16 [Ve
L,g2 15 [STROBE

R, 3 1401,

Y, O 4 130 R,

L, 0s 120,

R, 06 npe,

v, g7 10 R,

Gvo O 8 s,

Fig. A-2

TABLE A-1. FUNCTION TABLE

STROBE SELECT | Y Comment
1 X 0 Output goes low
0 0 L Output equals left word
0 1 R Output equals right word

As indicated in Table A-1, a high STROBE input produces
a low output, no matter what the input words. When
STROBE is low, the SELECT input controls the operation.
A low SELECT will send the L word to the output; a high
SELECT sends the R word to the output.

74L5173
md1 16 [Ve
Vg2 15 CLR
o,03 141D,
ao,04 1300,
a,05 120D,
o,06 1"MQAbp, -
cLkz 100G,
Gnp8 9 g,
Fig. A-3
74L.S173

The 74LS173 is a 4-bit buffer register with three-state

" outputs. In Fig. A-3, pins 14, 13, 12, and 11 are the data

inputs (D3, D,, D,, Dy). Pins 3, 4, S, and 6 are the data
outputs (Qs, Q,, @i, Qo). Pins 9 and 10 (G, and G,) are
the input control. Pins 1 and 2 (M and N) are the output
control.

As shown in Table A-2, both M and N must be low to

o geta Q output. If either M or N (or both) is high, the

output is three-stated (floating or high impedance).

When M and N are both low, Table A-3 applies. As
indicated, a high CLEAR will clear all Q bits to 0. When
CLEAR is low, G, and G, control input loading. If either
G, or G, (or both) are high, no change takes place in the
Q bits. When both G, and G, are low, the next positive
clock edge loads the input data.

TABLE A-2. OUTPUT
CONTROL

M Output

Hi-Z
Hi-Z

N
0 Connected
1
0
1 Hi-Z

—_—e—0 O

TABLE A-3. FUNCTION TABLE FOR‘M = 0 AND
N=0

CLEAR CLOCK G,
X

S
o

Q. Comment

0 Clear output
NC No change
NC No change
NC No change
0 Reset bit n
1 Setbitn

cocooco0o~
© O M= XX
O O = X XM
— O p X XN

e)

Appendixes 313

74189

Az Q1 16 3 Ve
cEQ2 15[1A,
WEL]3 14[1A,
D34 1334,
o, 5 123Dy
D, 6 1130
0257 10 [0,
GND []8 9 po,
Fig. A4
74189

The 74189 is a 64-bit RAM organized as 16 words of 4
bits each. In Fig. A-4 pins 1, 15, 14, and 13 are the address
inputs (A3, A,, A, Ap). Pins 4, 6, 10, and 12 are the data
inputs (D3, D,, D,, D). Pins 5, 7, 9, and 11 are the data
outputs (03, 05, Q1, Qo).

314 Appendixes

TABLE A-4. FUNCTION TABLE

CE WE Output Comment
1 X Hi-Z Do nothing
0 0 Hi-Z Write complement
0 1 Stored word Read

Table A-4 summarizes the operation of this read-write
memory. When CE is high, the output is three-stated (high
impedancc .. When CE is low and WE is iow, the comple-
ment of the input data word is stored at the addressed
memory location; during this write operation, the output is
three-stated. When CE is low and WE is high, the stored
word appears at the output.

APPENDIX 4. SAP-1 PARTS LIST C39: 74L.S00

C40: 74L.S00
Chips C41: 74LS00
C42: 74LS00
C1: 74LS107, dual JK master-slave flip-flop C43: 74LS00
C2: 74LS107 C44: 741820
C3: 74LS126, quad three-state normally open switches © C45: 74LS10
C4: 74LS173, buffer register, three-state outputs, 4 bits C46: 741.S00
C5: 74LS157, 2-to-1 nibble multiplexer C47: 74LS04
C6: 74189, 64-bit (16 X 4) static RAM, three-state C48: 74LS04
outputs : .
C7: 74189 Diodes
C8: 74LS173 D1: 1N4001, rectifier diode, 50 FiV, 1 A
C9: 74LS173 D2: 1N4001
C10: 74LS173 D3: 1N4001
Cl11: 74LS173 D4: 1N4001
C12: 74LS126 .
C13: 74LS126 Switches
C14: 741586, quad 2-input EXCLUSIVE-OR gates S1: SPST DIP switch, 4 bits
C15: 74LS86 'S2: DPST on-off
C16: 74LS83, quad full adders S$3: SPST DIP, 8 bits
C17: 74LS83 S4: SPST push button, momentary, normally open
C18: 74LS126 S5: SPDT push button, momentary
C19: 74LS126 ‘ S6: SPDT push button, momentary
C20: 74LS173 S7: SPDT on-on switch
C21: 74LS173 Miscellaneous
C22: 74LS173
C23: 74L.8173 Resistors: eight 1-k(, fourteen 10-k{2, one 18-k(2, one
C24: 7400, quad 2-input NAND gates 36-kQ) :
C25: 74LS10, triple 3-input NAND gates Capacitors: 0.01-pF, 0.1-pF, 1000-pF (50 V)
C26: 74LS00 Transformer: F-25X = 115 V primary, 12.6 V secondary
C27: 7404, hex inverter CT,15A
C28: NE555, timer Fuse: 3-A slow blow
C29: 74LS107
C30: LM340T-5, voltage regulator, 5 V Totals
C31: 74LS04, hex inverter 1N4001-4 74LS204
C32: 74L.S20, dual 4-input NAND gates LM340T-5-1 74LS83-2
C33: 741820] NES55-1 74L.S86-2
C34: 74LS20 7400-1 74LS107-6
C35: 74LS04 74LS00-7 74L.S126-5
C36: 74LS107 : 7404-1 74LS157-1
C37: 74LS107 74LS044 74LS173-9
C38: 74LS107 74LS10-2 74189-2

Appendixes 315

APPENDIX 5. 8085 INSTRUCTIONS

Instruction Op Code T states Flags Main Effect

ACI byte CE 7 All A< A + CY + byte
ADC A 8F 4 All A<A+A+CY
ADC B 88 4 All - A<A+B+CY
ADC C 89 4 All A<A+C+CY
ADC D 8A 4 All A«<A+D+CY
ADC E 8B 4 All A< A+ E+CY
ADC H 8C 4 All A«<A+H+CY
ADCL 8D 4 All ‘ A«<A+L+CY
ADC M 8E 7 All A< A+ M, +CY
ADD A 87 4 All A<—A+ A

ADD B 80 4 All A< A+ B

-ADD C 81 4 Al A«<A+C

ADD D - 82 4 All A<A+D

ADD E 83 4 All A< A+ E

ADD H 84 4 All A<—A+H

ADD L 85 4 All A< A+ L

ADD M 86 7 All A< A + My

ADI byte C6 7 All : A < A + byte

ANA A . A7 4 All A< AAND A

ANA B A0 4 All A «< A AND B

ANA C Al 4 All A< AANDC

ANA D A2 4 All A< AANDD

ANA E A3 4 All A< AANDE

ANA H . . A4 4 All A< AAND H

ANA L A5 4 All A< AANDL

ANA M A6 7 All A < A AND My,

ANI byte E6 7 All A < A AND byte
CALL address CD 18 None PC « address

CC address DC 18/9 None PC « address if CY = 1
CM address FC 18/9 None PC « address if § = 1
CMA 2F 4 None A<—A

CMC 3F 4 (0)'¢ CY « CY

CMP A BF 4 All Z<—1ifA=A
CMP B B8 4 All Z<—1ifA=B

CMP C ' B9 4 All Z<—1ifA=C
CMP D BA 4 All Z<—1ifA=D
CMP E BB 4 All Z<—1ifA=E
CMP H BC 4 All Z<1ifA=H

CMP L BD 4 All Z<—1ifA =L
CMP M BE 7 All Z<—1if A =My
CNC address D4 18/9 None PC <« address if CY = 0
CNZ address C4 18/9 None PC « address if Z = O
CP address F4 18/9 None PC « address if S = 0
CPE address EC 18/9 None PC « address if P = 1
CPI byte FE 7 All Z<1ifA = byte
CPO address E4 18/9 None PC « address if P = 0
CZ address CcC 18/9 None PC <« address if Z = 1
DAA 27 4 All A < BCD number
DAD B 09 10 CY HL « HL + BC

DAD D 19 10 _ CY HL <« HL + DE

DAD H 29 10 CY HL <« HL + HL

316 Appendixes

Instruction Op Code T states Flags Main Effect
DAD SP 39 10 CY HL « HL + SP

DCR A 3D 4 All but CY A—A-—-1

DCR B 05 4 All but CY B«<B -1

DCR C 0D 4 All but CY C«<C-1

DCR D 15 4 All but CY D«<D -1

DCR E 1D 4 All but CY E<E -1

DCR H 25 4 All but CY H<H -1

DCR L 2D 4 " All but CY L«<L -1

DCR M 35 10 All but CY My <My — 1

DCX B 0B 6 None BC «<~BC -1

DCX D 1B 6 None DE < DE - 1

DCX H 2B 6 None HL « HL ~ 1

DCX SP 3B 6 None SP<«<SP -1

DI F3 4 None Disable interrupts

EI FB 4 None Enable interrpts

HLT 76 5 None Stop processing

IN byte DB 10 None A < byte

INR A 3C 4 All but CY A<—A+1

INR B 04 4 All but CY B«<B+1

INR C 0C 4 All but CY C—C+1

INR D 14 4 All but CY D«<D+ 1

INR E 1C 4 All but CY E«<E +1

INR H " 24 4 All but CY H«<H+1

INRL 2C 4 All but CY L<L+1

INR M 34 10 All but CY My «< My + 1

INX B 03 6 None BC «<BC + 1

INX D 13 6 None DE «< DE + 1

INX H 23 6 None HL «< HL + 1

INX SP 33 6 None SP«<SP + 1

JC address DA 10/7 None PC « address if CY = 1
JM address FA 10/7 None PC « address if S = 1
JMP address C3 10 None PC <« address

JNC address D2 10/7 None PC <« address if CY = 0
JNZ address C2 10/7 None PC <« address if Z = 0
JP address F2 10/7 None PC « address if S = 0
JPE address EA 10/7 None PC « address if P = 1
JPO address E2 10/7 None " PC <« address if P = 0
JZ address CA 10/7 None PC « address if Z = 1
LDA address 3A 13 None A «— M,

LDAX B 0A 7 None A «— Mg

LDAX D 1A 7 None A «— My

LHLD address 2A 16 None H <« M,

LXI B, dble 01 10 None BC « dble

LXI D, dble 11 10 None DE <« dble

LXI H, dble 21 10 None HL <« dble

LXI SP, dble 31 10 None SP « dble

MOV AA 7F 4 None A< A

MOV A,B 78 4 None A < B

MOV A,C 79 4 None A« C

MOV A,D TA 4 None A<D

MOV A,E 7B 4 None A <—E

MOV AH 7C 4 None A< H

MOV A,L 7D 4 None A <L

Appendixes

317

APPENDIX 5. 8085 INSTRUCTIONS (Continued)

Instruction Op Code T states Flags Main Effect
MOV AM 7E 7 None A <« My,
MOV B,A 47 4 None B« A
MOV B,B 40 4 None B<«<B
MOV B,C 41 4 None B« C
MOV B,D 42 4 None B<«<D
MOV B.E 43 4 None B < E
MOV B,H 44 4 None B < H
MOV B,L 45 4 None B <L
MOV B,M 46 7 None B <« My
MOV C,A 4F 4 None C«<A
MOV C,B 48 4 None C<«<B
MOV C,C 49 4 None C<C
MOV C,D 4A 4 None C«D
MOV C,E 4B 4 None C<«<E
MOV C,H 4C 4 None C<«H
MOV C,L 4D 4 None Ce«L
MOV CM 4E 7 None C My
MOV D,A 57 4 None D<A
MOV D,B 50 4 None D<B
MOV D,C 51 4 None D<«C
MOV D,D 52 4 None D<«<D
MOV D.E 53 4 None D < E
MOV D,H 54 4 None D« H
MOV D,L 55 4 None D« L
MOV DM 56 7 None D « My,
MOV E A S5F 4 None E< A
MOV E,B 58 4 None E<B
MOV E,C 59 4 None E<C
MOV E,D 5A 4 None E<D
MOV E,E 5B 4 None E < E
MOV E,H 5C 4 None E<«H
MOV E,L 5D 4 None E<L
MOV E.M SE 7 None E « MHL
MOV H,A 67 4 None He A
MOV H,B 60 4 None H<B
MOV H,C 61 4 None - H<«C
MOV H,D 62 4 None H<D
MOV H.E 63 4 None H<«<E
MOV H,H 64 4 None H<H
MOV H,L 65 4 None H< L
MOV H.M 66 7 None H <« My,
MOV LA 6F 4 None L<A
MOV L,B 68 4 None L<B
MOV L,C 69 4 None L<C
MOV L,D 6A 4 None L<D
MOV L,E 6B 4 None L<E
MOV L H 6C 4 None L «<H
MOV L,L 6D 4 None L< L
MOV LM 6E 7 None L « My
MOV M,A 77 7 None My, < A
MOV M,B 70 7 None M, < B

318 Appendixes

Instruction Op Code T states Flags Main Effect

MOV M,C 71 7 None My, < C

MOV M,D. 72 7 None My, <D

MOV M,E 73 7 None My, < E

MOV MH . 74 7 None My, < H

MOV M,L 75 7 None My, <L

MVI A, byte 3E 7 None A <« byte

MVI B,byte 06 7 None B « byte

MVI C,byte OE 7 None C « byte

MVI D,byte 16 7 None D « byte

MVI E,byte 1E 7 None E < byte

MVI H,byte T 26 7 None H <« byte

MVI L,byte 2E 7 None L « byte

MVI M, byte 36 10 None M, < byte

NOP 00 4 None Delay

ORA A B7 4 All A< AORA

ORA B BO 4 All A< AORB

ORA C Bl 4 All A< AorC

ORA D B2 4 All A< AORD

ORA E B3 4 All A< AORE

ORA H B4 4 All A< AORH

ORA L B5 4 All A<—AORL

ORA M B6 7 All A <~ AOrR My

ORI byte F6 7 All A « A OR byte

OUT byte D3 10 None Port byte «— A

PCHL , E9 6 None PC « HL

POP B C1 10 None B « My«

POP D D1 10 None D « M

POP H El 10 None H « M,

POP PSW Fl 10 None Fe—My, Ae=M,, — 1
PUSH B Cs5 12 None My — 1< B, M —2«C
PUSH D D5 12 None My — 1 <D, M, —2«E
PUSH H E5 12 None My - 1<H M, —2«L
PUSH PSW F5 12 None My — 1< A M, —2«F
RAL 17 4 CY Rotate all left

RAR IF .4 . CcY Rotate all right

RC D8 12/6 None PC < return address if CY = 1
RET o 10 None PC < return address

RIM 20 4 None A<l

RLC 07 4 (6)'¢ Rotate left with carry

RM F8 12/6 None PC <« return address if § = 1
RNC DO 12/6 None PC <« return address if CY = 0
RNZ Cco 12/6 None PC <« return address if Z = 0
RP FO 12/6 None PC <« return address if S = 0
RPE E8 12/6 None PC « return address if P = 1
RPO EO 12/6 None PC « return address if P = 0
RRC OF 4 CcY Rotate right with carry

RST 0 C7 12 None PC <« 0000H

RST 1 CF 12 . None PC <« 0008H

RST 2 D7 12 None PC « 0010H

RST 3 DF 12 None PC < 0018H

RST 4 E7 12 None PC « 0020H

RST 5 EF 12 Nene PC < 0028H

RST 6 F7 12 None PC < 0030H

Appendixes 319

APPENDIX 5. 8085 INSTRUCTIONS (Continued)

Instruction Op Code T states Flags Main Effect

RST 7 FF 12 None PC < 0038H

RZ C8 12/6 None PC <« return address if Z = 1
SBB A 9F 4 All A<—A-A-CY
SBB B 98 4 All A«<—A—-B-CY
SBB C 99 4 All A—A-C-CY
SBB D 9A 4 All A<A-D-CY
SBB E 9B 4 All A«<A—-E-CY
SBB H 9C 4 All A«<A—-H-CY
SBB L 9D 4 All A<—<A-L-CY
SBB M 9E 7 All A«<A-M-CY
SBI bvte DE 7 All A «— A — byte — CY
SHLD address 22 16 None Murs; < H, My, < L
SIM 30 4 None I—A

SPHL F9 6 None SP « HL

STA address 32 13 None M, < A

STAX B 02 7 None Mg < A

STAX D 12 7 None Mpg < A

STC 37 4 CY CY «<1

SUB A 97 -4 All A<—A - A

SUB B 90 4 All A<A-B

SUB C 91 4 All A«<A-C

SUB D 92 4 All A«<A-D
SUBE 93 4 - All A<—A—-E

SUB H 94 4 All A<A—-H

SUB L 95 4 All A<—A-1L

SUB M 96 7 All A<—A-M

SUI byte D6 7 All A < A — byte
XCHG EB 4 None HL < DE

XRA A AF 4 All A <« A XOR A

XRA B A8 4 All A < A XOR B

XRA C A9 4 All A «— AX0rC

XRA D AA 4 All A <~ A XORD

XRA E AB 4 All A < AxorE

XRA H AC 4 All A < A xorR H

XRA L AD 4 All A < AXorRL

XRA M AE 7 All A < A xorRM

XRI byte EE 7 All A < A XOR byte
XTHL) E3 16 None HL « stack

320 Appendixes

APPENDIX 6. MEMORY LOCATIONS:

POWERS OF 2
Power

Address Bits Hexadecimal Decimal of 2
0000 0000 0000 0001 0001H 1 0
0000 0000 0000 0C10 0002H 2 1
0000 0000 0000 0109 0004H 4 2
0000 0000 0000 1000 0008H 8 3
0000 0000 0001 0000 0010H 16 4
0000 0000 0010 0000 0020H 32 5
0000 0000 0100 0000 0040H 64 6
0000 0000 1000 0000 008GH 128 7
0000 0001 0000 0000 0100H 256 8
0000 0010 0000 0000 0200H 512 9
0000 0100 0000 0000 0400H 1,024 10
0000 1000 0000 GOCO 0800H 2,048 11
0001 0000 0000 0000 1000H 4,096 12
0010 0000 0000 0000 2000H 8,192 13
0100 0000 0000 0000 4000H 16,384 14
1000 0000 0000 0000 8000H 32,768 15
APPENDIX 7. MEMORY LOCATIONS:
16K AND 8K INTERVALS

Address Bits Hexadecimal Decimal ZE

Zone bits = AsA,
0000 0000 0000 0000 0000H 0 0
0011 1111 1111 1111 3FFFH 16,383
0100 0000 0000 0000 4000H 16,384 1
0111 1111 1111 1111 7FFFH 32,767
1000 0000 0000 0000 8000H 32,768)
1011 1111 1111 1111 BFFFH 49,151
1100 0000 0000 0000 CO00H 49,152 3
1111 1111 1111 1111 FFFFH 65,535
Zone bits = AsA A ;

0000 0000 0000 0000 0000H 0 0
0001 1111 1111 1111 1FFFH 8,191
0010 0000 0000 0000 2000H 8,192 |
0011 1111 1111 1111 3FFFH 16,383
0100 0000 0000 0000 4000H 16,384)
0101 1111 1111 1111 SFFFH 24,575
0110 0000 0000 Q000 6000H 24,576 3
O111 1111 1111 1111 7FFFH 32,767
1000 0000 0000 0000 8000H 32,768 4
i001 1111 1111 1111 9FFFH 40,959

1010 0000 0000 0000

AQO0OH 40,960 5
1011 1111 1111 1111 BFFFH 49,151
1100 0000 0000 0000 COOOH 49,152 6
1101 1111 1111 1111 DFFFH 57,343
1110 0000 0000 0000 EOOOH 57,344 7
1111 1111 1111 1111 FFFFH 65,535
APPENDIX 8. MEMORY LOCATIONS:
4K INTERVALS
Address Bits Hexadecimal Decimal Zone
Zone bits = A sA A 3A),
0000 0000 0000 0000 0000H 0 0
0000 1111 1111 1111 OFFFH 4,095
0001 0000 0000 0000 1000H 4,096 |
0001 1111 1111 1111 1FFFH 8.191
0010 0000 0000 0000 2000H 8,192 2
0010 1111 1111 1111 2FFFH 12,287
0011 0000 0000 0000 3000H 12,288 3
0011 1111 1111 1111 3FFFH 16,383
0100 0000 0000 0000 4000H 16,384 4
0100 1111 1111 1111 4FFFH 20,479
0101 0000 0000 0000 5000H 20,480 5
0101 1111 1111 1111 SFFFH 24,575
0110 0000 0000 0000 6000H 24,576 6
0110 1111 1111 1111 6FFFH 28,671
0111 0000 0000 0000 7000H 28,672 7
O111 1111 1111 1111 7FFFH 32,767
1000 0000 0000 0000 8000H 32,768 8
1000 1111 1111 1111 8FFFH 36,863
1001 0000 0000 0000 9000H 36,864 9
1001 1111 1111 1111 9FFFH 40,959
1010 0000 0000 0000 AOOOH 40,960 10
1010 1111 1111 1111 AFFFH 45,055
1011 0000 0000 0000 BOOOH 45,056 i
1011 1111 1111 1111 BFFFH 49,15!
1100 0000 0000 0000 COOOH - 49,152 12
1100 1111 1111 1111 CFFFH 53,247 -
1101 0000 0000 0000 DOOOH 53,248 13
1101 1111 1111 1111 DFFFH 57,343
1110 0000 0000 0000 EOOOH 57,344 14
1110 1111 1111 1111 EFFFH 61,439
1111 0000 0000 0000 FOOOH 61,440 05
TR (11 1111 1111 FFFFH 65,535 '
Appendixes 321

APPENDIX 9. MEMORY LOCATIONS: 2K INTERVALS

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone
ZOne bltS = A|5A|4A|3A'2A“ .

0000 0000 0000 0000 0000H 0 1000 0000 0000 0000 8000H 32,768

0000 O111 1111 1111 07FFH 2,047 0 1000 O111 1111 1111 87FFH 34,815 i6
0000 1000 0000 0000 0800H 2,048 1 1000 1000 0000 0000 8800H 34,816 17
0000 1111 1111 1111 OFFFH 4,095 1000 1111 1111 1111 8FFFH 36,863
0001 0000 0000 0000 1000H 4,096 2 1001 0000-0000 0000 9000H 36,864 18
0001 0111 1111 1111 17FFH 6,143 1001 O111 1111 1111 97FFH 38,911
0001 1000 0000 0000 . 1800H 6,144 3 1001 1000 0000 0000 9800H 38,912 19
0001 1111 1111 1111 - 1FFFH 8,191 ' 1001 1111 1111 1111 9FFFH 40,959
0010 0000 0000 0000 2000H 8,192 4 1010 0000 0000 0000 AOOOH 40,960 20
0010 0111- 1111 1111 27FFH 10,239 1010 0111 1111 1111 ATFFH 43,007
0010 1000 0000 0000 * 2800H 10,240 5 1010 1000 0000 0000 A800H 43,008 21
0010 1111 1111 1111 - 2FFFH 12,287 1010 1111 1111 1111 AFFFH 45,055
0011 0000 0000 0000 3000H 12,288 6 1011 0000 0000 0000 BOOOH 45,056 2
0011 0111 1111 1111 37FFH 14,335 ; 1011 O111 1111 1111 B7FFH 47,103
0011 1000 0000 0000 3800H 14,336 7 1011 1000 0000 0000 B80OOH 47,104 23
0011 1111 1111 1111 3FFFH 16,383 1011 1111 1111 1111 BFFFH 49,151
0100 0000 0000 0000 4000H 16,384 8 1100 0000 0000 0000 CO00H 49,152 24
0100 0111 1111 1111 47FFH 18,431 1100 0111 1111 1111 C7FFH 51,199
0100 1000 0000 0000 = 4800H 18,432 9 1100 1000 0000 0000 C800H 51,200 25
0100 1111 1111 1111 4FFFH 20,479 1100 1111 1111 1111 CFFFH 53,247
0101 0000 0G0 0000. 5000H 20,480 10 1101 0000 0000 0000 DO0OH 53,248 2%
0101 0111 1111 1111 57FFH 22,527 1101 O111 1111 1111 D7FFH 55,295
0101 1000 0000 0000 5800H 22,538 1 1101 1000 0000 0000 D800H 55,296 27
0101 1111 1111 1111 SFFFH 24,575 1101 1111 1111 1111 DFFFH 57,343
0110 0000 0000 0000 6000H 24,576 12 1110 0000 0000 0000 EOOOH 57,344 28
0110 0111 1111 1111 67FFH 26,623 1110 0111 1111 1111 E7FFH . 59,391
0110 1000 0000 0000 6800H 26,624 - 13 1110 1000 0000 0000 E800H 59,392 29
0110 11111111 1111 6FFFH 28,671 1110 1111 1111 1111 EFFFH 61,439
0111 0000 0000 0000 7000H 28,672 14 1111 0000 0000 0000 FOOOH 61,440 30
0111 0111 1111 1111 7T7FFH 30,719 1111 0111 1111 1111 F7FFH 63,487
0111 1000 0000 0000 7800H 30,720 15 1111 1000 0000 0000 F800H 63,488 31
O111 1111 1111 1111 7FFFH 32,767 1111 1111 1111 1111 FFFFH 65,535

322 Appendixes

APPENDIX 10. MEMORY LOCATIONS: 1K INTERVALS

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone

Zone bits = AisALABARA LA

0000 0000 0000 0000 0000H 0 0 0101 0000 0000 0000 5000H 20,480 20
0000 0011 1111 1111 03FFH 1,023 0101 0011 1111 1111 53FFH 21,503
0000 0100 0000 0000 0400H 1,024 1 0101 0100 0000 0000 5400H 21,504 21
0000 0111 1111 1111 07FFH 2,047 0101 0111 1111 1111 57FFH 22,527
0000 1000 0000 0000 0800H 2,048 2 0101 1000 0000 0000 5800H 22,528 2
0000 1011 1111 1111 OBFFH 3,071 0101 1011 1111 1111 SBFFH 23,551
0000 1100 0000 0000 0COOH 3,072 3 0101 1100 0000 0000 5COOH 23,552 23
0000 1111 1111 1111 OFFFH 4,095 0101 1111 1111 1111 SFFFH 24,575 -
0001 0000 0000 0000 1000H 4,096 4 0110 0000 0000 0000 6000H é4,576 24
0001 0011 1111 1111 13FFH 5,119 0110 0011 1111 1111 63FFH 25,599 .
0001 0100 0000 0000 1400H 5,120 5 0110 0100 0000 0000 6400H 25,600 25
0001 O111 1111 1111 17FFH 6,143 01100111 1111 1111 67FFH 26,623
0001 1000 0000 0000 1800H 6,144 6 0110 1000 0000 0000 6800H 26,624 2%
0001 1011 1111 1111 1BFFH 7,167 0110 1011 1111 1111 6BFFH 27,647
0001 1100 0000 0000 1COOH 7,168 7 0110 1100 0000 0000 6COOH 27,648 27
0001 1111 1111 1111 1FFFH 8,191 0110 1111 1111 1111 6FFFH 28,671
0010 0000 0000 0000 2000H 8,192 8 0111 0000 0000 0000 7000H 28,672 28
0010 0011 1111 1111 23FFH 9,215 . 0111 0011 1111 1111 73FFH 29,695
0010 0100 0000 0000 2400H 9,216 9 01i1 0100 0000 0000 7400H 29,696 2'9
0010 0111 1111 1111 27FFH 10,239 0111 0111 1111 1111 77FFH 30,719
0010 1000 0000 0000 2800H 10,240 10 0111 1000 0000 0000 7800H 30,720 30
0010 1011 1111 1111 2BFFH 11,263 0111 1011 1111 1111 7BFFH 31,743
0010 1100 0000 0000 2CO0H 11,264 1 0111 1100 0000 0000 7CO0H 31,744 31
0010 1111 1111 1111 2FFFH 12,287 011l 1111 1111 i111 7FFFH 32,767
0011 0000 0000 0000 3000H 12,288 12 1000 0000 0000 0000 8000H 32,768 3
0011 0011 1111 1111 33FFH 13,311 1000 0011 1111 1111 83FFH 33,791
0011 0100 0000 0000 3400H 13,312 13 1000 0100 0000 0000 8400H 33,792 33
0011 0111 1111 1111 37FFH 14,335 1000 O111 1111 1111 87FFH 34,815

- 0011 1000 0000 0000 3800H 14,336 14 1000 1000 0000 0000 8800H 34,816 34
0011 1011 1111 1111 3BFFH 15,359 1000 1011 1111 1111 8BFFH 35,839
0011 1100 0000 0000 3CO0H 15,360 15 1000 1100 0000 0000 8COOH 35,840 35
0011 1111 1111 1111 3FFFH 16,383 1000 1111 1111 1111 8FFFH 36,863
0100 0000 0000 0000 4000H 16,384 16 1001 0000 0000 0000 9000H 36,864 36
0100 0011 1111 1111 43FFH 17,407 1001 0011 1111 1111 93FFH 37,887
0100 0100 0000 0000 4400H 17,408 17 1001 0100 0000 0000 9400H 37,888 37
0100 0111 1111 1111 47FFH 18,431 1001 0111 1111 1111 97FFH 38,911
0100 1000 0000 0000 4800H 18,432 18 1001 1000 0000 0000 9800H 38,912 38
0100 1011 1111 1111 4BFFH 19,455 1001 1011 1111 1111 9BFFH 39,935
0100 1100 0000 0000 4CO0H 19,456 19 1001 1100 0000 0000 9CO0H 39,936 39
0100 1111 1111 1111 4FFFH 20,479 1001 1111 1111 1111 9FFFH 40,959

Appendixes 323

APPENDIX 10. MEMORY LOCATIONS: 1K INTERVALS (Continued)

Address Bits Hexadecimal Decimal Zone Address Bits Hexadecimal Decimal Zone
Zone bits = A sA A3 ARA LA V
1010 0000 0000 0000 AO000H 40,960 40 1101 0000 0000 0000 DO00OH 53,248 5
1010 0011 1111 1111 A3FFH 41,983 1101 0011 1111 1111 D3FFH 154,271
1010 0100 0000 0000 A400H 41,984 41 1101 0100 0000 0000 D400H 54,272 53
1010 0111 1111 1111 A7FFH 43,007 1101 O111 1111 1111 D7FFH 55,295
1010 1000 0000 0000 A800H 43,008 42 1101 1000 0000 0000 D800OH 55,296 54
1010 1011 1111 1141 ABFFH 44,031 1101 1011 1111 1111 DBFFH 56,319
1010 1100 0000 0000 ACOOH 44,032 43 1101 1100 0000 0000 DCOOH 56,320 55
1010 1111 1111 1111 AFFFH 45,055 1101 1111 1111 1111 DFFFH 57,343
1011 0000 0000 0000 BOOOH 45,056 44 1110 0000 0000 0000 EO00OH 57,344 56
1011 0011 1111 1111 B3FFH 46,079 1110 0011 1111 1111 E3FFH 58,367
1011 0100 0000 0000 B400H 46,080 45 1110 0100 0000 0000 E400H 58,3638 57
1011 O111 1111 1111 B7FFH 47,103 1110 0111 1111 1111 E7FFH 59,391
1011 1000 0000 0000 B800OH 47,104 46 1110 1000 0000 0000 . ESOOH 59,392 58
1011 1011 1111 1111 BBFFH 48,127 1110 1011 1111 1111 EBFFH 60,415
1011 1100 0000 0000 BCOOH 48,128 47 1110 1100 0000 0000 ECOOH 60,416 59
1011 1111 1111 1111 BFFFH 49,151 : 1110 1111 1111 1111 EFFFH 61,439
1100 0000 0000 0000 CO00H 49,152 48 1111 0000 0000 0000 FOOOH 61,440 60
1100 0011 1111 1111 C3FFH 50,175 1111 0011 1111 1111 F3FFH 62,463
1100 0100 0000 0000 C400H 50,176 49 1111 0100 0000 0000 F400H 62,464 61
1100 G111 1111 1111 C7FFH 51,199 1111 0111 1111 1111 - F7IFFH 63,487
1100 1000 0000 0000 C800H 51,200 50 1111 1000 0000 0000 F800H 63,488 62
1100 1011 1111 1111 CBFFH 52,223 1111 1011 1111 1111 FBFFH 64,511
1100 1100 0000 0000 CCO00H 52,224 51 1111 1100 0000 0000 FCOOH 64,512 63

1100 [111 1111 1111 CFFFH 53,247 - 1111 1111 1111 1111 FFFFH 65,535

324 Appendixes

A'nswers to Odd-Numbered Problems

CHAP. 1. 1-1.a.1b.2c. 2% 1-3.a 10b.2¢c. 5
d. 16 1-5. 1,024, 4,096, 8K 1-7. 1010 1100, 172 1-9.
201 1-11.11000111, 199 1-13.111000 1-15.10010k10
1-17. F52B, F52C, F52D, FS52E, FS2F, F530 1-19.
a. 1111 1111 b. 1010 1011 1100 c. 1100 1101 0100 0010
d.1111001100101001 1-21.00111110,00001110, 1101
0011, 0010 0000, 0111 0110 1-23. a. 4,095 b. 16,383
c. 32,740 d. 46,040 1-25. 16,384, 16K 1-27. 0000,
FFFF 1-29. a. EE b. 1D7B c. 3BFF d. B8B5 1-31.
a. 87 b. 9,043 c. 597,266 1-33. 100 1100, 100 1001, 101
0011, 101 010G

CHAP. 2. 2-1. One or more, one 2-3. Nonin-
verter 2-5.64,000000 2-7.3,9,C,F 2-9.128, 1111111
2-11.0,59 2-13.Y =A + B,low 2-15.8 2-17.0,Y
=A+ B+ C,000to 110, 111 2-19.Y = ABC,0 2-
21.Y ="AB + CD, 16, 0000, 0001, 0010, 0100,.0101,
0110, 1000, 1001, 1010 2-23. a. 0000 b. 0001 c. JIM
d.OPR 2-25.a.Positive b. Negative c. Positive d. Negative

CHAP. 3. 3-1. High; low; inverter 3-3. None, Zs, Z,
3-5.Qis 1, Qis 0 3-7. Change the output NOR gate of
Fig. 3-28a to a bubbled AND gate; all bubbles cancel leaving
the simplified circuit of Fig. 3-28b. 3-9. 0, 1 3-11. 512
3-13. 16; 0, 1, 1, 0 3-15. 1, 0, inverter 3-17. a. None
b.Z;c.Z,d X, and ¥, 3-19. 0, 1 3-21. 512 3-23.
Low, high 3-25. a. O0b. 1 c. 1 d. 1 3-27. a. 11010
b. 01001 c. 11111 d. 10010 3-29. Remove the inverter
3-31. a. CARRY = 0,SUM =0b.0,1¢c.0,1d.1,0
3-33.a. 0011 1100 b. 0101 0000 1100 c. 0001 1110 0101
1100 d. 1111 0000 1101 0010

CHAP. 4. 4-1.1.075 mA, 1.387 mA 4-3.5 4-5. All;
b,c,f, g

CHAP. 5. 5-1. ABCD, ABCD, ABCD

5-3.

AABBCCDD

:D.___

5-7 o _
¢D Cp cD D
ABl O 0o 0 o0
ABl 0O 0 0 0
AB L 1 1 1 1
ABl 1 1 1
5-9.
ChO Cp CD CD
aslo @ o ﬂ
AB| 0 0 \/
48| D o \O\ g7
AB| 0 0O ! 0

Answers to Odd-Numbered Problems 325

5-11.

afo U
a8 | o 0
a8l 0 o 0

i

U k[J JU

5-13. .
CD CD CD CD

326 Answers to 0dd-Numbered Problems

5-15.
Ch CD CD CD

>
b Y
[+
@)
(9]
3]}
e}
o

D_

CHAP. 6. 6-1. a. 0001 1000, 18H b. 0010 0100, 24H
c. 0010 1010, 2AH d. 01100011, 63H 6-3. a. 7BH
b. 78H c. ABH d. DIH 6-5. a. +30 b. =7 c. —28
d. +49 6-7. a. FOH b. 01H c. 03H d. 1FH 6-9.
a. 1110 1101, EDH b. 1101 0000, DOH c. 0010 0101,
25H d. 1101 1111, DFH 6-11. 9BH, DDH

CHAP.7. 7-1.a.Cb.G 7-3.a 0000b. 1001 7-5.3
MHz; the output frequency is half the input frequency
7-1.0¢=0,Y=10=1,Y = CLK

CHAP. 8. 8-1.a. 00010111 b. 1000 1101 8-3. 385 O
8-5.4 pus 87.64 ps 89. 65535 8-11. 1 ps, 6 s
8-13. 1.6 us, 0.2 us 8-15. Two answers: 7490 (divide by
10) and 7492 (divide by 6), or 7490 (divide by 5) and 7492
(divide by 12) 8-17. 136 8-19.a.0,1b.1,1¢c. 0

CHAP. 9. 9-1. 16,384 9-3. 12
9-5. Address Data

DDDD UDDD UDDU
DDDU DUUU UUDD
DDUD DDUU DUUD
DDUU DDUD DDUU
DUDD DDDU DUUU
DUDU DUDU UUUU
DUUD UuuD UUDU
DUUU UuuUU UDDD

9-7.63 9-9. BFFFH; 49,151 9-11. a. 47, 212, 207, 110,
83, 122 b. 36,357

CHAP. 10. 10-1.

10-3.

1

Address

OH
1H
2H
3H
- 4H
DH
EH
FH

* Address

OH
1H
2H
3H
4H .
SH
BH
CH
DH
EH
FH

Mnemonic

LDA DH
ADD EH
SUB FH
ouT
HLT
05H
04H
06H

Mnemonic

LDA BH
ADD CH
SUB DH
ADD EH
SUB FH
HLT
08H
04H
03H

 O5H
02H

T e e

_
1

N

10-7. LDA:

1A3H or 0001 1010 0011,

2C3H or

0010 1100 0011, 3E3H or 0011 1110 0011; SUB: 1A3H
or 0001 1010 0011, 2E1H or 0010 1110 0001, 3CFH or
0011 1100 1111 10-9. a. Negative edge; CLK is on its
rising edge b. High c. Low d. High 10-11. a. Low b. Low

c. High

CHAP. 11.

11-3.

11-5.

11-7. a. 120 b. 119 c.

C,D2H
11-9.

11-11.

11-1.

Mnemonic

MVIA,64H
MVI B,96H
MVIC,C8H
HLT

Mnemonic

'MVIA,32H

STA 4000H
MVI A,33H
STA 4001H
MVI A,34H
STA 4002H
HLT

Mnemonic

MVI A ,44H
MVIB,22H
ADDB
STA 5000H
HLT

Change the first instruction to MVI

Mnemonic
MVI A,00H
MVIB,19H
MVIC,07H
CALL FOO6H
STA 20FFH
HLT
Label Mnemonic
IN 01H
ANI 01H
JNZ ODD.
MVI A,45H
JMP DONE
ODD: MVI A 4FH
DONE: MVI C,08H
AGAIN: OUT 04H
RAR
DCR C
INZ AGAIN
HLT

Answers to Odd-Numbered Problems

327

11-13.

11-15.

11-17.

11-19.

328

Address

2000H DBH
2001H 02H
2002H E6H
2003H O0IH
2004H CAH
2005H 00H
2006H 20H
2007H DBH
2008H 0lH
2009H 32H
200AH 00H
200BH 40H
200CH 76H

Address

2000H OEH
200lH 23H
2002H ODH
2003H C2H
2004H 02H
2005H 20H
2006H C9H

Label

LOOP:

Address

E100H
E101H
E102H
E103H
E104H
E105H
E106H
E107H
E108H
E109H

Address

FO80H
FO81H
FO82H
FO83H
F084H
FO85H
FO86H
FO87H
FO88H
FO89H
FO8AH

Answers to Odd-Numbered Problems

Mnemonic

MVI A,05H
CALL FO20H
DCR A

JNZ LOOP
RET

Contents

3EH
05H
CDH
20H
FOH
3DH
C2H
02H
ElH
CSH

Contents

3EH
06H
32H
93H
FOH
CDH
60H
FOH
3AH
93H
FOH

Contenis

Contents

11-21.

CHAP. 12.

FO8BH
FO8CH
FO8DH
FO8EH
FO8FH
FO90H
FO91H
F092H

Address

2000H
2001H
2002H
2003H
2004H
2005H
2006H
2007H
2008H
2009H
200AH
200BH
200CH

3DH
32H
93H
FOH
C2H
85H
FOH
C9H

Contents

D3H
04H
OEH
42H
ODH
C2H
04H
20H
2FH
00H
C3H
00H
20H

12-1.

Mnemonic

MVI A,00H
MVI B,01H
MVI C,59H
MVI D,02H
MVI E,FIH
ADD C
ADD E
MOV L,A
MVI A,00H
ADC B
ADD D
MOV H,A
HLT

An alternative solution is

12-3.

Label

LOOP:

Mnemonic

MVI A,FIH
ADI 59H
MOV LA
MVI A,02H
ACIOIH
MOV HA
HLT

Mnemonic

LXI H,4FFFH

INX H

MOV B.lvi
MOV AH

12-5.

12-7.

12-9.

Label

LOOP:

Label

LOOP:

Label

LOOP:

AGAIN:

ADI 40H

MOV H,A

MOV M,B
SUI 40H
MOV H,A
CP1 53H
JNZ LOOP
MOV AL
CPI FFH
JNZ LOOP
HLT

Mnemonic

LXI SP,EO000H
MVI A,00H
MVI B,FFH
INR A

OUT 22H
CALL FO10H
DCR B

JNZ LOOP
HLT

Mnemonic

LXI SP,EOO0OH
LXI H,5FFFH
INX H

MOV AM
OUT 22H
CALL FO20H
MOV AH
CPI 61H

INZ LOOP
MOV AL
CPI FFH

JNZ LOOP
HLT

Mnemonic

LXI SP,E000H
LXI H,4FFFH
INX H

MOV AM
MOV B,08H

-OUT 22H

CALL FO10H
RAR

DCR B

INZ AGAIN
MOV AL
CPI FFH
JNZ LOOP
HLT

CHAP. 13. 13-1: 6.25 MHz 13-3. a. LHLD 2000H
b. PCHL c. XTHL 13-5. a. High b. Low c. High d. Low
13-7. 8000H-80FFH 13-9.2002H 13-11. a. JMP 3090H
b. 4 c. 30H d. 90H)

CHAP. 14. 14-1. 1.XI H,8000H

143, Label Mnemonic

LXI H,5000H
MVI C,00H

LOOP: MVI A,01H
OUT 10H

WAIT: IN 11H
ANI 02H
JZ WAIT
IN 1ZH
MOV M,A
INX H
MVI A,0CH
OUT 10H
DCR C
JNZ LOOP
HLT

14-5. Label Mnemonic

LXI H,80001

LOOP: MOV AM
OUT I2H
MVI A,40H
OUT 10H

WAIT: IN 11H
ANI 80H
IZ WAIT
INX H
MVI A,00H
OUT 10H
MOV A,H
CP1 83H
INZ LOOP
MOV AL
CPI FFH
IJNZ LOOP
HLT

14-7. a. 6.5 b. None c. 7.5 d. None 14-9. 7.5 and 5.5
14-11. a. High b. 7.5 c. High d. 6.5 14-13. a. 40H
b. 60H c. 43H, letter C d. First -

CHAP. 15. 15-1. a. High b. High c. Yes 15-3. Enable
A and B interrupts, port C output, port B output, and port
A input. 15-5. Port C is an input port 15-7. 1579, single
pulse 15-9. 8000H-80FFH, 80H to 85H 15-11. The
instructions program port O1H as follows: bits 7, 6, and 1
become inputs; -bits 5, 4, 3, 2, and 0 become outputs.

Answers to Odd-Numbered Problems 329

15-13. 8, FFOOH-FFFFH 15-15. Add inverter to each
zone bit except A, so that the gate output is

AisALAALALA A A, 15-17. Add inverters to zone
bits A;s, A, Ay, Ajo, and Ag to produce gate output of

AsAuApAnALAgAgAy. 15-19: 4, 15, COOOH-CFFFH

~ 15-21. Remove inverters on all address bits

330 Answers to 0dd-Numbered Problems

CHAP. 16. 16-1. 1.5 mA, 1.5 mA, 3V 16-3. 1,023,
0.0978% 16-5. 4.688 mA 16-7. Triangular wave from
level 0 to 1.992 V. 16-9. 1100 0000 16-11. 606 kHz
16-13. 0011 1111 16-15. 31 T states, approximately 96
(decimal) 16-17. a. 0 to 5 V b. 0011 0011 c. Approxi-
mately 5V 16-19. a. FFH b. 00H c. Approximately 81°C

Index

Access time, 132-133
Accumulator, 142

(See also ALU)
Acquisition time, 297
Active low, 98
A/D converter, 289-299
ADD instruction, 148, 197
ADD microroutine, 148—-163
Adder-subtracter, 85-87, 142, 158
Addition, 79-87

(See also BCD addition)
Address, 12, 131

(See also Addressing)
Addaress buffer, 215
Address bus, 212
Address-data buffer, 215
Address-data bus, 213
Address field, 145
Address latch, 216

(See also MAR)
Address line, 131
Address mapping, 183
Address state, 147

(See also T state)
Addressing:

direct, 187

immediate, 187

implied, 188

indirect, 205

register, 188
ALE signal, 216
Alphanumerics, 14
ALU, 7, 175, 213

American Standard Code for Information Interchange,

14-15

Analog interface, 281
Analog-to-digital converter, 289-299
AND gate, 22-23
AND-OR-INVERT gate, 55-57
AND sign, 24-25
Aperture time, 298
Architecture:

of 8085, 213-214

of SAP-1, 140
of SAP-2, 173
of SAP-3, 195

Arithmetic-logic unit, 7, 175, 213
ASCII code, 14-15
Assembler, 181
(See also Machine language)
Assembly language, 145
Associative law, 64
Asynchronous operation, 142
(See also Clocking)
Auxiliary carry flag, 214

332 Index

B register, 142
Base, 6-7
BCD addition, 220
BCD number, 13-14
BCD-to-decimal conversion, 13-14
Bidirectional register, 173
Binary adder, 82
Binary adder-subtracter, 85--87
Binary addition, 79-87
Binary code, 2-3 _
Binary-coded-decimal number, 13-14
Binary digit, 4
Binary-hexadecimal-decimal equivalent, 12, 308-310
Binary number, 2, 6-13
Binary odometer, 1-2
Binary programming (see Machine language)
Binary subtraction, 80-81, 85-87
Binary-to-decimal conversion, 6
Binary-to-decimal decoder, 27
Binary-to-hexadecimal conversion, 10-11
Binary weight, 6
Binary word (see Word)
Bit, 4
Bit comparison, 42
Bit-serial form (see Serial data stream; Serial loading)
Boldface notation, 42
Boolean algebra, 19, 23-27, 64-67
Boolean function generator, 58-59
Borrow, 196
Branch instruction, 179-180
Branch-back instrucfion (see RET instruction)
Broadside loading, 110
Bubble memory, 135
Bubbled AND gate, 34
Bubbled or gate, 36
Buffer, 54

(See also Buffer register)
Buffer register, 106107
Bus, 69, 122, 213
Bus-organized computer, 122-125, 152
Bus transient, 152

‘Byte, 6

CALL instruction, 180, 210-211
Carry flag, 196

Central processing unit (see CPU)
Chip enable, 134

Chip select, 268

Chunking, 11

Clear, 97 ,

CLK, 93, 158, 216-217

Clock, 93, 158, 216-217

Clock generator, 102-103

Clock starting phase, 102- "33

Clocking:
edge-triggered, 96-100
level, 93-97
master-slave, 100-102
positive and negative, 94
CMA instruction, 184
CMOS, 48
Command register, 256-260
Commutative law, 64
Compatibility, 51-52
Complement, 19
Complement the accumulator instruction, 184
Complementary MOSFETs, 48
Computer, 7
CON (see Control unit) .
Conditional jump, 180
Contact bounce, 92-93
Control matrix, 36-37, 161
Control ROM, 161-164
Control routine, 148—152
Control store, 214
Control unit, 7, 146-152
Controlled buffer register, 106
Controlled inverter, 41-42
Controlled shift register, 108—110
Controller-sequencer, 141-142, 161
Conversion:
binary-to-decimal, 6
binary-to-hexadecimal, 10-11
decimal-to-binary, 8
decimal-to-hexadecimal, 13
hexadecimal-to-binary, 10-11
hexadecimal-to-decimal, 11-13
Core RAM, 133
Counter: .
mod-10, 116-118
presettable, 118-120
programmable modulus, 120
ring, 114116, 146-147
ripple, 111, 112
software, 181
synchronous, 113-114
TTL, 120
up-down, 118
CPU, 7, 213
(See also ALU; Control unit)
CPU register, 195, 214
Current sink, 52
Current steering, 287

D flip-fiop, 96-98

D latch, 95-96

D/A converter, 282-289
DAA instruction, 219-220

Data, 3
Data-direction register, 262-263
Data processor, 3
Data selector, 58-59
Data settling (see Bus transient; Settling time)
Debouncer, 92-93
Decimal adjust accumylator instruction, 219-220
Decimal odometer, 1
Decimal-to-binary conversion, 8
Decimal-to-binary encoder, 21-22
Decimal-to-hexadecimal conversion, 13
Decimal weight, 6
Decision-making element, 25
Decoder:
binary-to-decimal, 27
binary-to-hexadecimal, 54
decimal-to-BCD, 54
seven-segment, 54
Decoder addressing, 265-272
Decrement instruction, 200, 205
Delay, 189-190
De Morgan’s theorem, 33-37
DI instruction, 245
Digit, 1
Digital-to-analog converter, 282-289
Diode-transistor logic, 48
Direct addressing, 187
Direct memory access, 216, 249

~ Direct reset, 97

Direct set, 97

Disable interrupt instruction, 245
Distributive law, 64

DMA operation, 216, 249
Do-nothing stats (see NOP instruction)
Don’t-care condition, 75-76
Double-byte addition, 199
Double-byte subtraction, 202
Double-dabble, 8

Double inversion, 34, 66

Down counter, 118

Driver, 54

Droop rate, 298

DTL, 48

Dynamic RAM, 133-134, 272

ECL, 48

Edge triggering, 96-97

EI instruction, 245
Emitter-coupled logic, 48
Enable interrupt instruction, 245
Encoder, 21-22, 54

EPROM, 132

Erasable PROM, 132

Even parity, 39

Index

333

EXCLUSIVE-NOR gate, 42
EXCLUSIVE-OR gate, 37-42
Execution cycle, 148-152
Expandable gate, 56
Expander gate, 56-57
Extended register, 204-205

False state, 31

Fanout, 52-53

Fetch cycle, 148

Fetch-executive overlap, 225, 230
Fetch microroutine, 152, 161
Flag, 175, 316-320

Flip-flep, 90-103

Floating TTL input, 50-51
Floppy disk, 249

Foldback, 223-224

Folded memory, 223-224
Foldover, 223-224

Full adder, 81-82

Fully decoded minimum system, 264-255
Fundamental product, 67

Gate:
AND, 22-23
NOT, 19-20
OR, 20-22
Gate addressing:
I/0. 265
memory, 268-270

Half-adder, 81

Halt instruction, 143

Hand-assembly, 178

Handshaking, 176, 257, 292-294
Hardware, 34

Hardwired control, 161

Hex-dabble, 13

Hex inverter, 20

Hexadecimal address, 136—137
Hexadecimal number, 913
Hexadecimal-to-binary conversion, 10-11
Hexadecimal-to-decimal conversion, 11-13
High-speed TTL, 50

HLDA signal, 249

HLT instruction, 143

HOLD signal, 249

Hold time, 98

Immediate addressing, 187
Immediate instruction, 176, 184

334 Index

Implied addressing, 188
IN instruction, 185
INCLUSIVE OR (See OR gate)
Increment instruction, 199-200, 205
Increment state, 147
Indirect addressing, 205
Indirect instruction, 205-207
Input gate lead, 69
Input-output operation:
direct memory access, 216, 249
interrupt-driven, 242-248, 258-259
programmed, 239-241
Input-output unit, 7
Input port, 265-267
Input unit, 7
Instruction cycle, 151
(See also Machine cycle)
Instruction decoder, 158-159
Instruction field, 145
Instruction register, 125, 141, 153
Instruction set, 142-144, 316-320
Integrated circuit, 4, 48
Interface circuit (see Analog interface)
Interrupt, 215, 242-246
Interrupt controller, 248
Interrupt-driven I/O, 242-248, 258-259
Interrupt-enable flag, 245
Interrupt instruction, 245-246
Interrupt mask, 245-246
Interrupt priority, 243
Inversion:
bubble, 19-20
double, 34, 66
sign, 23-24
symbol, 19-20
Inverter, 19-20 .
I/0 operation (see Input-output operation)
I/O unit, 7 '
Italic notation, 25

JK tlip-flop, 99-103

JK master-slave flip-flop, 100-103
JMP instruction, 179-180, 202-204
Jump flag, 187

Jump instruction, 179-180, 202-204

K input, 99-100
Karnaugh map, 70-77
Keyboard entry, 1415, 186

Label, 181-182
Ladder, 286-287

Large-scale integration, 48
Latch, 90-95

LDA instruction, 142

LDA microroutine, 161-162
LED display, 3

Level clocking, 93-97
Light-emitting diode, 3

Load the accumulator instruction, 142
Logic circuit, 19

Loop, 181

Loop counter, 181
Low-power Schottky TTL, 50
Low-power TTL, 50

LSB increment, 284

LSI, 48

Machine cycle:

definition, 151

for 8085, 224-233

fixed, 161-162
. variable, 163-164
Machine language, 145
Machine phase (see T state)
Macroinstruction, 152
Magnetic core, 5
Magnetic tape, 5
Mapping (see Address mapping)
MAR, 140, 153.
Mask, 131, 186
Maskable interrupt, 245
Master-slave flip-flop, 100-103
Medium-scale integration, 48
Memory, 5-7, 130-139
Memory address register, 140, 153
Memory data register, 174
Memory element, 90
Memory enable (see Chip enable; Chip select; Write

enable) '

Memory expansion, 268-272
Memory location, 10-11, 321-324
Memory-reference instruction, 143, 176
Memory register (see Memory location)
Memory state, 147
Memory zone, 270-272, 321-324
Microcode (see Microprogram)
Microcomputer, 7
Microcontroller, 161-164
Microinstruction, 152
Microprocessor, 7
Microprogram, 152153, 161-164
Microroutine (see Microprogram)
Minimum system, 221-223
Mnemonic, 143
Modulus, 116-120

Monitor, 174

Monotonicity, 285

MRI, 143, 176

MSB, 185, 200

MSI, 48

Multiplexer, 58-59, 153
Multiplication, programmed, 182

n-channel MOSFETs, 48
NAND gate, 34-36, 49, 53
NAND latch, 92
Natural modulus, 120
Negative clocking, 94
Negative logic, 25
Nested subroutine, 189-190
Nibble, 13-14
NMOS, 48
Noise margin, 52
Nonmaskable interrupt, 245
Nonsaturated circuit, 4
Nonvolatile memory, 133
NOP instruction, 148, 185
NOR gate, 32-34, 53-54
NOR latch, 91
NOT gate, 19-20
Notation:
boldface, 42
italic, 25
roman, 25
Number:
binary, 2, 6-13
decimal, 1
hexadecimal, 9-13

Object program, 145
Octet, 72
Odd parity, 39
Odd-parity generator, 40
Odd-parity tester, 39
Oddness, program for, 185-186
Odometer:

binary, 1-2

decimal, |

hexadecimal, 9
On-chip decoding, 131, 132
I’s complement, 41-42
Op amp, 281-282
Op code, 144, 176, 316-320
Open-collector gate, 58
Operand, 145, 176
Operation code, 144, 176, 316-320
Operational amplifier, 281-282
OR gate, 20-22

Index

335

OR sign, 24

OUT instruction, 185, 232-233
Output port, 142

Output unit, 7

Overflow, 87

Overlapping, 74

p-channel MOSFETs, 48

Pair, 72 '

Parallel loading, 110

Parameter passing, 183

Parity, 39

Parity flag, 203

PC, 113, 140, 147, 153

Phase (see T state)

PMOS, 48

Pointer, 140, 205

Polled 1O, 240 -

POP instruction, 209-210

Port, 254-268

Port addressing, 265-267

Port instruction, 185

Positive clocking, 94

Positive logic, 25

. Power dissipation, 49
Power of 2, 7
Preset, 97

" Presettable counter, 118-120
Prime memory (see Dynamic RAM; Static RAM)
Program, 3
Program counter, 113, 140, 147, 153
Program status word, 208
Programmable modulus, 120
Programmable ROM, 131-132
Programmed 1/O, 239-241
Programmed multiplication, 182
Programming, 135
PROM, 131-132
PROM programmer, 131-132
Propagation delay time, 49, 98
PUSH instruction, 208-209

(See also Stack)

Quad, 72

Race condition, 91

Racing, 100

Radix, 6-7

RAL instruction, 185, 200

RAM, 133-137

Random-access memory, 133-137
RAR instruction, 185, 200

336 Index’

Read interrupt mask instruction, 246
Read-only memory, 130-133
Read-write memory, 133-137
Redundant Karnaugh group, 74-75
Refresh, 133-134
Register:

bidirectional, 173

buffer, 54, 106-107

controlled, 106-110

CPU, 195, 214
output, '106—-107
pair, 204

shift, 108-110

shift-left, 108

shift-right, 108
Register addressing, 188
Relative accuracy, 284-285
Reset, 215
Reset-and-carry, 1
Resolution, 284
Restart, 241-243
Restart instruction, 241-242
RET instruction, 180, 210-211
Return instruction, 180, 210-211
RIM instruction, 246
Ring counter, 114-116, 146-147
Ripple counter, 111, 112
ROM, 130-133
Roman notation, 25
Rotate instruction, 185, 200
Rotate left, 115
RS latch, 90-94
RST pins, 242

Sample-and-hold amplifier, 297-299
SAP-1, 140-164, 315

SAP-2, 173-194

SAP-3, 195-212

Saturated circuit, 4

Saturation delay time, 4

Schmitt trigger, 54-55

Schottky TTL, 50

Serial data stream, 191

Serial in data output, 215, 247
Serial loading, 108

Serial out data output, 215, 247-248
Service subroutine, 242

Set interrupt mask instruction, 245-246
Settling time, 285

Setup time, 98

Seven-segment decoder, 54

Shadow, 223-224, 256

Shift register, 108—110

SID input, 215, 247

Sign bit, 83
Sign-magnitude number, 83
Signed binary number, 83
SIM instruction, 245-246
Sink, 52

Small-scale integration, 48
SOD output, 215, 247-248
Software, 3-4

. Source, 52

Source program, 145

SSI, 48

Stack, 195, 207-211

Stack pointer, 195, 207-208
Standard TTL, 49-52

Start bit, 239-240

State diagram, 117

Static RAM, 133-134
Status bit, 239-240

Status register, 257

String, 1

Strobe, 221, 257-259
Subroutine, 180

Subtract instruction, 150, 198

Successive approximation, 290-296

Sum-of-products circuit, 67-68
Summing circuit, 282

Switch debouncer, 92-93
‘Synchronous counter, 113114

T state, 146-151, 316-320
Temporary register, 175
Terminal count, 259-261
Three-state RAM, 134
Three-state register, 122
Three-state switch, 121
Time delay, 189-190
Timer, 259-261

Timer command, 260
Timing diagram, 91, 224-233
Timing signal, 36, 116
Timing state, 146—-151
Toggle, 99-100

Totem-pole output, 49
Traffic light, 190-191
Transistor-transistor logic, 48, 311-312
Transparent latch, 95
Trap, 243

Tristate switch, 111-112
Truth table, 20

TTL, 48, 311-312

TTL counter, 120
Two-state design, 4

2’s complement, 83-84

Unconditional jump, 180
Universal logic circuit, 60
Up-down counter, 118

VCO, 296-297

Vector, 241

Vector location, 241

Vectored interrupt, 242

Virtual ground, 281-282
Voltage-controlled oscillator, 296-297

Weight:
binary, 6
decimal, 6
hexadecimal, 11-12
Word, 20 ,
Word comparator, 42—-43
Word multiplexer, 60
Worst-case TTL characteristics, 50-51
Write enable, 134

XNOR gate, 42
XOR gate, 37-42

Zone, 270, 316-320
Zone bit, 270

Index

337

